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By 
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The success or failure of software development and design heavily depends 

on software architecture, which plays a vital role in various aspects of the 

development process. It is acknowledged that having the right architecture is 

crucial for system design and development. However, as systems evolve, 

software architecture tends to degrade, leading to architectural erosion. 

Although several studies have explored different approaches to tackle 

architectural erosion, with metrics being a common solution, there is a 

significant gap in knowledge on the metrics used to identify architectural 

erosion and classify adopted approaches. 

 

Therefore, this research aims a model that combines approach-based metrics 

and architectural attributes quality to address the following main aspects: 1) 

identification of adopted approaches and commonly used metrics practices 

associated with each approach to identify architectural erosion, 2) identification 
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of key quality attributes related to architectural erosion for each adopted 

approach, and 3) provision of empirical evidence on the identification of each 

adopted approach in the context of architectural erosion.  

 

Initially, 92 metrics practices and 10 quality attributes relevant to architectural 

erosion were identified. These metrics practices were systematically assigned 

to adopted approaches such as architectural change, historical data revision, 

architectural dependency coupling, architectural bad smells, architectural 

cohesion, software architecture size, architectural technical debt, architectural 

complexity, and architecture modularization. The model was subjected to 

content validation by experts and was confirmed to be reliable. A subsequent 

reliability study involving 30 software engineering professionals further 

validated the constructs within the model. The model was further investigated 

using Structural Equation Modeling (SEM) based on data collected from a 

survey of 130 software engineering professionals. SEM analysis provided 

significant insights into the relationship between different aspects of the 

approaches and architectural erosion. The findings of the study revealed that 

most approaches significantly impact architectural erosion, with the exception 

of architectural complexity and technical debt, which showed weaker 

relationships. The findings justify the integration of approach-based metrics 

with architectural quality attributes, demonstrating the model's reliability by 

obtaining positive feedback from experts regarding its usefulness. In 

conclusion, this research offers a comprehensive perspective on the 

approaches used to identify architectural erosion, encompassing types of 

approaches, quality attributes, and common metrics practices. In addition, it 
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provides valuable insights and practical guidance for researchers and 

practitioners in the field.  

 

Keywords: Architectural Erosion, Metrics, Quality Attributes, Software 
Architecture, Structural Equation Modeling (SEM). 
 
SDG: GOAL 8: Decent Work and Economic Growth, GOAL 9: Industry, 
Innovation, and Infrastructure, GOAL 12: Responsible Consumption and 
Production 
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MODEL PENENTUAN EROSI SENIBINA MENGGUNAKAN METRIK 
BERASASKAN PENDEKATAN DAN ATRIBUT KUALITI DENGAN 

PEMODELAN PERSAMAAN STRUKTUR 
 

Oleh 
 

AHMED OMAR SALEM BAABAD 
 

Mei 2024 
 

Pengerusi : Hazura binti Zulzalil, PhD 
Fakulti  : Sains Komputer dan Teknologi Maklumat 
 

Kejayaan atau kegagalan pembangunan dan reka bentuk perisian sangat 

bergantung pada seni bina perisian, yang memainkan peranan penting dalam 

pelbagai aspek proses pembangunan, termasuk analisis, penggunaan 

semula, pemahaman, evolusi, pembinaan dan pengurusan. Adalah diakui 

bahawa mempunyai seni bina yang betul adalah penting untuk reka bentuk 

dan pembangunan sistem. Walau bagaimanapun, apabila sistem 

berkembang, seni bina perisian cenderung merosot, membawa kepada 

fenomena yang dikenali sebagai hakisan seni bina. Beberapa kajian telah 

meneroka pendekatan yang berbeza untuk menangani hakisan seni bina, 

dengan metrik muncul sebagai penyelesaian yang paling banyak digunakan. 

Walau bagaimanapun, terdapat kekurangan penyelidikan mengenai metrik 

untuk mengenal pasti hakisan seni bina dan mengkategorikan pendekatan 

yang diterima pakai. Mengenal pasti amalan metrik yang digunakan dalam 

konteks ini adalah penting untuk pemahaman yang menyeluruh. Walaupun 
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menyedari kepentingannya, masih terdapat kekurangan pengetahuan tentang 

menyesuaikan pendekatan dan metrik dalam menyiasat fenomena ini. 

