
© C
OPYRIG

HT U
PMARCHITECTURAL EROSION DETERMINATION MODEL USING

APPROACH-BASED METRICS AND QUALITY ATTRIBUTES WITH
STRUCTURAL EQUATION MODELLING

By

AHMED OMAR SALEM BABBAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of

Philosophy

May 2024

FSKTM 2024 1

© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti
Putra Malaysia unless otherwise stated. Use may be made of any material
contained within the thesis for non-commercial purposes from the copyright
holder. Commercial use of material may only be made with the express, prior,
written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

ii

DEDICATION

To my dear family, your endless love, support, and encouragement have been
my guiding light throughout this academic journey. To my parents, your
wisdom and sacrifices paved the way for my success. To my loving wife, your
understanding and motivation pushed me beyond my limits. To my dear
children and all the wonderful people who enriched my life and inspired me to
achieve more than I ever imagined. This thesis is dedicated to each one of you
with sincere gratitude.

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

ARCHITECTURAL EROSION DETERMINATION MODEL USING
APPROACH-BASED METRICS AND QUALITY ATTRIBUTES WITH

STRUCTURAL EQUATION MODELLING

By

AHMED OMAR SALEM BAABAD

May 2024

Chairman : Hazura binti Zulzalil, PhD
Faculty : Computer Science and Information Technology

The success or failure of software development and design heavily depends

on software architecture, which plays a vital role in various aspects of the

development process. It is acknowledged that having the right architecture is

crucial for system design and development. However, as systems evolve,

software architecture tends to degrade, leading to architectural erosion.

Although several studies have explored different approaches to tackle

architectural erosion, with metrics being a common solution, there is a

significant gap in knowledge on the metrics used to identify architectural

erosion and classify adopted approaches.

Therefore, this research aims a model that combines approach-based metrics

and architectural attributes quality to address the following main aspects: 1)

identification of adopted approaches and commonly used metrics practices

associated with each approach to identify architectural erosion, 2) identification

© C
OPYRIG

HT U
PM

ii

of key quality attributes related to architectural erosion for each adopted

approach, and 3) provision of empirical evidence on the identification of each

adopted approach in the context of architectural erosion.

Initially, 92 metrics practices and 10 quality attributes relevant to architectural

erosion were identified. These metrics practices were systematically assigned

to adopted approaches such as architectural change, historical data revision,

architectural dependency coupling, architectural bad smells, architectural

cohesion, software architecture size, architectural technical debt, architectural

complexity, and architecture modularization. The model was subjected to

content validation by experts and was confirmed to be reliable. A subsequent

reliability study involving 30 software engineering professionals further

validated the constructs within the model. The model was further investigated

using Structural Equation Modeling (SEM) based on data collected from a

survey of 130 software engineering professionals. SEM analysis provided

significant insights into the relationship between different aspects of the

approaches and architectural erosion. The findings of the study revealed that

most approaches significantly impact architectural erosion, with the exception

of architectural complexity and technical debt, which showed weaker

relationships. The findings justify the integration of approach-based metrics

with architectural quality attributes, demonstrating the model's reliability by

obtaining positive feedback from experts regarding its usefulness. In

conclusion, this research offers a comprehensive perspective on the

approaches used to identify architectural erosion, encompassing types of

approaches, quality attributes, and common metrics practices. In addition, it

© C
OPYRIG

HT U
PM

iii

provides valuable insights and practical guidance for researchers and

practitioners in the field.

Keywords: Architectural Erosion, Metrics, Quality Attributes, Software
Architecture, Structural Equation Modeling (SEM).

SDG: GOAL 8: Decent Work and Economic Growth, GOAL 9: Industry,
Innovation, and Infrastructure, GOAL 12: Responsible Consumption and
Production

© C
OPYRIG

HT U
PM

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MODEL PENENTUAN EROSI SENIBINA MENGGUNAKAN METRIK
BERASASKAN PENDEKATAN DAN ATRIBUT KUALITI DENGAN

PEMODELAN PERSAMAAN STRUKTUR

Oleh

AHMED OMAR SALEM BAABAD

Mei 2024

Pengerusi : Hazura binti Zulzalil, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Kejayaan atau kegagalan pembangunan dan reka bentuk perisian sangat

bergantung pada seni bina perisian, yang memainkan peranan penting dalam

pelbagai aspek proses pembangunan, termasuk analisis, penggunaan

semula, pemahaman, evolusi, pembinaan dan pengurusan. Adalah diakui

bahawa mempunyai seni bina yang betul adalah penting untuk reka bentuk

dan pembangunan sistem. Walau bagaimanapun, apabila sistem

berkembang, seni bina perisian cenderung merosot, membawa kepada

fenomena yang dikenali sebagai hakisan seni bina. Beberapa kajian telah

meneroka pendekatan yang berbeza untuk menangani hakisan seni bina,

dengan metrik muncul sebagai penyelesaian yang paling banyak digunakan.

Walau bagaimanapun, terdapat kekurangan penyelidikan mengenai metrik

untuk mengenal pasti hakisan seni bina dan mengkategorikan pendekatan

yang diterima pakai. Mengenal pasti amalan metrik yang digunakan dalam

konteks ini adalah penting untuk pemahaman yang menyeluruh. Walaupun

© C
OPYRIG

HT U
PM

v

menyedari kepentingannya, masih terdapat kekurangan pengetahuan tentang

menyesuaikan pendekatan dan metrik dalam menyiasat fenomena ini.

Oleh itu, penyelidikan ini bertujuan untuk mencadangkan model yang

menggabungkan metrik berasaskan pendekatan dan kualiti atribut seni bina

untuk menangani aspek utama berikut: 1) pengenalpastian pendekatan yang

diterima pakai dan amalan metrik yang biasa digunakan yang dikaitkan

dengan setiap pendekatan untuk mengesan hakisan seni bina, 2)

pengenalpastian atribut kualiti utama yang berkaitan dengan hakisan seni bina

bagi setiap pendekatan yang diterima pakai, dan 3) penyediaan bukti empirikal

mengenai pengenalpastian setiap pendekatan yang diterima pakai dalam

konteks hakisan seni bina.

Model yang dicadangkan pada mulanya melibatkan 92 amalan metrik dan 10

atribut kualiti khusus untuk mengenal pasti hakisan seni bina. Setiap amalan

metrik yang diperiksa secara sistematik diberikan kepada salah satu

pendekatan yang diterima pakai, termasuk perubahan seni bina, semakan

data sejarah, gandingan kebergantungan seni bina, bau busuk seni bina,

perpaduan seni bina, saiz seni bina perisian, hutang teknikal seni bina,

kerumitan seni bina dan modularisasi seni bina. Model ini tertakluk kepada

proses pengesahan kandungan selepas memasukkan cadangan daripada

pakar kandungan dan didapati boleh dipercayai. Selepas itu, kajian

kebolehpercayaan yang melibatkan 30 profesional kejuruteraan perisian

dalam bidang kejuruteraan perisian yang secara khusus menangani hakisan

seni bina dan langkah-langkahnya mengesahkan kebolehpercayaan semua

© C
OPYRIG

HT U
PM

vi

binaan dalam model. Model ini disiasat selanjutnya menggunakan Pemodelan

Persamaan Struktur (SEM) berdasarkan data yang dikumpul daripada tinjauan

terhadap 130 profesional kejuruteraan perisian. Analisis SEM memberikan

pandangan yang ketara ke dalam hubungan antara pelbagai aspek

pendekatan dan hakisan seni bina. Penemuan kajian mendedahkan bahawa

kebanyakan pendekatan memberi kesan ketara kepada hakisan seni bina,

kecuali kerumitan seni bina dan hutang teknikal, yang menunjukkan hubungan

yang lebih lemah. Penemuan ini membenarkan penyepaduan metrik

berasaskan pendekatan dengan atribut kualiti seni bina, menunjukkan

kebolehpercayaan model dengan mendapatkan maklum balas positif daripada

pakar mengenai kegunaannya. Kesimpulannya, penyelidikan ini menawarkan

perspektif menyeluruh tentang pendekatan yang digunakan untuk mengenal

pasti hakisan seni bina, merangkumi jenis pendekatan, atribut kualiti dan

amalan metrik biasa. Di samping itu, ia memberikan pandangan yang

berharga dan bimbingan praktikal untuk penyelidik dan pengamal dalam

bidang tersebut.

Kata Kunci: Atribut Kualiti, Hakisan Seni Bina, Metrik, Pemodelan Persamaan
Struktur (SEM), Seni Bina Perisian.

SDG: MATLAMAT 8: Pekerjaan yang Layak dan Pertumbuhan Ekonomi,
MATLAMAT 9: Industri, Inovasi, dan Infrastruktur, MATLAMAT 12:
Penggunaan dan Pengeluaran yang Bertanggungjawab

© C
OPYRIG

HT U
PM

vii

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to the supervisory committee, headed by

Assoc. Prof. Dr. Hazura Zulzalil, along with Assoc. Prof. Dr. Sa'adah Hassan,

and Assoc. Prof. Dr. Salmi Baharom. Your invaluable time, unwavering

support, and wise counsel have been instrumental in my journey. I am

particularly indebted to Assoc. Prof. Dr. Hazura Zulzalil, who, as the

committee's chairman, provided essential guidance, profound insights, expert

knowledge, and constant encouragement, leading to the successful

completion of this thesis.

I am profoundly grateful to my parents, wife, friends, and all members of my

family for their unwavering and unconditional support throughout my Ph.D.

research journey. Their encouragement has been a constant source of

motivation. Additionally, I extend my sincere acknowledgment and deep

gratitude to Hadramout establishment and Hadramout University for their

generous financial and moral support, which played a crucial role in enabling

me to successfully complete my studies.

© C
OPYRIG

HT U
PM

ix

This thesis was submitted to the Senate of Universiti Putra Malaysia and has
been accepted as fulfilment of the requirement for the degree of Doctor of
Philosophy. The members of the Supervisory Committee were as follows:

Hazura binti Zulzalil, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Sa'adah binti Hassan, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Salmi binti Baharom, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 December 2024

© C
OPYRIG

HT U
PM

xii

TABLE OF CONTENTS

Page

ABSTRACT i
ABSTRAK iv
ACKNOWLEDGEMENTS vii
APPROVAL viii
DECLARATION x
LIST OF TABLES xv
LIST OF FIGURES xvii
LIST OF APPENDICES xviii
LIST OF ABBREVIATIONS xix

CHAPTER

 1 INTRODUCTION 1

1.1 Background 1
1.2 Research Motivation 5
1.3 Problem Statement 7
1.4 Research Objectives 10
1.5 Research Scope 10
1.6 Research Contribution 11
1.7 Organisation of the Thesis 12

 2 LITERATURE REVIEW 14

2.1 Introduction 14
2.2 Software Architecture Erosion 14

2.2.1 Software Architecture Erosion Causes 16
2.2.2 Symptoms of Software Architecture Erosion 21
2.2.3 Software Architecture Erosion Proposed

Solutions 25
2.3 A Systematic Mapping Study on the Characterizing the

Architectural Erosion Metrics 35
2.3.1 Overview of Selected Primary Studies 37
2.3.2 Architectural Erosion Approaches 38
2.3.3 Proposed Approaches and Metrics Strategies for

Determining Architectural Erosion 41
2.3.4 Architectural Erosion Impact on Quality Attributes 55