 

Oleh itu, penyelidikan ini bertujuan untuk mencadangkan model yang 

menggabungkan metrik berasaskan pendekatan dan kualiti atribut seni bina 

untuk menangani aspek utama berikut: 1) pengenalpastian pendekatan yang 

diterima pakai dan amalan metrik yang biasa digunakan yang dikaitkan 

dengan setiap pendekatan untuk mengesan hakisan seni bina, 2) 

pengenalpastian atribut kualiti utama yang berkaitan dengan hakisan seni bina 

bagi setiap pendekatan yang diterima pakai, dan 3) penyediaan bukti empirikal 

mengenai pengenalpastian setiap pendekatan yang diterima pakai dalam 

konteks hakisan seni bina. 

 

Model yang dicadangkan pada mulanya melibatkan 92 amalan metrik dan 10 

atribut kualiti khusus untuk mengenal pasti hakisan seni bina. Setiap amalan 

metrik yang diperiksa secara sistematik diberikan kepada salah satu 

pendekatan yang diterima pakai, termasuk perubahan seni bina, semakan 

data sejarah, gandingan kebergantungan seni bina, bau busuk seni bina, 

perpaduan seni bina, saiz seni bina perisian, hutang teknikal seni bina, 

kerumitan seni bina dan modularisasi seni bina. Model ini tertakluk kepada 

proses pengesahan kandungan selepas memasukkan cadangan daripada 

pakar kandungan dan didapati boleh dipercayai. Selepas itu, kajian 

kebolehpercayaan yang melibatkan 30 profesional kejuruteraan perisian 

dalam bidang kejuruteraan perisian yang secara khusus menangani hakisan 

seni bina dan langkah-langkahnya mengesahkan kebolehpercayaan semua 
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binaan dalam model. Model ini disiasat selanjutnya menggunakan Pemodelan 

Persamaan Struktur (SEM) berdasarkan data yang dikumpul daripada tinjauan 

terhadap 130 profesional kejuruteraan perisian. Analisis SEM memberikan 

pandangan yang ketara ke dalam hubungan antara pelbagai aspek 

pendekatan dan hakisan seni bina. Penemuan kajian mendedahkan bahawa 

kebanyakan pendekatan memberi kesan ketara kepada hakisan seni bina, 

kecuali kerumitan seni bina dan hutang teknikal, yang menunjukkan hubungan 

yang lebih lemah. Penemuan ini membenarkan penyepaduan metrik 

berasaskan pendekatan dengan atribut kualiti seni bina, menunjukkan 

kebolehpercayaan model dengan mendapatkan maklum balas positif daripada 

pakar mengenai kegunaannya. Kesimpulannya, penyelidikan ini menawarkan 

perspektif menyeluruh tentang pendekatan yang digunakan untuk mengenal 

pasti hakisan seni bina, merangkumi jenis pendekatan, atribut kualiti dan 

amalan metrik biasa. Di samping itu, ia memberikan pandangan yang 

berharga dan bimbingan praktikal untuk penyelidik dan pengamal dalam 

bidang tersebut. 

 

Kata Kunci: Atribut Kualiti, Hakisan Seni Bina, Metrik, Pemodelan Persamaan 
Struktur (SEM), Seni Bina Perisian. 
 
SDG: MATLAMAT 8: Pekerjaan yang Layak dan Pertumbuhan Ekonomi, 
MATLAMAT 9: Industri, Inovasi, dan Infrastruktur, MATLAMAT 12: 
Penggunaan dan Pengeluaran yang Bertanggungjawab 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background  

 

Since late 1989, software architecture (SA) has appeared as the initial 

conception of the large-widely structures of software systems. SA 

is getting increasing attention within the software engineering domain 

over the past decade (Bosch & Molin, 1999). In both academia and industry, 

SA has become a widely accepted concept (Bass, Weber, & Zhu, 2015; 

Clements et al., 2003). As a result, the essence of software system design and 

development is the key notion for SA (Taylor, Medvidovic, & Dashofy, 2009). 