2.4 Summary 59

 3 RESEARCH METHODOLOGY 61

3.1 Introduction 61
3.2 Literature Analysis 63

3.2.1 Systematic Literature and Systematic Mapping
Study Questions 65

3.2.2 Search Strategy 67
3.2.3 Studies Selection Criteria 71

© C
OPYRIG

HT U
PM

xiii

3.2.4 Study Quality Assessment 75
3.2.5 Data Extraction and Scheme Characterization 78

3.3 The Proposed Model Development 81
3.3.1 Model Conceptualization 82
3.3.2 Instrument Validity and Reliability 83

3.4 Empirical Evaluation of the Proposed Model 87
3.4.1 Sampling and Data Collection 88
3.4.2 Data Preparation 90
3.4.3 Statistical Technique of SEM 92
3.4.4 Measurement Model Assessment 93
3.4.5 Structural Model Assessment 96
3.4.6 Model Validation 100

3.5 Summary 101

 4 DEVELOPMENT OF THE PROPOSED MODEL 102

4.1 Introduction 102
4.2 Model Conceptualization 102
4.2.1 Historical Data Revision Approach 106

4.2.2 Architectural Bad Smell Approach 107
4.2.3 Architectural Dependency Coupling Approach 107
4.2.4 Architectural Complexity Approach 109
4.2.5 Architecture Modularization Approach 110
4.2.6 Architectural Change Approach 110
4.2.7 Architectural Technical Debt Approach 111
4.2.8 Architectural Cohesion Approach 111
4.2.9 Software Architecture Size Approach 112
4.2.10 Architectural Quality Attributes 113

4.3 Content Validity 115
4.4 Internal Consistency Reliability 123
4.5 Discussion 125
4.6 Summary 130

 5 EMPIRICAL ASSESSMENT OF THE PROPOSED MODEL 131

5.1 Introduction 131
5.2 Research Hypotheses Testing 132
5.3 Respondents’ Demographic Profile 132
5.4 Data Investigation and Descriptive Statistics on

Constructs and Items 135
5.5 Results of Measurement Model Assessment 141

5.5.1 Factor Loading 142
5.5.2 Internal Consistency Reliability 142
5.5.3 Convergent Validity 144
5.5.4 Discriminant Validity 145

5.6 Results of Structural Model Assessment and
Hypotheses Testing 146

5.7 Results of Model Validation 155
5.8 Discussion 160
5.9 Threats to Validity of Research 166

5.9.1 Threats to External Validity 166
5.9.2 Threats to Internal Validity 167

© C
OPYRIG

HT U
PM

xiv

5.9.3 Threats to Construct Validity 167
5.9.4 Threats to Conclusion Validity 168

5.10 Summary 168

 6 CONCLUSION AND FUTURE WORK 170

6.1 Introduction 170
6.2 Research Conclusion 170
6.3 Research Implications 172

6.3.1 Theoretical Implications 172
6.3.2 Practical Implications 172

6.4 Limitations 173
6.5 Directions for Future Work 173

REFERENCES 176
APPENDICES 197
BIODATA OF STUDENT 248
LIST OF PUBLICATIONS 249

© C
OPYRIG

HT U
PM

xv

LIST OF TABLES

Table Page

2.1 Summary of key indicators of the architecture erosion

symptoms 25

2.2 Summary of proposed solution of architectural erosion 36

2.3 Selected primary studies (SPSs) 38

2.4 Architectural erosion metrics practices of architectural change
approach 43

2.5 Architectural erosion metrics practices of historical data
revision approach 44

2.6 Architectural erosion metrics practices of architectural
cohesion approach 45

2.7 Architectural erosion metrics practices of architecture
modularization approach 46

2.8 Architectural erosion metrics practices of architectural
technical debt approach 48

2.9 Architectural erosion metrics practices of software architecture
size approach 49

2.10 Architectural erosion metrics practices of architectural
Complexity approach 51

2.11 Architectural erosion metrics practices of architectural bad
smell approach 52

2.12 Architectural erosion metrics practices of architectural
dependency coupling approach 54

2.13 Architectural quality attributes for architectural erosion 58

3.1 SLR Questions & Motivations 66

3.2 SMS Questions & Motivations 66

3.3 Online database for SLR 70

3.4 Online database for SMS 71

3.5 Inclusion and exclusion criteria in SLR 72

3.6 Inclusion and exclusion criteria in SMS 72

© C
OPYRIG

HT U
PM

xvi

3.7 Quality assessment criteria for SLR 77

3.8 Quality assessment criteria for SMS 77

3.9 Data extracted attributes list of the primary studies 78

3.10 Minimum CVR value 85

3.11 Summary of criteria for finalizing the items 86

3.12 Online questionnaire shared in social media 88

4.1 Overview of architectural erosion approaches 105

4.2 Experts' basic knowledge of content validity 117

4.3 CVR and Mean results for the content validity 120

4.4 Summary of inclusions in the final version of content validity 122

4.5 Reliability Test Findings for the Validated Model. 126

5.1 Profiles of the panellists' demographics that were collected (n
= 130) 134

5.2 Items data analysis and descriptive statistics 137

5.3 Depicting the Mean, Standard Deviation (SD), and
Correlations of the constructs 140

5.4 The model's reliability, validity, and measurement quality
assessment results 143

5.5 The HTMT ratios for assessing discriminant validity. 146

5.6 Findings of the hypothesis tests 147

5.7 The results of effect (𝑭𝟐) 154

5.8 Summary of Expert Feedback on Model Validation 159

© C
OPYRIG

HT U
PM

xvii

LIST OF FIGURES

Figure Page

2.1 Causes of the architectural erosion 21

2.2 Frequency of key indicators appearance of the architectural
erosion symptoms in SPSs 24

2.3 Year and venue wise distributions 37

2.4 Number of papers by classification 39

2.5 Number of metrics by classification 40

3.1 Overview of the research methodology 63

3.2 Overview of protocol stages 76

4.1 Initial Proposed Model 103

4.2 Conceptual model illustrating the relationships between
approaches and AEr 116

4.3 Proposed mapping model for final version of instrument
validity and reliability 128

5.1 Measurement model of architectural erosion 146

5.2 The findings of the structural model evaluation for architectural
erosion 153

5.3 Structural model evaluation for architectural erosion excluding
ATD and ACP constructs 155

© C
OPYRIG

HT U
PM

xviii

LIST OF APPENDICES

Appendix Page

A Tables related to systematic review study results 197

B Tables related to systematic mapping study steps 198

C All questionnaires used in this research 203

D Detailed calculations of CVR for all constructs 244

© C
OPYRIG

HT U
PM

xix

LIST OF ABBREVIATIONS

ABS Architectural bad smells

ACH Architectural change

ACO Architectural cohesion

ACP Architectural complexity

AD Architectural decay / Architectural degradation

AEr Architecture Erosion / Architectural Erosion

AIn Architectural inconsistencies

AM Architecture modularization

AQAs

ASA

Architecture quality attributes بهق

Architectural significant attributes

ATD Architectural technical debt

AVE Average Variance Extracted

C.R Critical value

CA Conceptual architecture

CCCU Composite Construct Consistency and Unidimensionality

CMB Common Method Bias

CR Composite Reliability

CVR

DA

Content Validity Ratio

Descriptive architecture

DL Decoupling Level

DSL Domain-Specific Language

FL Factor Loading

FLOSS

FSM

Free/Libre and Open-Source Software

Functional Sizing Measurement

© C
OPYRIG

HT U
PM

xx

GoF Goodness of Fit

HDR Historical data revision

HTMT Heterotrait-Monotrait Ratio of Correlations

ISA Implemented software architecture

ISO International Organisation for Standardization

ISs Information Systems

MMA Measurement Model Assessment

OSS Open-source software

PA Prescriptive architecture

PCI Project Call Instability

PDI Project Design Instability

PLS-SEM Partial Least Squares Structural Equation Modelling

PSA Planned software architecture

SA Software Architecture

SACC Software architecture conformance checking

SAD Software architecture degradation

SAZ Software architecture size

SD Standard Deviation

SDLC Software development lifecycle

SE Software Engineering

SEM

SEPs

Structural Equation Modelling

Software Engineering Professionals

SLR systematic literature review

SMA Structural Model Assessment

SMs Software Metrics

SMS Systematic mapping study

SPSs Selected primary studies

© C
OPYRIG

HT U
PM

xxi

SQ Software Quality

VIF Variance Inflation Factor

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Since late 1989, software architecture (SA) has appeared as the initial

conception of the large-widely structures of software systems. SA

is getting increasing attention within the software engineering domain

over the past decade (Bosch & Molin, 1999). In both academia and industry,

SA has become a widely accepted concept (Bass, Weber, & Zhu, 2015;

Clements et al., 2003). As a result, the essence of software system design and

development is the key notion for SA (Taylor, Medvidovic, & Dashofy, 2009).

It plays a pivotal role in many aspects of software development, including

analysis, reuse, comprehension, evolution, construction, and management.

SA interplays and overlaps with the study of domain-specific design,

component-based reuse, software families, specific classes of components,

program analysis, and software design (Shaw & Clements, 2006). Accordingly,

the influence of SA change on software-intensive systems has a significant

impact on their long-term viability, whether positively or negatively. As part of

the software evolution life cycle, SA frequently provides components for the

fulfilment of non-functional and functional requirements (Bachmann, Bass,

Klein, & Shelton, 2005; Bass et al., 2015).

© C
OPYRIG

HT U
PM

2

In essence, the SA can be defined as the structure of the system, which

includes software components, observable attributes of components, and their

interactions (Bass, Clements, & Kazman, 2021). As can be seen from this

definition, the internal characteristics of each entity's system structure have a

substantial impact on SA. It is concerned with the high-level structure and

properties of the system (Perry & Wolf, 1992; Shaw & Garlan, 1996). It is

important to highlight that SA refers to the highest level of abstraction and

fundamental reasoning applied in software development, regardless of

whether it is open-source software (OSS) or closed-source (proprietary

source).

Moreover, the architecture of a system refers to the collection of major design

decisions made throughout the system's development and any subsequent

evolution. As a subject, architecture is the proper major emphasis of software

engineering, because the production of high-quality, successful products is

dependent on the decisions made at the beginning of the development

process. The decisions and principles that will guide the development of the

system are considered to be part of the SA (Stringfellow, Amory, Potnuri,

Andrews, & Georg, 2006). The goal of concentrating on SA is to identify and

analyse crucial early design decisions (Klein et al., 1999; Pfeifer et al., 2022).

As a consequence, system designers and developers have realised that

getting the architecture right is a vital success factor in the process of

developing a system (Garlan, 2000).

© C
OPYRIG

HT U
PM

3

Interestingly, as systems evolve, their SA usually erodes over time (Lehman,

1979, 1996). Inevitably, this problem does not happen overnight, but it is long-

standing in software engineering (Herold, Knieke, Schindler, & Rausch, 2020).

The eroding architecture drives the system to greater complexity, difficulty, and

frequency of change than previously (Stringfellow et al., 2006). As a result, the

system's lifetime is shortened, or it has a significant impact on software quality

or the maintenance and development systems life cycle (Garcia, Ivkovic, &

Medvidovic, 2013), necessitating an entire redesign of the system's

architecture from scratch (Lenhard, Blom, & Herold, 2019; Zude & Jun, 2011).

This phenomenon is referred to as Architecture Erosion (AEr) (Bosch, 2004;

Hochstein & Lindvall, 2005; Medvidovic, Egyed, & Grünbacher, 2003; Parnas,

1994), Software Architecture Degradation (SAD) (Amalfitano, Luca, &

Fasolino, 2023; Lenhard et al., 2019; Perry & Wolf, 1992; Taylor et al., 2009),

Architectural Decay (AD) (Jin et al., 2023; Riaz, Sulayman, & Naqvi, 2009). In

accordance with the studies conducted by researchers in this field,

Architecture Erosion (AEr) or Architectural Erosion (AEr) emerges as the most

used term, and this will be the term adopted in this research.

Architecture Erosion (AEr) can be defined as the persistent divergence

between prescriptive and descriptive software architecture as intended and

implemented (Perry & Wolf, 1992; Taylor et al., 2009). It takes place when the

implemented software architecture (ISA), which represents the actual

functions of the system, deviates from the planned software architecture

(PSA), which represents the system's original design. The occurrence of AEr

© C
OPYRIG

HT U
PM

4

represents by predefined mapping and accomplishing of systems based on

inconsistent properly regarding the architecture design and the source code.

This phenomenon is caused by factors that may lead to AEr such as

undocumented, unforeseen, unplanned, random, scattered, and confused

architectural design decisions. Furthermore, architectural change (ACH) of a

system over time (Jin et al., 2023; Lindvall, Tesoriero, & Costa, 2002),

disregard for fundamental architectural rules of a system due to the

modification, developer mistakes, and bad practices (Bandara & Perera, 2018)

have a strong impact for continuing AEr, which may shorten the system lifetime

or require reengineering from scratch (Bandara & Perera, 2018; Zude & Jun,

2011).

Numerous experimental studies have been conducted to address the issue of

AEr, aiming to identify, avoid, minimize, or repair it. To achieve this, various

tools, models, and measures have been suggested to detect deviations from

the intended architecture and erosion in its early stages. These efforts have

resulted in a variety of proposed solutions to combat AEr. These solutions

encompass different strategies, such as models, measurements, approaches,

algorithms, tools, techniques, and methods, which may be combined to form a

comprehensive solution. Some of the most important solutions include a

metrics-based detection strategy, Prioritisation of architectural anomalies,

investigation and remediation of architectural rule violations, refactoring,

architectural recovery, and other proposed solutions.

© C
OPYRIG

HT U
PM

5

1.2 Research Motivation

Addressing AEr in software development is essential for the success of

software projects, as the multifaceted nature of this issue has garnered

significant attention in discussions and research, highlighting its crucial

importance. This phenomenon can result in instability in structural issues

(Ruiyin Li, Peng Liang, Mohamed Soliman, & Avgeriou, 2021) due to violation

of design rules about encapsulation, accumulation of cyclic dependencies,

increased coupling, and an inability to meet evolving business requirements.

Moreover, maintenance, evolution, quality issues (Ruiyin Li et al., 2021), and

increased development costs (Andrews & Sheppard, 2020) can ultimately

threaten software projects' success.

Understanding and mitigating AEr is essential for maintaining the long-term

viability and sustainability of software systems. It enables organisations to

preserve the integrity of their software architectures, enhance system

maintainability, and facilitate future evolution and adaptation to changing

business needs. Therefore, proactive measures to determine and mitigate AEr

are essential for ensuring the resilience and longevity of software systems

(Whiting & Andrews, 2020).

The prevalence of AEr in software development has prompted the exploration

of various solutions, with the metrics approach emerging as the most used and

effective technique (Misra, Adewumi, Fernandez-Sanz, & Damasevicius,

2018). This method, as highlighted by Misra (2011), emphasise the

© C
OPYRIG

HT U
PM

6

significance of employing software metrics throughout the software

development lifecycle (SDLC) to enhance and monitor diverse software

engineering practices.

The underlying logic is that "you cannot control what you cannot measure"

(DeMarco, 1986). Typically, several systems lack an explicit and precise

description of Prescriptive Architecture (PA) in practice, contributing to AEr. It

was found that a mere 5% of open-source projects maintain software

architectural documentation (Ding, Liang, Tang, & Vliet, 2015), emphasising

the challenge of addressing AEr. This indicates the necessity to construct

architectural specifications from scratch, a daunting task for systems that have

hundreds of thousands or even millions of lines of code. Therefore, it is

obviously difficult to draught up a detailed architectural specification in the face

of AEr.

When architectural documentation is missing, the code is typically the major

source of information concerning the possibility of architectural violations and

erosion (Lenhard et al., 2019; Lenhard, Hassan, Blom, & Herold, 2017).

Hence, having a solid understanding of the fundamentals behind the metrics

strategy is an effective method for determining whether there are issues with

the underlying architecture or its source code, particularly in the context of AEr.

Thus, the significance of leveraging metrics as a strategy to address AEr is

emphasised, guided by the principle that "you cannot control what you cannot

measure." Evaluating software systems requires measuring both architectural

quality attributes and software metrics (SMs) at the architectural level (Alenezi,

© C
OPYRIG

HT U
PM

7

2016). Aligning these attributes with metrics is essential for measuring AEr in

software architecture.

The key motivation behind this research is to address the challenges posed by

AEr in software development. With growing attention on AEr, the study aims

to provide a clear understanding of metrics practices, particularly in analysing

source code in the absence of explicit architectural documentation, thus

clarifying its role in mitigating issues related to AEr.

1.3 Problem Statement

The practice of utilising metrics is crucial in determining and mitigating the

impact of AEr (Le Duc, Carlos, Rafael, & Nenad, 2016; Lenhard et al., 2019;

Ruiyin Li et al., 2021). In addition, when evaluating software systems, both

quality attributes and (SMs) are essential. Quantifying these attributes at the

architectural level provides valuable insights into the software's design, as

quality is typically assessed at this higher level rather than at the code level

(Alenezi, 2016). Consequently, these attributes are referred to as architectural

quality attributes (AQAs). The alignment of quality attributes with relevant

metrics is crucial for accurately measuring AEr in software architecture.

The challenge of determining approaches-based metrics to measure AEr is a

significant concern for software engineers and researchers. Addressing these

challenges is crucial for providing valuable insights and measures to control

AEr, forming a basis for further exploration of this critical issue (Lakshitha &

© C
OPYRIG

HT U
PM

8

Balasubramaniam, 2012; Ruiyin Li et al., 2021; Whiting & Andrews, 2020).

Empirical evidence highlights the adoption of approaches-based metrics to

illustrate architectural enhancements (Lindvall, Tvedt, & Costa, 2003), who

widely applied these metrics to propose solutions for determining AEr,

measuring architectural significant attributes (ASA), and identifying indicators

of architectural deviations aligned with architectural guidelines.

Several models have emerged that focus on establishing metrics for evaluation

purposes. For instance, Dayanandan and Vivekanandan (2016) developed a

framework that emphasizes the importance of quantitative metrics in

assessing architectural decisions, while Pan, Liu, Li, Wang, and Li (2023)

introduced a model that integrates machine learning techniques to enhance

the measurement of AEr, providing a more nuanced understanding of

architectural changes. In addition, Lindvall et al. (2002) also contributed a

model that assesses the impact of architectural modifications on system

quality attributes through scenario-based analysis.

Moreover, Zi Li, Li, and Kang (2016) proposed a model for assessing system

resilience using minimal path analysis and various resilience metrics, which

aids in identifying critical components and potential failure points within system

architecture. These models collectively underscore the need for robust

approaches-based metrics to evaluate AEr comprehensively.

However, despite the growing body of empirical evidence, there remains a gap

in knowledge regarding the comprehensive elements necessary to evaluate

© C
OPYRIG

HT U
PM

9

the phenomenon of AEr. The adoption of approaches-based metrics is gaining

increased attention, particularly in the context of architectural change

approaches, as highlighted by Jin et al. (2023) and Tonu, Ashkan, and

Tahvildari (2006). These studies illustrate the necessity for a more integrated

model that synthesizes existing approaches and metrics, thereby justifying the

method used in the current study. By addressing these gaps, the proposed

research aims to establish a more holistic understanding of AEr and the

metrics that can measure it.

The gap in the use of metrics often arises from their application based on

researchers' perspectives without adequate specificity and clarity (Alsulami,

2021; Fenton & Pfleeger, 2015; Mäntylä, 2008; Nuñez-Varela, Pérez-

Gonzalez, Martínez-Perez, & Soubervielle-Montalvo, 2017). This variation in

how metrics are presented leads to confusion among practitioners,

misunderstandings, and misapplications (Fenton & Pfleeger, 2015). As a

result, measurements become ineffective, hindering improvement efforts

(Basili & Rombach, 2002). These issues complicate the understanding of

fundamental concepts and contribute to increasing the challenges in achieving

widespread acceptance of these metrics. Therefore, metrics need to be clearly

defined and context-specific, which is crucial for reproducibility, understanding

(Barbara & Charters, 2007), and supporting decision-making to enhance the

development process (Buse & Zimmermann, 2012).

In view of the importance of approaches-based metrics for determining AEr, it

is beneficial for researchers and practitioners to understand the metrics

© C
OPYRIG

HT U
PM

10

practices pertaining to every approach in the context of AEr, and the essential

quality attributes from the AEr perspective. Hence, developing a model for

measuring the suitability of the chosen metrics, accompanied by a well-defined

classification aimed at clarifying vague metric definitions and their associated

approaches and categories, that provides this set of information, is in demand

to be researched. This model aims to identify and classify metrics associated

with AEr, propose a correlation of metrics with architectural quality attributes

to measure AEr, and subsequently evaluate the validity and reliability of the

model.

1.4 Research Objectives

The research objectives are as follow:

i. To identify and classify the metrics adopted from approaches related to

AEr.

ii. To develop a model for determining metrics and architectural quality
attributes to determine AEr.

iii. To assess the validity and reliability of the model.

1.5 Research Scope

This study investigates the metrics approaches that could determine AEr.

Therefore, the adopted metrics approaches based on determination of AEr

perspective is the purpose of this research. Consequently, the research

scopes are:

i. This research is limited to measures, metrics approaches, and AEr

attributes that are outcomes of systematic mapping study and experts’

© C
OPYRIG

HT U
PM

11

opinions. However, this study does not claim exclusivity to these
metrics’ approaches, measures, or AEr attributes.

ii. Even while this study will provide an empirical report of the
determination of each metrics approach on AEr as defined by a set of
quality attributes, it will not account for the identification of each metrics
approach on each attribute of AEr.

iii. This study primarily focuses on AEr context based on the researcher's
strategic use of the chance to find potentially helpful panellists. This
could include panellists who work in academic researchers and industry
practitioners.

1.6 Research Contribution

This study's contribution is presented both in theory and in practice.

Theoretically, this research contributes to the body of knowledge for software

engineering and information systems (ISs) in many different ways; however,

the most important contribution is the construction and evaluation of the

approaches, adopted metrics, and quality attributes of AEr model to determine

erosion. This is especially important given that no studies have been

conducted for the potential determination of various types of metrics and their

approaches to identify AEr. In addition, the model provides information that

could be used to measure different various types of metrics and their

approaches to determine AEr. The information lists that are supplied by this

model as well as the significance of each one is described in more depth

below.

i. A comprehensive classification for the aim of determining AEr, having

specific and consistent metrics that can be used to study and evaluate
a wide variety of relevant approaches for AEr context.

ii. Additionally, such an approach can provide a better understanding of
the complexity of the AEr problem and its underlying causes.
Furthermore, it can contribute to the development of better approaches

© C
OPYRIG

HT U
PM

12

and solutions to manage and control the AEr process. Finally, it can
help to identify the most effective metrics strategies to mitigate the risks
associated with AEr.

iii. This model has been subjected to both an empirical evaluation and an
evaluation from the perspective of Software Engineering Professionals
(SEPs), yielding a plethora of information (such as erosion
classifications, approach metrics, and quality attributes) that can
provide useful insights into the nature of AEr and that it is able to help
identification areas requiring improvement.