It plays a pivotal role in many aspects of software development, including 

analysis, reuse, comprehension, evolution, construction, and management. 

SA interplays and overlaps with the study of domain-specific design, 

component-based reuse, software families, specific classes of components, 

program analysis, and software design (Shaw & Clements, 2006). Accordingly, 

the influence of SA change on software-intensive systems has a significant 

impact on their long-term viability, whether positively or negatively. As part of 

the software evolution life cycle, SA frequently provides components for the 

fulfilment of non-functional and functional requirements (Bachmann, Bass, 

Klein, & Shelton, 2005; Bass et al., 2015).  

 



© C
OPYRIG

HT U
PM

2 

In essence, the SA can be defined as the structure of the system, which 

includes software components, observable attributes of components, and their 

interactions (Bass, Clements, & Kazman, 2021). As can be seen from this 

definition, the internal characteristics of each entity's system structure have a 

substantial impact on SA. It is concerned with the high-level structure and 

properties of the system (Perry & Wolf, 1992; Shaw & Garlan, 1996). It is 

important to highlight that SA refers to the highest level of abstraction and 

fundamental reasoning applied in software development, regardless of 

whether it is open-source software (OSS) or closed-source (proprietary 

source).  

 

Moreover, the architecture of a system refers to the collection of major design 

decisions made throughout the system's development and any subsequent 

evolution. As a subject, architecture is the proper major emphasis of software 

engineering, because the production of high-quality, successful products is 

dependent on the decisions made at the beginning of the development 

process. The decisions and principles that will guide the development of the 

system are considered to be part of the SA (Stringfellow, Amory, Potnuri, 

Andrews, & Georg, 2006). The goal of concentrating on SA is to identify and 

analyse crucial early design decisions (Klein et al., 1999; Pfeifer et al., 2022). 

As a consequence, system designers and developers have realised that 

getting the architecture right is a vital success factor in the process of 

developing a system (Garlan, 2000). 
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Interestingly, as systems evolve, their SA usually erodes over time (Lehman, 

1979, 1996). Inevitably, this problem does not happen overnight, but it is long-

standing in software engineering (Herold, Knieke, Schindler, & Rausch, 2020). 

The eroding architecture drives the system to greater complexity, difficulty, and 

frequency of change than previously (Stringfellow et al., 2006). As a result, the 

system's lifetime is shortened, or it has a significant impact on software quality 

or the maintenance and development systems life cycle (Garcia, Ivkovic, & 

Medvidovic, 2013), necessitating an entire redesign of the system's 

architecture from scratch (Lenhard, Blom, & Herold, 2019; Zude & Jun, 2011). 

This phenomenon is referred to as Architecture Erosion (AEr) (Bosch, 2004; 

Hochstein & Lindvall, 2005; Medvidovic, Egyed, & Grünbacher, 2003; Parnas, 

1994), Software Architecture Degradation (SAD) (Amalfitano, Luca, & 

Fasolino, 2023; Lenhard et al., 2019; Perry & Wolf, 1992; Taylor et al., 2009), 

Architectural Decay (AD) (Jin et al., 2023; Riaz, Sulayman, & Naqvi, 2009). In 

accordance with the studies conducted by researchers in this field, 

Architecture Erosion (AEr) or Architectural Erosion (AEr) emerges as the most 

used term, and this will be the term adopted in this research. 

 

Architecture Erosion (AEr) can be defined as the persistent divergence 

between prescriptive and descriptive software architecture as intended and 

implemented (Perry & Wolf, 1992; Taylor et al., 2009). It takes place when the 

implemented software architecture (ISA), which represents the actual 

functions of the system, deviates from the planned software architecture 

(PSA), which represents the system's original design. The occurrence of AEr 
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represents by predefined mapping and accomplishing of systems based on 

inconsistent properly regarding the architecture design and the source code.  

This phenomenon is caused by factors that may lead to AEr such as 

undocumented, unforeseen, unplanned, random, scattered, and confused 

architectural design decisions. Furthermore, architectural change (ACH) of a 

system over time (Jin et al., 2023; Lindvall, Tesoriero, & Costa, 2002), 

disregard for fundamental architectural rules of a system due to the 

modification, developer mistakes, and bad practices (Bandara & Perera, 2018) 

have a strong impact for continuing AEr, which may shorten the system lifetime 

or require reengineering from scratch (Bandara & Perera, 2018; Zude & Jun, 

2011).  