The development of questionnaires to measure AEr in light of the established

approaches metrics through the use of research instruments is a practical

significant contribution to the field. Valid and reliable studies provide important

guidelines and references for future researchers whose goals are similar to

this study intentions.

1.7 Organisation of the Thesis

This thesis is structured to critically review relevant information on approach

metrics and AEr, providing details on the research methodology and key

findings. It is organised into six chapters. This chapter provides an overview of

the background of the research area, highlights the motivation and problem

statement, and discusses the objectives, scope, and key contributions of the

study.

Chapter 2 provides an in-depth literature review of the research problem. It

covers various topics related to the research problem such as approaches

metrics, quality attributes, and AEr. It also presents a comprehensive overview

of the research findings.

© C
OPYRIG

HT U
PM

13

Chapter 3 addresses the research technique and supports the design of the

research methodology employed to perform this study. In addition, procedures

for the research process, design, instrument development, pilot study,

population, sample, and data collecting, and data analysis are described.

Detailed descriptions of how each aim was attained are provided in each

corresponding chapter.

Chapter 4 presents the conceptualisation of the model and the development

of hypotheses. It includes a detailed explanation of the research model, its

justification, and the formulation of hypotheses.

Chapter 5 presents the results of the research. It provides a detailed

description of the results of the research and a discussion of the implications

of the results.

Chapter 6 provides a conclusion to the research and discussing

recommendations for future research.

© C
OPYRIG

HT U
PM

176

REFERENCES

Abdeen, H., Ducasse, S., Sahraoui, H., & Alloui, I. (2009, 13-16 Oct. 2009).
Automatic Package Coupling and Cycle Minimization. Paper presented
at the 2009 16th Working Conference on Reverse Engineering, Lille,
France.

Adams, L., S. Abdelfattah, A., Hossain Chy, M. S., Perry, S., Harris, P., Cerny,
T., . . . Taibi, D. (2024). Evolution and Anti-patterns Visualized:
MicroProspect in Microservice Architecture, Cham.

Alenezi, M. (2016). Software Architecture Quality Measurement Stability and
Understandability. International Journal of Advanced Computer Science
and Applications(IJACSA), 7(7).
doi:http://dx.doi.org/10.14569/IJACSA.2016.070775

Alsulami, M. (2021). A Systematic Literature Review on Software Metrics.
International Transaction Journal of Engineering, Management, &
Applied Sciences & Technologie, 12(12), 1-13.
doi:http://doi.org/10.14456/ITJEMAST.2021.238

Altınışık, M., Ersoy, E., & Sözer, H. (2017). Evaluating software architecture
erosion for PL/SQL programs. Paper presented at the Proceedings of the
11th European Conference on Software Architecture: Companion
Proceedings, Canterbury, United Kingdom.
https://doi.org/10.1145/3129790.3129811

Amalfitano, D., Luca, M. D., & Fasolino, A. R. (2023, 13-17 March 2023).
Documenting Software Architecture Design in Compliance with the ISO
26262: a Practical Experience in Industry. Paper presented at the 2023
IEEE 20th International Conference on Software Architecture Companion
(ICSA-C), L'Aquila, Italy.

Ambros, M. D., Lanza, M., & Robbes, R. (2009, 13-16 Oct. 2009). On the
Relationship Between Change Coupling and Software Defects. Paper
presented at the 2009 16th Working Conference on Reverse
Engineering, Lille, France.

Andrew L. Comrey, H. B. L. (1992). A First Course in Factor Analysis (2nd
Edition). New York: Lawrence Erlbaum Associates.

Andrews, S., & Sheppard, M. (2020). Software Architecture Erosion: Impacts,
Causes, and Management. International Journal of Computer Science
and Security (IJCSS), 14(2), 82 - 93

Anthony, E., Berntsson, A., Santilli, T., & Wohlrab, R. (2024, 4-8 June 2024).
We are Drifting Apart: Architectural Drift from the Developers'
Perspective. Paper presented at the 2024 IEEE 21st International
Conference on Software Architecture (ICSA).

http://dx.doi.org/10.14569/IJACSA.2016.070775
http://doi.org/10.14456/ITJEMAST.2021.238
https://doi.org/10.1145/3129790.3129811

© C
OPYRIG

HT U
PM

177

Arcelli Fontana, F., Braione, P., & Zanoni, M. (2012). Automatic detection of
bad smells in code: An experimental assessment. Journal of Object
Technology, 11. doi:10.5381/jot.2012.11.2.a5

Arcelli Fontana, F., Lenarduzzi, V., Roveda, R., & Taibi, D. (2019). Are
architectural smells independent from code smells? An empirical study.
Journal of Systems and Software, 154, 139-156.
doi:https://doi.org/10.1016/j.jss.2019.04.066

Arcoverde, R., Guimarães, E., Macía, I., Garcia, A., & Cai, Y. (2013, 1-4 Oct.
2013). Prioritization of Code Anomalies Based on Architecture
Sensitiveness. Paper presented at the 2013 27th Brazilian Symposium
on Software Engineering, Brasilia, Brazil.

Aversano, L., Guardabascio, D., & Tortorella, M. (2019). An Empirical Study
on the Architecture Instability of Software Projects. International Journal
of Software Engineering and Knowledge Engineering, 29(04), 515-545.
doi:10.1142/s0218194019500220

Ayre, C., & Scally, A. J. (2013). Critical Values for Lawshe’s Content Validity
Ratio: Revisiting the Original Methods of Calculation. Measurement and
Evaluation in Counseling and Development, 47(1), 79-86.
doi:10.1177/0748175613513808

Ayyaz, S., Rehman, S., & Qamar, U. (2015). A Four Method Framework for
Fighting Software Architecture Erosion. International Journal of
Computer, Information, Systems and Control Engineering, 9.

Bachmann, F., Bass, L., Klein, M., & Shelton, C. P. (2005). Designing software
architectures to achieve quality attribute requirements. IEE Proceedings
- Software, 152(4), 153-165. doi:10.1049/ip-sen:20045037

Badampudi, D., Wohlin, C., & Petersen, K. (2015). Experiences from using
snowballing and database searches in systematic literature studies.
Paper presented at the Proceedings of the 19th International Conference
on Evaluation and Assessment in Software Engineering, Nanjing, China.
https://doi.org/10.1145/2745802.2745818

Bandara, V., & Perera, I. (2018, 26-29 Sept. 2018). Identifying Software
Architecture Erosion Through Code Comments. Paper presented at the
2018 18th International Conference on Advances in ICT for Emerging
Regions (ICTer), Colombo, Sri Lanka.

Barbara, K. (2012). Systematic review in software engineering: where we are
and where we should be going. Paper presented at the Proceedings of
the 2nd international workshop on Evidential assessment of software
technologies, Lund, Sweden. https://doi.org/10.1145/2372233.2372235

Barbara, K., Budgen, D., & Brereton, O. P. (2011). Using mapping studies as
the basis for further research – A participant-observer case study.
Information and Software Technology, 53(6), 638-651.
doi:https://doi.org/10.1016/j.infsof.2010.12.011

https://doi.org/10.1016/j.jss.2019.04.066
https://doi.org/10.1145/2745802.2745818
https://doi.org/10.1145/2372233.2372235
https://doi.org/10.1016/j.infsof.2010.12.011

© C
OPYRIG

HT U
PM

178

Barbara, K., & Charters, S. (2007). Guidelines for performing systematic
literature reviews in software engineering Retrieved from

Barros, M. d. O., Farzat, F. d. A., & Travassos, G. H. (2015). Learning from
optimization: A case study with Apache Ant. Information and Software
Technology, 57, 684-704.
doi:https://doi.org/10.1016/j.infsof.2014.07.015

Basili, V. R., & Rombach, H. D. (2002). The TAME project: towards
improvement-oriented software environments. IEEE Transactions on
Software Engineering, 14(6), 758-773. doi:10.1109/32.6156

Bass, L., Clements, P., & Kazman, R. (2021). Software Architecture in Practice
(4th ed.): Addison-Wesley Professional.

Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A Software Architect's
Perspective: Addison-Wesley Professional.

Behnamghader, P., Le, D. M., Garcia, J., Link, D., Shahbazian, A., &
Medvidovic, N. (2017). A large-scale study of architectural evolution in
open-source software systems. Empirical Software Engineering, 22(3),
1146-1193. doi:10.1007/s10664-016-9466-0

Belle, A. B., Boussaidi, G. E., & Kpodjedo, S. (2016). Combining lexical and
structural information to reconstruct software layers. Information and
Software Technology, 74, 1-16.
doi:https://doi.org/10.1016/j.infsof.2016.01.008

Bertran, I. M. (2011, 21-28 May 2011). Detecting architecturally-relevant code
smells in evolving software systems. Paper presented at the 2011 33rd
International Conference on Software Engineering (ICSE), Honolulu, HI,
USA.

Bhattacharya, S., & Perry, D. E. (2007, 6-9 Jan. 2007). Architecture
Assessment Model for System Evolution. Paper presented at the 2007
Working IEEE/IFIP Conference on Software Architecture (WICSA'07),
Mumbai, India.

Biaggi, A., Fontana, F. A., & Roveda, R. (2018, 29-31 Aug. 2018). An
Architectural Smells Detection Tool for C and C++ Projects. Paper
presented at the 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Prague, Czech
Republic.

Bindal, D. A., & Singh, R. (2019). Reducing maintenance efforts of developers
by prioritizing different code smells. International Journal of Innovative
Technology and Exploring Engineering (IJITEE), 8(8S3), 139–144.

Bollen, K. A. (1989). Structural equations with latent variables (Vol. 210).
United States: John Wiley & Sons.

https://doi.org/10.1016/j.infsof.2014.07.015
https://doi.org/10.1016/j.infsof.2016.01.008

© C
OPYRIG

HT U
PM

179

Bosch, J. (2004). Software Architecture: The Next Step. Paper presented at
the Software Architecture, Berlin, Heidelberg.

Bosch, J., & Molin, P. (1999). Software architecture design: evaluation and
transformation. Paper presented at the Proceedings ECBS'99. IEEE
Conference and Workshop on Engineering of Computer-Based Systems,
Nashville, TN, USA.

Brace, I. (2018). Questionnaire design: How to plan, structure and write survey
material for effective market research: Kogan Page Publishers.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., . . . Zazworka,
N. (2010). Managing technical debt in software-reliant systems. Paper
presented at the Proceedings of the FSE/SDP workshop on Future of
software engineering research, Santa Fe, New Mexico, USA.
https://doi.org/10.1145/1882362.1882373

Brunet, J., Bittencourt, R. A., Serey, D., & Figueiredo, J. (2012, 15-18 Oct.
2012). On the Evolutionary Nature of Architectural Violations. Paper
presented at the 2012 19th Working Conference on Reverse
Engineering, Kingston, ON, Canada.

Bryman, A., & Cramer, D. (2005). Quantitative data analysis with SPSS 12 and
13: A guide for social scientists: Psychology Press.