 

Numerous experimental studies have been conducted to address the issue of 

AEr, aiming to identify, avoid, minimize, or repair it. To achieve this, various 

tools, models, and measures have been suggested to detect deviations from 

the intended architecture and erosion in its early stages. These efforts have 

resulted in a variety of proposed solutions to combat AEr. These solutions 

encompass different strategies, such as models, measurements, approaches, 

algorithms, tools, techniques, and methods, which may be combined to form a 

comprehensive solution. Some of the most important solutions include a 

metrics-based detection strategy, Prioritisation of architectural anomalies, 

investigation and remediation of architectural rule violations, refactoring, 

architectural recovery, and other proposed solutions. 
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1.2 Research Motivation  

 

Addressing AEr in software development is essential for the success of 

software projects, as the multifaceted nature of this issue has garnered 

significant attention in discussions and research, highlighting its crucial 

importance. This phenomenon can result in instability in structural issues 

(Ruiyin Li, Peng Liang, Mohamed Soliman, & Avgeriou, 2021) due to violation 

of design rules about encapsulation, accumulation of cyclic dependencies, 

increased coupling, and an inability to meet evolving business requirements. 

Moreover, maintenance, evolution, quality issues (Ruiyin Li et al., 2021), and 

increased development costs (Andrews & Sheppard, 2020) can ultimately 

threaten software projects' success.  

 

Understanding and mitigating AEr is essential for maintaining the long-term 

viability and sustainability of software systems. It enables organisations to 

preserve the integrity of their software architectures, enhance system 

maintainability, and facilitate future evolution and adaptation to changing 

business needs. Therefore, proactive measures to determine and mitigate AEr 

are essential for ensuring the resilience and longevity of software systems 

(Whiting & Andrews, 2020).  

 

The prevalence of AEr in software development has prompted the exploration 

of various solutions, with the metrics approach emerging as the most used and 

effective technique (Misra, Adewumi, Fernandez-Sanz, & Damasevicius, 

2018). This method, as highlighted by Misra (2011), emphasise the 
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significance of employing software metrics throughout the software 

development lifecycle (SDLC) to enhance and monitor diverse software 

engineering practices. 

 

The underlying logic is that "you cannot control what you cannot measure" 

(DeMarco, 1986). Typically, several systems lack an explicit and precise 

description of Prescriptive Architecture (PA) in practice, contributing to AEr. It 

was found that a mere 5% of open-source projects maintain software 

architectural documentation (Ding, Liang, Tang, & Vliet, 2015), emphasising  

the challenge of addressing AEr.  This indicates the necessity to construct 

architectural specifications from scratch, a daunting task for systems that have 

hundreds of thousands or even millions of lines of code. Therefore, it is 

obviously difficult to draught up a detailed architectural specification in the face 

of AEr. 

 

When architectural documentation is missing, the code is typically the major 

source of information concerning the possibility of architectural violations and 

erosion (Lenhard et al., 2019; Lenhard, Hassan, Blom, & Herold, 2017). 

Hence, having a solid understanding of the fundamentals behind the metrics 

strategy is an effective method for determining whether there are issues with 

the underlying architecture or its source code, particularly in the context of AEr. 

Thus, the significance of leveraging metrics as a strategy to address AEr is 

emphasised, guided by the principle that "you cannot control what you cannot 

measure." Evaluating software systems requires measuring both architectural 

quality attributes and software metrics (SMs) at the architectural level (Alenezi, 
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2016). Aligning these attributes with metrics is essential for measuring AEr in 

software architecture. 

 

The key motivation behind this research is to address the challenges posed by 

AEr in software development. With growing attention on AEr, the study aims 

to provide a clear understanding of metrics practices, particularly in analysing 

source code in the absence of explicit architectural documentation, thus 

clarifying its role in mitigating issues related to AEr. 