Buse, R. P. L., & Zimmermann, T. (2012, 2-9 June 2012). Information needs
for software development analytics. Paper presented at the 2012 34th
International Conference on Software Engineering (ICSE), Zurich,
Switzerland.

Byrne, B. M. (2010). Structural Equation Modeling with AMOS: Basic
Concepts, Applications and Programming (second edition) (Vol. 5). New
York:: Taylor & Francis Group.

Cai, Y., Xiao, L., Kazman, R., Mo, R., & Feng, Q. (2019). Design Rule Spaces:
A New Model for Representing and Analyzing Software Architecture.
IEEE Transactions on Software Engineering, 45(7), 657-682.
doi:10.1109/TSE.2018.2797899

Capiluppi, A., & Knowles, T. (2009, 2009//). Software Engineering in Practice:
Design and Architectures of FLOSS Systems. Paper presented at the
Open Source Ecosystems: Diverse Communities Interacting, Berlin,
Heidelberg.

Carvalho, L. P. d. S., Novais, R., & Mendonça, M. (2018). Investigating the
Relationship between Code Smell Agglomerations and Architectural
Concerns: Similarities and Dissimilarities from Distributed, Service-
Oriented, and Mobile Systems. Paper presented at the Proceedings of
the VII Brazilian Symposium on Software Components, Architectures,
and Reuse, Sao Carlos, Brazil.
https://doi.org/10.1145/3267183.3267184

https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/3267183.3267184

© C
OPYRIG

HT U
PM

180

Černý, T., Chy, M. S. H., Abdelfattah, A., Soldani, J., & Bogner, J. (2024). On
Maintainability and Microservice Dependencies: How Do Changes
Propagate?

Chin, W. W. (2010). Bootstrap Cross-Validation Indices for PLS Path Model
Assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang
(Eds.), Handbook of Partial Least Squares: Concepts, Methods and
Applications (pp. 83-97). Berlin, Heidelberg: Springer Berlin Heidelberg.

Churchill, G. A., & Iacobucci, D. (2006). Marketing research: methodological
foundations (Vol. 199): Dryden Press New York.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., . . .
Stafford, J. (2003). Documenting software architectures: views and
beyond: Addison-Wesley Professional.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences.
Academic Press: Cambridge, MA, USA.

Cooper, D. R., Schindler, P. S., & Sun, J. (2006). Business research methods
(Vol. 9): Mcgraw-hill New York.

Das, D., Islam, R., Kim, S., Cerny, T., Frajtak, K., Bures, M., & Tisnovsky, P.
(2023). Analyzing Technical Debt by Mapping Production Logs with
Source Code, Cham.

Dayanandan, U., & Vivekanandan, K. (2016). An Empirical Evaluation model
for Software Architecture Maintainability for Object oriented Design.
Paper presented at the Proceedings of the International Conference on
Informatics and Analytics, Pondicherry, India.
https://doi.org/10.1145/2980258.2980459

DeMarco, T. (1986). Controlling Software Projects: Management,
Measurement, and Estimates: Prentice Hall PTR.

Derbel, I., Jilani, L. L., & Mili, A. (2015, 29-30 April 2015). Computing attributes
of software architectures a static method and its validation. Paper
presented at the 2015 International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), Barcelona, Spain.

Díaz-Pace, J. A., Tommasel, A., & Godoy, D. (2018, 23-24 Sept. 2018).
Towards Anticipation of Architectural Smells Using Link Prediction
Techniques. Paper presented at the 2018 IEEE 18th International
Working Conference on Source Code Analysis and Manipulation
(SCAM), Madrid, Spain.

Dieste, O., & Padua, A. G. (2007, 20-21 Sept. 2007). Developing Search
Strategies for Detecting Relevant Experiments for Systematic Reviews.
Paper presented at the First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), Madrid, Spain.

https://doi.org/10.1145/2980258.2980459

© C
OPYRIG

HT U
PM

181

Dillon, W. R., Kumar, A., & Mulani, N. (1987). Offending estimates in
covariance structure analysis: Comments on the causes of and solutions
to Heywood cases. Psychological Bulletin, 101, 126-135.
doi:10.1037/0033-2909.101.1.126

Ding, W., Liang, P., Tang, A., & Vliet, H. v. (2015). Understanding the Causes
of Architecture Changes Using OSS Mailing Lists. International Journal
of Software Engineering and Knowledge Engineering, 25(09n10), 1633-
1651. doi:10.1142/s0218194015400367

Duc, L., Behnamghader, P., Garcia, J., Link, D., Shahbazian, A., & Medvidovic,
N. (2015). An Empirical Study of Architectural Change in Open-Source
Software Systems. Paper presented at the 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, Florence, Italy.

Duc, L., Carlos, C., Rafael, C., & Nenad, M. (2016, 5-8 April 2016). Relating
Architectural Decay and Sustainability of Software Systems. Paper
presented at the 2016 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA), Venice, Italy.

Duc, L., Link, D., Shahbazian, A., & Medvidovic, N. (2018). An Empirical Study
of Architectural Decay in Open-Source Software. Paper presented at the
2018 IEEE International Conference on Software Architecture (ICSA),
Seattle, WA, USA.

Eposhi, A., Oizumi, W., Garcia, A., Sousa, L., Oliveira, R., & Oliveira, A. (2019,
25-26 May 2019). Removal of Design Problems through Refactorings:
Are We Looking at the Right Symptoms? Paper presented at the 2019
IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), Montreal, QC, Canada.

Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., & Gorton, I. (2015). Measure
it? Manage it? Ignore it? software practitioners and technical debt. Paper
presented at the Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, Bergamo, Italy.
https://doi.org/10.1145/2786805.2786848

Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling: University of
Akron Press.

Fenton, N. E., & Pfleeger, S. L. (2015). Software Metrics: A Rigorous and
Practical Approach: PWS Publishing Co.

Ferreira, M., Barbosa, E., Macia, I., Arcoverde, R., & Garcia, A. (2014).
Detecting architecturally-relevant code anomalies: a case study of
effectiveness and effort. Paper presented at the Proceedings of the 29th
Annual ACM Symposium on Applied Computing, Gyeongju, Republic of
Korea. https://doi.org/10.1145/2554850.2555036

https://doi.org/10.1145/2786805.2786848
https://doi.org/10.1145/2554850.2555036

© C
OPYRIG

HT U
PM

182

Filho, J. L. M., Rocha, L., Andrade, R., & Britto, R. (2017, 2017//). Preventing
Erosion in Exception Handling Design Using Static-Architecture
Conformance Checking. Paper presented at the Software Architecture,
Cham.

Fontana, F. A., Avgeriou, P., Pigazzini, I., & Roveda, R. (2019, 28-30 Aug.
2019). A Study on Architectural Smells Prediction. Paper presented at
the 2019 45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Kallithea, Greece.

Fontana, F. A., Ferme, V., & Zanoni, M. (2015, 16-16 May 2015). Towards
Assessing Software Architecture Quality by Exploiting Code Smell
Relations. Paper presented at the 2015 IEEE/ACM 2nd International
Workshop on Software Architecture and Metrics, Florence, Italy.

Fontana, F. A., & Pigazzini, I. (2021, 3-3 June 2021). Evaluating the
Architectural Debt of IoT Projects. Paper presented at the 2021
IEEE/ACM 3rd International Workshop on Software Engineering
Research and Practices for the IoT (SERP4IoT), Madrid, Spain.

Fontana, F. A., Pigazzini, I., Raibulet, C., Basciano, S., & Roveda, R. (2019).
PageRank and criticality of architectural smells. Paper presented at the
Proceedings of the 13th European Conference on Software Architecture
- Volume 2, Paris, France. https://doi.org/10.1145/3344948.3344982

Fontana, F. A., Pigazzini, I., Roveda, R., Tamburri, D. A., Zanoni, M., & Nitto,
E. D. (2017, 5-7 April 2017). Arcan: A Tool for Architectural Smells
Detection. Paper presented at the 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), Gothenburg, Sweden.

Fontana, F. A., Pigazzini, I., Roveda, R., & Zanoni, M. (2016, 2-7 Oct. 2016).
Automatic Detection of Instability Architectural Smells. Paper presented
at the 2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Raleigh, NC, USA.

Fontana, F. A., Roveda, R., Vittori, S., Metelli, A., Saldarini, S., & Mazzei, F.
(2016). On evaluating the impact of the refactoring of architectural
problems on software quality. Paper presented at the Proceedings of the
Scientific Workshop Proceedings of XP2016, Edinburgh, Scotland, UK.
https://doi.org/10.1145/2962695.2962716

Fontana, F. A., Roveda, R., Zanoni, M., Raibulet, C., & Capilla, R. (2016, 5-8
April 2016). An Experience Report on Detecting and Repairing Software
Architecture Erosion. Paper presented at the 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA).

Francesca, F., Roveda, R., Zanoni, M., Raibulet, C., & Capilla, R. (2016, 5-8
April 2016). An Experience Report on Detecting and Repairing Software
Architecture Erosion. Paper presented at the 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy.

https://doi.org/10.1145/3344948.3344982
https://doi.org/10.1145/2962695.2962716

© C
OPYRIG

HT U
PM

183

Garcia, J., Ivkovic, I., & Medvidovic, N. (2013, 11-15 Nov. 2013). A
comparative analysis of software architecture recovery techniques.
Paper presented at the 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), Silicon Valley, CA, USA.

Garcia, J., Kouroshfar, E., Ghorbani, N., & Malek, S. (2021). Forecasting
Architectural Decay from Evolutionary History. IEEE Transactions on
Software Engineering, 1-1. doi:10.1109/TSE.2021.3060068

Garcia, J., Krka, I., Mattmann, C., & Medvidovic, N. (2013, 18-26 May 2013).
Obtaining ground-truth software architectures. Paper presented at the
2013 35th International Conference on Software Engineering (ICSE),
San Francisco, CA, USA.

Garlan, D. (2000). Software Architecture: A Roadmap. Proc. of the 22nd
International Conference on Software Engineering, Future of Software
Engineering Track. doi:10.1145/336512.336537

Garlan, D., Allen, R., & Ockerblo, J. (1995). Architectural mismatch: why reuse
is so hard. IEEE Software, 12(6), 17-26. doi:10.1109/52.469757

Geisser, S. (1974). A predictive approach to the random effect model.
Biometrika, 61(1), 101-107.

Ghorbani, N., Garcia, J., & Malek, S. (2019, 25-31 May 2019). Detection and
Repair of Architectural Inconsistencies in Java. Paper presented at the
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), Montreal, QC, Canada.

Goldstein, M., & Segall, I. (2015, 16-24 May 2015). Automatic and Continuous
Software Architecture Validation. Paper presented at the 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
Florence, Italy.

Gorsuch, R. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Greifenberg, T., Müller, K., & Rumpe, B. (2015). Architectural Consistency
Checking in Plugin-Based Software Systems. Paper presented at the
European Conference on Software Architecture Workshops
(ECSAW'15).

Guerra-García, C., Perez-Gonzalez, H. G., Ramírez-Torres, M., Juárez-
Ramírez, R., & González, H. (2020, 4-6 Nov. 2020). MOSCAF –
Specifying Data Quality Requirements according Web Functionalities.
Paper presented at the 2020 8th International Conference in Software
Engineering Research and Innovation (CONISOFT), Chetumal, Mexico.

Guimaraes, E., Garcia, A., & Cai, Y. (2014, 21-25 July 2014). Exploring
Blueprints on the Prioritization of Architecturally Relevant Code
Anomalies -- A Controlled Experiment. Paper presented at the 2014 IEEE
38th Annual Computer Software and Applications Conference, Vasteras,
Sweden.