 

1.3 Problem Statement  

 

The practice of utilising metrics is crucial in determining and mitigating the 

impact of AEr (Le Duc, Carlos, Rafael, & Nenad, 2016; Lenhard et al., 2019; 

Ruiyin Li et al., 2021). In addition, when evaluating software systems, both 

quality attributes and (SMs) are essential. Quantifying these attributes at the 

architectural level provides valuable insights into the software's design, as 

quality is typically assessed at this higher level rather than at the code level 

(Alenezi, 2016). Consequently, these attributes are referred to as architectural 

quality attributes (AQAs). The alignment of quality attributes with relevant 

metrics is crucial for accurately measuring AEr in software architecture. 

 

The challenge of determining approaches-based metrics to measure AEr is a 

significant concern for software engineers and researchers. Addressing these 

challenges is crucial for providing valuable insights and measures to control 

AEr, forming a basis for further exploration of this critical issue (Lakshitha & 
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Balasubramaniam, 2012; Ruiyin Li et al., 2021; Whiting & Andrews, 2020). 

Empirical evidence highlights the adoption of approaches-based metrics to 

illustrate architectural enhancements (Lindvall, Tvedt, & Costa, 2003), who 

widely applied these metrics to propose solutions for determining AEr, 

measuring architectural significant attributes (ASA), and identifying indicators 

of architectural deviations aligned with architectural guidelines. 

 

Several models have emerged that focus on establishing metrics for evaluation 

purposes. For instance, Dayanandan and Vivekanandan (2016) developed a 

framework that emphasizes the importance of quantitative metrics in 

assessing architectural decisions, while Pan, Liu, Li, Wang, and Li (2023) 

introduced a model that integrates machine learning techniques to enhance 

the measurement of AEr, providing a more nuanced understanding of 

architectural changes. In addition, Lindvall et al. (2002) also contributed a 

model that assesses the impact of architectural modifications on system 

quality attributes through scenario-based analysis. 

 

Moreover, Zi Li, Li, and Kang (2016) proposed a model for assessing system 

resilience using minimal path analysis and various resilience metrics, which 

aids in identifying critical components and potential failure points within system 

architecture. These models collectively underscore the need for robust 

approaches-based metrics to evaluate AEr comprehensively. 

 

However, despite the growing body of empirical evidence, there remains a gap 

in knowledge regarding the comprehensive elements necessary to evaluate 
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the phenomenon of AEr. The adoption of approaches-based metrics is gaining 

increased attention, particularly in the context of architectural change 

approaches, as highlighted by Jin et al. (2023) and Tonu, Ashkan, and 

Tahvildari (2006). These studies illustrate the necessity for a more integrated 

model that synthesizes existing approaches and metrics, thereby justifying the 

method used in the current study. By addressing these gaps, the proposed 

research aims to establish a more holistic understanding of AEr and the 

metrics that can measure it. 

 

The gap in the use of metrics often arises from their application based on 

researchers' perspectives without adequate specificity and clarity (Alsulami, 

2021; Fenton & Pfleeger, 2015; Mäntylä, 2008; Nuñez-Varela, Pérez-

Gonzalez, Martínez-Perez, & Soubervielle-Montalvo, 2017). This variation in 

how metrics are presented leads to confusion among practitioners, 

misunderstandings, and misapplications (Fenton & Pfleeger, 2015). As a 

result, measurements become ineffective, hindering improvement efforts 

(Basili & Rombach, 2002). These issues complicate the understanding of 

fundamental concepts and contribute to increasing the challenges in achieving 

widespread acceptance of these metrics. Therefore, metrics need to be clearly 

defined and context-specific, which is crucial for reproducibility, understanding 

(Barbara & Charters, 2007), and supporting decision-making to enhance the 

development process (Buse & Zimmermann, 2012). 

 

In view of the importance of approaches-based metrics for determining AEr, it 

is beneficial for researchers and practitioners to understand the metrics 
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practices pertaining to every approach in the context of AEr, and the essential 

quality attributes from the AEr perspective. Hence, developing a model for 

measuring the suitability of the chosen metrics, accompanied by a well-defined 

classification aimed at clarifying vague metric definitions and their associated 

approaches and categories, that provides this set of information, is in demand 

to be researched. This model aims to identify and classify metrics associated 

with AEr, propose a correlation of metrics with architectural quality attributes 

to measure AEr, and subsequently evaluate the validity and reliability of the 

model.  

 

1.4 Research Objectives   

 
The research objectives are as follow: 

 
i. To identify and classify the metrics adopted from approaches related to 

AEr. 

ii. To develop a model for determining metrics and architectural quality 
attributes to determine AEr. 

iii. To assess the validity and reliability of the model. 

 

1.5 Research Scope  

 

This study investigates the metrics approaches that could determine AEr. 

Therefore, the adopted metrics approaches based on determination of AEr 

perspective is the purpose of this research. Consequently, the research 

scopes are: 

 
i. This research is limited to measures, metrics approaches, and AEr 

attributes that are outcomes of systematic mapping study and experts’ 
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opinions. However, this study does not claim exclusivity to these 
metrics’ approaches, measures, or AEr attributes. 

ii. Even while this study will provide an empirical report of the 
determination of each metrics approach on AEr as defined by a set of 
quality attributes, it will not account for the identification of each metrics 
approach on each attribute of AEr. 

iii. This study primarily focuses on AEr context based on the researcher's 
strategic use of the chance to find potentially helpful panellists. This 
could include panellists who work in academic researchers and industry 
practitioners.  

 

1.6 Research Contribution 

 

This study's contribution is presented both in theory and in practice. 

Theoretically, this research contributes to the body of knowledge for software 

engineering and information systems (ISs) in many different ways; however, 

the most important contribution is the construction and evaluation of the 

approaches, adopted metrics, and quality attributes of AEr model to determine 

erosion. This is especially important given that no studies have been 

conducted for the potential determination of various types of metrics and their 

approaches to identify AEr. In addition, the model provides information that 

could be used to measure different various types of metrics and their 

approaches to determine AEr. The information lists that are supplied by this 

model as well as the significance of each one is described in more depth 

below. 

 
i. A comprehensive classification for the aim of determining AEr, having 

specific and consistent metrics that can be used to study and evaluate 
a wide variety of relevant approaches for AEr context. 

ii. Additionally, such an approach can provide a better understanding of 
the complexity of the AEr problem and its underlying causes. 
Furthermore, it can contribute to the development of better approaches 
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and solutions to manage and control the AEr process. Finally, it can 
help to identify the most effective metrics strategies to mitigate the risks 
associated with AEr.  

iii. This model has been subjected to both an empirical evaluation and an 
evaluation from the perspective of Software Engineering Professionals 
(SEPs), yielding a plethora of information (such as erosion 
classifications, approach metrics, and quality attributes) that can 
provide useful insights into the nature of AEr and that it is able to help 
identification areas requiring improvement. 

 

The development of questionnaires to measure AEr in light of the established 

approaches metrics through the use of research instruments is a practical 

significant contribution to the field. Valid and reliable studies provide important 

guidelines and references for future researchers whose goals are similar to 

this study intentions. 

 

1.7 Organisation of the Thesis 

 

This thesis is structured to critically review relevant information on approach 

metrics and AEr, providing details on the research methodology and key 

findings. It is organised into six chapters. This chapter provides an overview of 

the background of the research area, highlights the motivation and problem 

statement, and discusses the objectives, scope, and key contributions of the 

study. 

 

Chapter 2 provides an in-depth literature review of the research problem. It 

covers various topics related to the research problem such as approaches 

metrics, quality attributes, and AEr. It also presents a comprehensive overview 

of the research findings. 
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Chapter 3 addresses the research technique and supports the design of the 

research methodology employed to perform this study. In addition, procedures 

for the research process, design, instrument development, pilot study, 

population, sample, and data collecting, and data analysis are described. 

Detailed descriptions of how each aim was attained are provided in each 

corresponding chapter. 

 

Chapter 4 presents the conceptualisation of the model and the development 

of hypotheses. It includes a detailed explanation of the research model, its 

justification, and the formulation of hypotheses. 

 

Chapter 5 presents the results of the research. It provides a detailed 

description of the results of the research and a discussion of the implications 

of the results. 

 

Chapter 6 provides a conclusion to the research and discussing 

recommendations for future research. 
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