© C
OPYRIG

HT U
PM

184

Guimarães, E., Garcia, A., & Cai, Y. (2015). Architecture-sensitive heuristics
for prioritizing critical code anomalies. Paper presented at the
Proceedings of the 14th International Conference on Modularity, Fort
Collins, CO, USA. https://doi.org/10.1145/2724525.2724567

Guimaraes, E., Garcia, A., Figueiredo, E., & Cai, Y. (2013, 18-19 May 2013).
Prioritizing software anomalies with software metrics and architecture
blueprints. Paper presented at the 2013 5th International Workshop on
Modeling in Software Engineering (MiSE), San Francisco, CA, USA.

Gurgel, A., Macia, I., Garcia, A., Staa, A. v., Mezini, M., Eichberg, M., &
Mitschke, R. (2014). Blending and reusing rules for architectural
degradation prevention. Paper presented at the Proceedings of the 13th
international conference on Modularity, Lugano, Switzerland.
https://doi.org/10.1145/2577080.2577087

Hair, J. (2011). Multivariate Data Analysis: An Overview. In M. Lovric (Ed.),
International Encyclopedia of Statistical Science (pp. 904-907). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Hair, J., Anderson, R. E., Tatham, R., & Black, W. (2015). Multivariate data
analysis: New Jersey: Pearson education.

Hair, J., Black, W., Babin, B. J., & Anderson, R. E. (2014). Multivariate data
analysis (Seventh edition Pearson new international). London, UK:
Pearson Education Limited.

Hair, J., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial
Least Squares Structural Equation Modeling (SECOND EDITION).
Thousand Oaks: SAGE, London.

Hall, T., Zhang, M., Bowes, D., & Sun, Y. (2014). Some Code Smells Have a
Significant but Small Effect on Faults. ACM Transactions on Software
Engineering and Methodology, 23(4), pp 1–39. doi:10.1145/2629648

Hassaine, S., Guéhéneuc, Y. G., Hamel, S., & Antoniol, G. (2012, 27-30 March
2012). ADvISE: Architectural Decay in Software Evolution. Paper
presented at the 2012 16th European Conference on Software
Maintenance and Reengineering, Szeged, Hungary.

Hayashi, S., Minami, F., & Saeki, M. (2018). Detecting Architectural Violations
Using Responsibility and Dependency Constraints of Components.
IEICE Transactions on Information and Systems, E101.D(7), 1780-1789.
doi:10.1587/transinf.2017KBP0023

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing
discriminant validity in variance-based structural equation modeling.
Journal of the Academy of Marketing Science, 43(1), 115-135.
doi:10.1007/s11747-014-0403-8

https://doi.org/10.1145/2724525.2724567
https://doi.org/10.1145/2577080.2577087

© C
OPYRIG

HT U
PM

185

Herold, S., Knieke, C., Schindler, M., & Rausch, A. (2020). Towards Improving
Software Architecture Degradation Mitigation by Machine Learning.
Paper presented at the ADAPTIVE 2020, The Twelfth International
Conference on Adaptive and Self-Adaptive Systems.

Herold, S., & Mair, M. (2014, 2014//). Recommending Refactorings to Re-
establish Architectural Consistency. Paper presented at the Software
Architecture, Cham.

Herold, S., & Rausch, A. (2013, 18-19 May 2013). Complementing model-
driven development for the detection of software architecture erosion.
Paper presented at the 2013 5th International Workshop on Modeling in
Software Engineering (MiSE), San Francisco, CA, USA.

Hertzog, M. A. (2008). Considerations in determining sample size for pilot
studies. Res Nurs Health, 31(2), 180-191. doi:10.1002/nur.20247

Hinton, P. R., McMurray, I., & Brownlow, C. (2014). SPSS Explained (2nd ed.).
London: Routledge.

Hochstein, L., & Lindvall, M. (2005). Combating architectural degeneration: a
survey. Information and Software Technology, 47(10), 643-656.
doi:https://doi.org/10.1016/j.infsof.2004.11.005

Höck, M., & Ringle, C. M. (2006). Strategic networks in the software industry:
An empirical analysis of the value continuum. Paper presented at the
IFSAM VIIIth World Congress.

Imran, M. A. A., Lee, S. P., & Ahsan, M. A. M. (2017, 22-23 Aug. 2017). Quality
driven architectural solutions selection approach through measuring
impact factors. Paper presented at the 2017 International Conference on
Electrical Engineering and Computer Science (ICECOS), Palembang,
Indonesia.

Isela, M., Arcoverd, R., Garcia, A., Chavez, C., & von Staa, A. (2012, 27-30
March 2012). On the Relevance of Code Anomalies for Identifying
Architecture Degradation Symptoms. Paper presented at the 2012 16th
European Conference on Software Maintenance and Reengineering,
Szeged, Hungary.

Izurieta, C., & Bieman, J. M. (2013). A multiple case study of design pattern
decay, grime, and rot in evolving software systems. Software Quality
Journal, 21(2 %J Software Quality Journal), 289–323.
doi:10.1007/s11219-012-9175-x

Jin, W., Zhang, Y., Shang, J., Hou, Y., Fan, M., & Liu, T. (2023, 14-15 May
2023). Identifying Code Changes for Architecture Decay via a Metric
Forest Structure. Paper presented at the 2023 ACM/IEEE International
Conference on Technical Debt (TechDebt), Melbourne, Australia.

https://doi.org/10.1016/j.infsof.2004.11.005

© C
OPYRIG

HT U
PM

186

Kadri, S., Aouag, S., & Hedjazi, D. (2019, 15-16 Dec. 2019). Multi-level
approach for controlling architecture quality with Alloy. Paper presented
at the 2019 International Conference on Theoretical and Applicative
Aspects of Computer Science (ICTAACS), Skikda, Algeria.

Kasi, P. M. (2009). Research: What, Why and How?: A Treatise from
Researchers to Researchers. United State: AuthorHouse.

Klein, M. H., Kazman, R., Bass, L., Carriere, J., Barbacci, M., & Lipson, H.
(1999). Attribute-Based Architecture Styles. In P. Donohoe (Ed.),
Software Architecture: TC2 First Working IFIP Conference on Software
Architecture (WICSA1) 22–24 February 1999, San Antonio, Texas, USA
(pp. 225-243). Boston, MA: Springer US.

Kline, R. B. (2015). Principles and practice of structural equation modeling
(Third edition). United State: Guilford publications.

Lakshitha, d. S., & Balasubramaniam, D. (2012). Controlling software
architecture erosion: A survey. Journal of Systems and Software, 85(1),
132-151. doi:https://doi.org/10.1016/j.jss.2011.07.036

Laser, M. S., Medvidovic, N., Le, D. M., & Garcia, J. (2020). ARCADE: an
extensible workbench for architecture recovery, change, and decay
evaluation. Paper presented at the Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Virtual Event, USA.
https://doi.org/10.1145/3368089.3417941

Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel
Psychology, 28(4), 563-575. doi:https://doi.org/10.1111/j.1744-
6570.1975.tb01393.x

Le, D., & Medvidovic, N. (2016). Architectural-based speculative analysis to
predict bugs in a software system. Paper presented at the Proceedings
of the 38th International Conference on Software Engineering
Companion, Austin, Texas. https://doi.org/10.1145/2889160.2889260

Lehman, M. M. (1979). On understanding laws, evolution, and conservation in
the large-program life cycle. Journal of Systems and Software, 1, 213-
221. doi:https://doi.org/10.1016/0164-1212(79)90022-0

Lehman, M. M. (1996). Laws of software evolution revisited, Berlin,
Heidelberg.

Lei, P.-W., & Wu, Q. (2007). Introduction to Structural Equation Modeling:
Issues and Practical Considerations. Educational Measurement: Issues
and Practice, 26(3), 33-43. doi:https://doi.org/10.1111/j.1745-
3992.2007.00099.x

Leite, P., Gonçalves, J., Teixeira, P., & Rocha, Á. (2014). Towards a model for
the measurement of data quality in websites. 20(4 %J New Rev.
Hypermedia Multimedia), 301–316. doi:10.1080/13614568.2014.968638

https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
https://doi.org/10.1145/2889160.2889260
https://doi.org/10.1016/0164-1212(79)90022-0
https://doi.org/10.1111/j.1745-3992.2007.00099.x
https://doi.org/10.1111/j.1745-3992.2007.00099.x

© C
OPYRIG

HT U
PM

187

Lenarduzzi, V., Saarimaki, N., & Taibi, D. (2019, 26-26 May 2019). On the
Diffuseness of Code Technical Debt in Java Projects of the Apache
Ecosystem. Paper presented at the 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt), IEEE.

Lenhard, J., Blom, M., & Herold, S. (2019). Exploring the suitability of source
code metrics for indicating architectural inconsistencies. Software Quality
Journal, 27(1), 241-274. doi:10.1007/s11219-018-9404-z

Lenhard, J., Hassan, M. M., Blom, M., & Herold, S. (2017). Are code smell
detection tools suitable for detecting architecture degradation? Paper
presented at the Proceedings of the 11th European Conference on
Software Architecture: Companion Proceedings, Canterbury, United
Kingdom. https://doi.org/10.1145/3129790.3129808

Li, Z., Li, X., & Kang, R. (2016, 19-21 Oct. 2016). System resilience modeling
and assessment based on minimal paths. Paper presented at the 2016
Prognostics and System Health Management Conference (PHM-
Chengdu), Chengdu, China.

Li, Z., Madhavji, N. H., Murtaza, S. S., Gittens, M., Miranskyy, A. V., Godwin,
D., & Cialini, E. (2011). Characteristics of multiple-component defects
and architectural hotspots: a large system case study. Empirical Software
Engineering, 16(5), 667-702. doi:10.1007/s10664-011-9155-y

Lindvall, M., Tesoriero, R., & Costa, P. (2002, 4-7 June 2002). Avoiding
architectural degeneration: an evaluation process for software
architecture. Paper presented at the Proceedings Eighth IEEE
Symposium on Software Metrics, Ottawa, ON, Canada.

Lindvall, M., Tvedt, R. T., & Costa, P. (2003). An Empirically-Based Process
for Software Architecture Evaluation. Empirical Software Engineering,
8(1), 83-108. doi:10.1023/A:1021772917036

Little, R. J. A. (1988). A Test of Missing Completely at Random for Multivariate
Data with Missing Values. Journal of the American Statistical
Association, 83(404), 1198-1202.
doi:10.1080/01621459.1988.10478722

Lohr, S. L. (2022). Sampling Design and Analysis (Vol. 3rd Edition): Chapman
& Hall.

Lynn, M. R. (1986). Determination and Quantification Of Content Validity.
Nursing Research, 35(6).

MacCormack, A., & Sturtevant, D. J. (2016). Technical debt and system
architecture: The impact of coupling on defect-related activity. Journal of
Systems and Software, 120, 170-182. doi:10.1016/j.jss.2016.06.007

https://doi.org/10.1145/3129790.3129808

© C
OPYRIG

HT U
PM

188

Macia, I., Garcia, A., Chavez, C., & Staa, A. v. (2013, 5-8 March 2013).
Enhancing the Detection of Code Anomalies with Architecture-Sensitive
Strategies. Paper presented at the 2013 17th European Conference on
Software Maintenance and Reengineering, Genova, Italy.

Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., & Staa, A. v.
(2012). Are automatically-detected code anomalies relevant to
architectural modularity? an exploratory analysis of evolving systems.
Paper presented at the Proceedings of the 11th annual international
conference on Aspect-oriented Software Development, Potsdam,
Germany. https://doi.org/10.1145/2162049.2162069

MacKenzie, S. B., Podsakoff, P. M., & Podsakoff, N. P. (2011). Construct
Measurement and Validation Procedures in MIS and Behavioral
Research: Integrating New and Existing Techniques. MIS Quarterly,
35(2), 293-334. doi:10.2307/23044045

Maffort, C., Valente, M. T., Terra, R., Bigonha, M., Anquetil, N., & Hora, A.
(2016). Mining architectural violations from version history. Empirical
Software Engineering, 21(3), 854-895. doi:10.1007/s10664-014-9348-2

Maisikeli, S. G. (2018, 28-29 Nov. 2018). Measuring Architectural Stability and
Instability in the Evolution of Software Systems. Paper presented at the
2018 Fifth HCT Information Technology Trends (ITT), Dubai, United Arab
Emirates.

Malhotra, R. (2016). Empirical research in software engineering: concepts,
analysis, and applications: Chapman & Hall.

Mäntylä, M. V., & Lassenius, C. (2008). Software Metrics: A Survey of the State
of the Art. Software Quality Journal, 14(1), 1-29.

Martin, R. C. (2003). Agile software development: principles, patterns, and
practices. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Medvidovic, N., Egyed, A., & Grünbacher, P. (2003). Stemming Architectural
Erosion by Coupling Architectural Discovery and Recovery. Proc. of the
2nd International Software Requirements to Architectures Workshop.

Mendoza, C., Bocanegra, J., Garcés, K., & Casallas, R. (2021). Architecture
violations detection and visualization in the continuous integration
pipeline. 51(8), 1822-1845. doi:https://doi.org/10.1002/spe.3004

Mirakhorli, M., & Cleland-Huang, J. (2011). Tracing architectural concerns in
high assurance systems (NIER track). Paper presented at the
Proceedings of the 33rd International Conference on Software
Engineering, Waikiki, Honolulu, HI, USA.
https://doi.org/10.1145/1985793.1985942

Mirakhorli, M., & Cleland-Huang, J. (2016). Detecting, Tracing, and Monitoring
Architectural Tactics in Code. IEEE Transactions on Software
Engineering, 42(3), 205-220. doi:10.1109/TSE.2015.2479217

https://doi.org/10.1145/2162049.2162069
https://doi.org/10.1002/spe.3004
https://doi.org/10.1145/1985793.1985942

© C
OPYRIG

HT U
PM

189

Misra, S. (2011). An Approach for the Empirical Validation of Software
Complexity Measures. Acta Polytechnica Hungarica, 8.

Misra, S., Adewumi, A., Fernandez-Sanz, L., & Damasevicius, R. (2018). A
Suite of Object Oriented Cognitive Complexity Metrics. IEEE Access, 6,
8782-8796. doi:10.1109/ACCESS.2018.2791344

Mo, R., Cai, Y., Kazman, R., Xiao, L., & Feng, Q. (2016). Decoupling level: a
new metric for architectural maintenance complexity. Paper presented at
the Proceedings of the 38th International Conference on Software
Engineering, Austin, Texas. https://doi.org/10.1145/2884781.2884825

Mo, R., Cai, Y., Kazman, R., Xiao, L., & Feng, Q. (2021). Architecture Anti-
Patterns: Automatically Detectable Violations of Design Principles. IEEE
Transactions on Software Engineering, 47(5), 1008-1028.
doi:10.1109/TSE.2019.2910856

Mohsin, S., Akhtar, H., Jalbani., Adil, A., Ahmed, A., & Kashif, M. (2017).
Evaluating Dependency based Package-level Metrics for Multi-objective
Maintenance Tasks. International Journal of Advanced Computer
Science and Applications(IJACSA), 8(10).
doi:http://dx.doi.org/10.14569/IJACSA.2017.081045

Mondal, A., Schneider, K., Roy, B., & Roy, C. (2022). A Survey of Software
Architectural Change Detection and Categorization Techniques. Journal
of Systems and Software.

Mourão, E., Kalinowski, M., Murta, L., Mendes, E., & Wohlin, C. (2017, 9-10
Nov. 2017). Investigating the Use of a Hybrid Search Strategy for
Systematic Reviews. Paper presented at the 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM).

Navarro Sada, & Maldonado, A. (2007). Research Methods in Education.
British Journal of Educational Studies, 4(55), 469-470.

Nayebi, M., Cai, Y., Kazman, R., Ruhe, G., Feng, Q., Carlson, C., & Chew, F.
(2019, 25-31 May 2019). A Longitudinal Study of Identifying and Paying
Down Architecture Debt. Paper presented at the 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), Montreal, QC, Canada.

Nguyen, P. H., Kramer, M., Klein, J., & Traon, Y. L. (2015). An extensive
systematic review on the Model-Driven Development of secure systems.
Information and Software Technology, 68, 62-81.
doi:https://doi.org/10.1016/j.infsof.2015.08.006

Nuñez-Varela, A. S., Pérez-Gonzalez, H. G., Martínez-Perez, F. E., &
Soubervielle-Montalvo, C. (2017). Source code metrics: A systematic
mapping study. Journal of Systems and Software, 128, 164-197.
doi:https://doi.org/10.1016/j.jss.2017.03.044

https://doi.org/10.1145/2884781.2884825
http://dx.doi.org/10.14569/IJACSA.2017.081045
https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1016/j.jss.2017.03.044

© C
OPYRIG

HT U
PM

190

Oizumi, W., Garcia, A., Colanzi, T., Ferreira, M., & Staa, A. (2015). On the
relationship of code-anomaly agglomerations and architectural problems.
Journal of Software Engineering Research and Development, 3(1), 11.
doi:10.1186/s40411-015-0025-y

Oizumi, W., Garcia, A., Da Silva Sousa, L., Cafeo, B., & Zhao, Y. (2016, 14-
22 May 2016). Code Anomalies Flock Together: Exploring Code
Anomaly Agglomerations for Locating Design Problems. Paper
presented at the 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), Austin, TX, USA.

Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009, 15-16 Oct. 2009).
The evolution and impact of code smells: A case study of two open
source systems. Paper presented at the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, Lake
Buena Vista, FL, USA.

Olerup, A. (1991). Design Approaches: A Comparative Study of Information
System Design and Architectural Design. The Computer Journal, 34(3),
215-224. doi:10.1093/comjnl/34.3.215 %J The Computer Journal

Olsson, T., Ericsson, M., & Wingkvist, A. (2017a). Motivation and Impact of
Modeling Erosion Using Static Architecture Conformance Checking.
Paper presented at the 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), Gothenburg, Sweden.

Olsson, T., Ericsson, M., & Wingkvist, A. (2017b). The relationship of code
churn and architectural violations in the open source software JabRef.
Paper presented at the Proceedings of the 11th European Conference
on Software Architecture: Companion Proceedings, Canterbury, United
Kingdom. https://doi.org/10.1145/3129790.3129810

Organisation, I. S. (1991). ISO/IEC 9126: Information Technology - Software
Product Evaluation - Quality Characteristics and Guidelines for Their
Use.

Otero, C. (2012). Software Engineering Design Theory and Practice (1st
Edition). New York: CRC Press.

Palomba, F., Bavota, G., Penta, M. D., Fasano, F., Oliveto, R., & Lucia, A. D.
(2018). On the diffuseness and the impact on maintainability of code
smells: a large scale empirical investigation. Empirical Software
Engineering, 23(3), 1188-1221. doi:10.1007/s10664-017-9535-z

Pan, J., Liu, Z., Li, D., Wang, L., & Li, B. (2023). An empirical study of software
architecture resilience evaluation methods. Journal of Systems and
Software, 202, 111726. doi:https://doi.org/10.1016/j.jss.2023.111726

Parnas, D. L. (1994). Software aging. Paper presented at the Proceedings of
the 16th international conference on Software engineering, Sorrento,
Italy.

https://doi.org/10.1145/3129790.3129810
https://doi.org/10.1016/j.jss.2023.111726

© C
OPYRIG

HT U
PM

191

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software
architecture. 17(4 %J SIGSOFT Softw. Eng. Notes), 40–52.
doi:10.1145/141874.141884

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic
mapping studies in software engineering. Paper presented at the
Proceedings of the 12th international conference on Evaluation and
Assessment in Software Engineering, Italy.

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting
systematic mapping studies in software engineering: An update.
Information and Software Technology, 64, 1-18.
doi:https://doi.org/10.1016/j.infsof.2015.03.007

Pfeifer, S., Akgül, D., Roebenack, S., Tihlarik, A., Albert, B., Anacker, H., &
Dumitrescu, R. (2022). Design Decisions in the Architecture
Development of Advanced Systems: Towards traceable and sustainable
Documentation and Communication. Paper presented at the
Proceedings of NordDesign 2022.

Polit, D. F., & Beck, C. T. (2006). The content validity index: are you sure you
know what's being reported? Critique and recommendations. Res Nurs
Health, 29(5), 489-497. doi:10.1002/nur.20147

Reimanis, D., Izurieta, C., Luhr, R., Xiao, L., Cai, Y., & Rudy, G. (2014). A
replication case study to measure the architectural quality of a
commercial system. Paper presented at the Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, Torino, Italy.
https://doi.org/10.1145/2652524.2652581

Riaz, M., Sulayman, M., & Naqvi, H. (2009). Architectural Decay during
Continuous Software Evolution and Impact of ‘Design for Change’ on
Software Architecture. Paper presented at the International Conference
on Advanced Software Engineering and Its Applications, Berlin,
Heidelberg.

Rizzi, L., Fontana, F. A., & Roveda, R. (2018). Support for architectural smell
refactoring. Paper presented at the Proceedings of the 2nd International
Workshop on Refactoring, Montpellier, France.
https://doi.org/10.1145/3242163.3242165

Rocha, H., Durelli, R. S., Terra, R., Bessa, S., & Valente, M. T. (2017). DCL
2.0: modular and reusable specification of architectural constraints.
Journal of the Brazilian Computer Society, 23(1), 12.
doi:10.1186/s13173-017-0061-z

Roveda, R., Fontana, F. A., Pigazzini, I., & Zanoni, M. (2018). Towards an
architectural debt index. Paper presented at the Proceedings - 44th
Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2018, Prague, Czech Republic.

https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/2652524.2652581
https://doi.org/10.1145/3242163.3242165

© C
OPYRIG

HT U
PM

192

Rubin, A., & Bellamy, J. (2012). Practitioner's guide to using research for
evidencebased practice: Malaysia: John Wiley & Sons.

Ruiyin, L., Peng, L., Mohamed, S., & Paris, A. (2022). Understanding software
architecture erosion: A systematic mapping study. Journal of Software:
Evolution and Process, 34(3), e2423.
doi:https://doi.org/10.1002/smr.2423

Ruiyin Li, Peng Liang, Mohamed Soliman, & Avgeriou, P. (2021, 20-21 May
2021). Understanding Architecture Erosion: The Practitioners’
Perceptive. Paper presented at the 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC), Madrid, Spain.

Sae-Lim, N., Hayashi, S., & Saeki, M. (2018). Context-based approach to
prioritize code smells for prefactoring. J Softw Maint Evol Proc, 30(6),
e1886. doi:https://doi.org/10.1002/smr.1886

Samah, B. A. (2016) Enhancing extension education research using structural
equation modelling. In. Inaugural lecture series. Universiti Putra Malaysia
(UPM).

Sangwan, R. S., Vercellone-Smith, P., & Neill, C. J. (2010). Use of a
multidimensional approach to study the evolution of software complexity.
Innovations in Systems and Software Engineering, 6(4), 299-310.
doi:10.1007/s11334-010-0133-0

Santos, J. C. S., Suloglu, S., Ye, J., & Mirakhorli, M. (2020). Towards an
Automated Approach for Detecting Architectural Weaknesses in Critical
Systems. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops (pp. 250–253):
Association for Computing Machinery.

Santos, J. C. S., Tarrit, K., Sejfia, A., Mirakhorli, M., & Galster, M. (2019). An
empirical study of tactical vulnerabilities. Journal of Systems and
Software, 149, 263-284. doi:https://doi.org/10.1016/j.jss.2018.10.030

Sarkar, S., Maskeri, G., & Ramachandran, S. (2009). Discovery of architectural
layers and measurement of layering violations in source code. Journal of
Systems and Software, 82(11), 1891-1905.
doi:https://doi.org/10.1016/j.jss.2009.06.039

Schwanke, R., Xiao, L., & Cai, Y. (2013, 18-26 May 2013). Measuring
architecture quality by structure plus history analysis. Paper presented at
the 2013 35th International Conference on Software Engineering (ICSE),
San Francisco, CA, USA.

Segre, S. (2014). Contemporary Sociological Thinkers and Theories. United
Kingdom: Ashgate Publishing, Ltd.

Sejfia, A. (2019, 27-27 May 2019). A Pilot Study on Architecture and
Vulnerabilities: Lessons Learned. Paper presented at the 2019
IEEE/ACM 2nd International Workshop on Establishing the Community-

https://doi.org/10.1002/smr.2423
https://doi.org/10.1002/smr.1886
https://doi.org/10.1016/j.jss.2018.10.030
https://doi.org/10.1016/j.jss.2009.06.039

© C
OPYRIG

HT U
PM

193

Wide Infrastructure for Architecture-Based Software Engineering
(ECASE), Montreal, QC, Canada.

Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill
building approach. Chichester, England: john wiley & sons.

Shahbazian, A., Lee, Y. K., Le, D., Brun, Y., & Medvidovic, N. (2018, 30 April-
4 May 2018). Recovering Architectural Design Decisions. Paper
presented at the 2018 IEEE International Conference on Software
Architecture (ICSA), Seattle, WA.

Shahbazian, A., Nam, D., & Medvidovic, N. (2018, 27 May-3 June 2018).
Toward Predicting Architectural Significance of Implementation Issues.
Paper presented at the 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), Gothenburg, Sweden.

Sharma, T., & Spinellis, D. (2018). A survey on software smells. Journal of
Systems and Software, 138, 158-173.
doi:https://doi.org/10.1016/j.jss.2017.12.034

Shaw, M., & Clements, P. (2006). The golden age of software architecture.
IEEE Software, 23(2), 31-39. doi:10.1109/MS.2006.58

Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an
emerging discipline: Prentice-Hall, Inc.

Silva, M. D., & Perera, I. (2015, 18-20 Dec. 2015). Preventing software
architecture erosion through static architecture conformance checking.
Paper presented at the 2015 IEEE 10th International Conference on
Industrial and Information Systems (ICIIS).

Steff, M., & Russo, B. (2011, 22-23 Sept. 2011). Measuring Architectural
Change for Defect Estimation and Localization. Paper presented at the
2011 International Symposium on Empirical Software Engineering and
Measurement, Banff, AB, Canada.

Stevanetic, S., Haitzer, T., & Zdun, U. (2014). th. Paper presented at the
Proceedings of the 2014 European Conference on Software Architecture
Workshops, Vienna, Austria. https://doi.org/10.1145/2642803.2642822

Stevens, J. P. (2012). Applied multivariate statistics for the social sciences:
Routledge.

Stone, M. (1974). Cross‐validatory choice and assessment of statistical
predictions. Journal of the royal statistical society: Series B
(Methodological), 36(2), 111-133.

Stringfellow, C., Amory, C. D., Potnuri, D., Andrews, A., & Georg, M. (2006).
Comparison of software architecture reverse engineering methods.
Information and Software Technology, 48(7), 484-497.
doi:https://doi.org/10.1016/j.infsof.2005.05.007

https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1145/2642803.2642822
https://doi.org/10.1016/j.infsof.2005.05.007

© C
OPYRIG

HT U
PM

194

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate
statistics (Vol. 5): pearson Boston, MA.

Taciano, M. S., Serey, D., Figueiredo, J., & Brunet, J. (2019). Automated
design tests to check Hibernate design recommendations. Paper
presented at the Proceedings of the XXXIII Brazilian Symposium on
Software Engineering, Salvador, Brazil.
https://doi.org/10.1145/3350768.3351796

Tavares, G. E., Vidal, S., Garcia, A., Pace, A. D., & Marcos, C. (2018).
Exploring architecture blueprints for prioritizing critical code anomalies:
Experiences and tool support. Software: Practice and Experience, 48(5),
1077-1106. doi:https://doi.org/10.1002/spe.2563

Taylor, R., Medvidovic, N., & Dashofy, E. (2009). Software architecture:
foundations, theory, and practice: John Wiley & Sons.

Teimour, A., Narmin Hassanzadeh, R., Yahya, K., & Farid, Z. (2011).
Development and Evaluation of a New Questionnaire for Rating of
Cognitive Failures at Work. International Journal of Occupational
Hygiene, 3(1).

Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path
modeling. Computational Statistics & Data Analysis, 48(1), 159-205.
doi:https://doi.org/10.1016/j.csda.2004.03.005

Terra, R., Valente, M. T., Czarnecki, K., & Bigonha, R. S. (2015). A
recommendation system for repairing violations detected by static
architecture conformance checking. Software: Practice and Experience,
45(3), 315-342. doi:https://doi.org/10.1002/spe.2228

Tonu, S. A., Ashkan, A., & Tahvildari, L. (2006, 22-24 March 2006). Evaluating
architectural stability using a metric-based approach. Paper presented at
the Conference on Software Maintenance and Reengineering
(CSMR'06).

Tran, J. B., Godfrey, M. W., Lee, E. H. S., & Holt, R. C. (2000, 10-11 June
2000). Architectural repair of open source software. Paper presented at
the Proceedings IWPC 2000. 8th International Workshop on Program
Comprehension, Limerick, Ireland.

Vidal, S., Oizumi, W., Garcia, A., Díaz Pace, A., & Marcos, C. (2019). Ranking
architecturally critical agglomerations of code smells. Science of
Computer Programming, 182, 64-85.
doi:https://doi.org/10.1016/j.scico.2019.07.003

Wang, T., & Li, B. (2019, 22-26 July 2019). Analyzing Software Architecture
Evolvability Based on Multiple Architectural Attributes Measurements.
Paper presented at the 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS), Sofia, Bulgaria.

https://doi.org/10.1145/3350768.3351796
https://doi.org/10.1002/spe.2563
https://doi.org/10.1016/j.csda.2004.03.005
https://doi.org/10.1002/spe.2228
https://doi.org/10.1016/j.scico.2019.07.003

© C
OPYRIG

HT U
PM

195

Wang, T., Wang, D., & Li, B. (2019). A Multilevel Analysis Method for
Architecture Erosion. Paper presented at the The 31st International
Conference on Software Engineering and Knowledge Engineering.

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the
future: writing a literature review. 26(2 %J MIS Q.), xiii–xxiii.

Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Intraclass Reliability
Estimates: Testing Structural Assumptions. Educational and
Psychological Measurement, 34(1), 25-33.
doi:10.1177/001316447403400104

Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS
path modeling for assessing hierarchical construct models: Guidelines
and empirical illustration. MIS Quarterly, 177-195.

Whiting, E., & Andrews, S. (2020). Drift and Erosion in Software Architecture:
Summary and Prevention Strategies. Paper presented at the
Proceedings of the 2020 the 4th International Conference on Information
System and Data Mining, Hawaii, HI, USA.
https://doi.org/10.1145/3404663.3404665

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies
and a replication in software engineering. Paper presented at the
Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, London, England, United
Kingdom. https://doi.org/10.1145/2601248.2601268

Wohlin, C., & Prikladniki, R. (2013). Editorial: Systematic literature reviews in
software engineering. 55(6 %J Inf. Softw. Technol.), 919–920.
doi:10.1016/j.infsof.2013.02.002

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., & Wessln, A.
(2012). Experimentation in Software Engineering. Springer Berlin,
Heidelberg: Springer Publishing Company, Incorporated.

Wong, S., Cai, Y., Kim, M., & Dalton, M. (2011, 21-28 May 2011). Detecting
software modularity violations. Paper presented at the 2011 33rd
International Conference on Software Engineering (ICSE), Honolulu, HI,
USA.

Wynne, C. (1998). The partial least squares approach to structural equation
modeling. Modern Methods for Business Research, 295(2), 295-336.

Xiao, L., Cai, Y., Kazman, R., Mo, R., & Feng, Q. (2016, 14-22 May 2016).
Identifying and Quantifying Architectural Debt. Paper presented at the
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), Austin, TX, USA.

https://doi.org/10.1145/3404663.3404665
https://doi.org/10.1145/2601248.2601268

© C
OPYRIG

HT U
PM

196

Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-
Majd, H., & Nikanfar, A. R. (2015). Design and Implementation Content
Validity Study: Development of an instrument for measuring Patient-
Centered Communication. J Caring Sci, 4(2), 165-178.
doi:10.15171/jcs.2015.017

Zapalowski, V., Nunes, I., & Nunes, D. J. (2018a). Understanding architecture
non-conformance: why is there a gap between conceptual architectural
rules and source code dependencies? Paper presented at the
Proceedings of the XXXII Brazilian Symposium on Software Engineering,
Sao Carlos, Brazil. https://doi.org/10.1145/3266237.3266261

Zapalowski, V., Nunes, I., & Nunes, D. J. (2018b). The WGB method to recover
implemented architectural rules. Information and Software Technology,
103, 125-137. doi:https://doi.org/10.1016/j.infsof.2018.06.012

Zengyang, L., Liang, P., Avgeriou, P., Guelfi, N., & Ampatzoglou, A. (2014).
An empirical investigation of modularity metrics for indicating
architectural technical debt. Paper presented at the Proceedings of the
10th international ACM Sigsoft conference on Quality of software
architectures, Marcq-en-Bareul, France.
https://doi.org/10.1145/2602576.2602581

Zhong, C., Huang, H., Zhang, H., & Li, S. (2022). Impacts, causes, and
solutions of architectural smells in microservices: An industrial
investigation. Software: Practice and Experience, n/a(n/a).
doi:https://doi.org/10.1002/spe.3138

Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business
research methods. United State: Mc Graw Hill: Cengage learning.

Zude, L., & Jun, L. (2011). A Case Study of Measuring Degeneration of
Software Architectures from a Defect Perspective. Paper presented at
the Proceedings of the 2011 18th Asia-Pacific Software Engineering
Conference, Ho Chi Minh City, Vietnam.
https://doi.org/10.1109/APSEC.2011.51

https://doi.org/10.1145/3266237.3266261
https://doi.org/10.1016/j.infsof.2018.06.012
https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1002/spe.3138
https://doi.org/10.1109/APSEC.2011.51

	Blank Page

