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The success or failure of software development and design heavily depends
on software architecture, which plays a vital role in various aspects of the
development process. It is acknowledged that having the right architecture is
crucial for system design and development. However, as systems evolve,
software architecture tends to degrade, leading to architectural erosion.
Although several studies have explored different approaches to tackle
architectural erosion, with metrics being a common solution, there is a
significant gap in knowledge on the metrics used to identify architectural

erosion and classify adopted approaches.

Therefore, this research aims a model that combines approach-based metrics
and architectural attributes quality to address the following main aspects: 1)
identification of adopted approaches and commonly used metrics practices

associated with each approach to identify architectural erosion, 2) identification



of key quality attributes related to architectural erosion for each adopted
approach, and 3) provision of empirical evidence on the identification of each

adopted approach in the context of architectural erosion.

Initially, 92 metrics practices and 10 quality attributes relevant to architectural
erosion were identified. These metrics practices were systematically assigned
to adopted approaches such as architectural change, historical data revision,
architectural dependency coupling, architectural bad smells, architectural
cohesion, software architecture size, architectural technical debt, architectural
complexity, and architecture modularization. The model was subjected to
content validation by experts and was confirmed to be reliable. A subsequent
reliability study involving 30 software engineering professionals further
validated the constructs within the model. The model was further investigated
using Structural Equation Modeling (SEM) based on data collected from a
survey of 130 software engineering professionals. SEM analysis provided
significant insights into the relationship between different aspects of the
approaches and architectural erosion. The findings of the study revealed that
most approaches significantly impact architectural erosion, with the exception
of architectural complexity and technical debt, which showed weaker
relationships. The findings justify the integration of approach-based metrics
with architectural quality attributes, demonstrating the model's reliability by
obtaining positive feedback from experts regarding its usefulness. In
conclusion, this research offers a comprehensive perspective on the
approaches used to identify architectural erosion, encompassing types of

approaches, quality attributes, and common metrics practices. In addition, it



provides valuable insights and practical guidance for researchers and

practitioners in the field.

Keywords: Architectural Erosion, Metrics, Quality Attributes, Software
Architecture, Structural Equation Modeling (SEM).
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MODEL PENENTUAN EROSI SENIBINA MENGGUNAKAN METRIK
BERASASKAN PENDEKATAN DAN ATRIBUT KUALITI DENGAN
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Mei 2024
Pengerusi : Hazura binti Zulzalil, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Kejayaan atau kegagalan pembangunan dan reka bentuk perisian sangat
bergantung pada seni bina perisian, yang memainkan peranan penting dalam
pelbagai aspek proses pembangunan, termasuk analisis, penggunaan
semula, pemahaman, evolusi, pembinaan dan pengurusan. Adalah diakui
bahawa mempunyai seni bina yang betul adalah penting untuk reka bentuk
dan pembangunan sistem. Walau bagaimanapun, apabila sistem
berkembang, seni bina perisian cenderung merosot, membawa kepada
fenomena yang dikenali sebagai hakisan seni bina. Beberapa kajian telah
meneroka pendekatan yang berbeza untuk menangani hakisan seni bina,
dengan metrik muncul sebagai penyelesaian yang paling banyak digunakan.
Walau bagaimanapun, terdapat kekurangan penyelidikan mengenai metrik
untuk mengenal pasti hakisan seni bina dan mengkategorikan pendekatan
yang diterima pakai. Mengenal pasti amalan metrik yang digunakan dalam

konteks ini adalah penting untuk pemahaman yang menyeluruh. Walaupun



menyedari kepentingannya, masih terdapat kekurangan pengetahuan tentang

menyesuaikan pendekatan dan metrik dalam menyiasat fenomena ini.

Oleh itu, penyelidikan ini bertujuan untuk mencadangkan model yang
menggabungkan metrik berasaskan pendekatan dan kualiti atribut seni bina
untuk menangani aspek utama berikut: 1) pengenalpastian pendekatan yang
diterima pakai dan amalan metrik yang biasa digunakan yang dikaitkan
dengan setiap pendekatan untuk mengesan hakisan seni bina, 2)
pengenalpastian atribut kualiti utama yang berkaitan dengan hakisan seni bina
bagi setiap pendekatan yang diterima pakai, dan 3) penyediaan bukti empirikal
mengenai pengenalpastian setiap pendekatan yang diterima pakai dalam

konteks hakisan seni bina.

Model yang dicadangkan pada mulanya melibatkan 92 amalan metrik dan 10
atribut kualiti khusus untuk mengenal pasti hakisan seni bina. Setiap amalan
metrik yang diperiksa secara sistematik diberikan kepada salah satu
pendekatan yang diterima pakai, termasuk perubahan seni bina, semakan
data sejarah, gandingan kebergantungan seni bina, bau busuk seni bina,
perpaduan seni bina, saiz seni bina perisian, hutang teknikal seni bina,
kerumitan seni bina dan modularisasi seni bina. Model ini tertakluk kepada
proses pengesahan kandungan selepas memasukkan cadangan daripada
pakar kandungan dan didapati boleh dipercayai. Selepas itu, kajian
kebolehpercayaan yang melibatkan 30 profesional kejuruteraan perisian
dalam bidang kejuruteraan perisian yang secara khusus menangani hakisan

seni bina dan langkah-langkahnya mengesahkan kebolehpercayaan semua



binaan dalam model. Model ini disiasat selanjutnya menggunakan Pemodelan
Persamaan Struktur (SEM) berdasarkan data yang dikumpul daripada tinjauan
terhadap 130 profesional kejuruteraan perisian. Analisis SEM memberikan
pandangan yang ketara ke dalam hubungan antara pelbagai aspek
pendekatan dan hakisan seni bina. Penemuan kajian mendedahkan bahawa
kebanyakan pendekatan memberi kesan ketara kepada hakisan seni bina,
kecuali kerumitan seni bina dan hutang teknikal, yang menunjukkan hubungan
yang lebih lemah. Penemuan ini membenarkan penyepaduan metrik
berasaskan pendekatan dengan atribut kualiti seni bina, menunjukkan
kebolehpercayaan model dengan mendapatkan maklum balas positif daripada
pakar mengenai kegunaannya. Kesimpulannya, penyelidikan ini menawarkan
perspektif menyeluruh tentang pendekatan yang digunakan untuk mengenal
pasti hakisan seni bina, merangkumi jenis pendekatan, atribut kualiti dan
amalan metrik biasa. Di samping itu, ia memberikan pandangan yang
berharga dan bimbingan praktikal untuk penyelidik dan pengamal dalam

bidang tersebut.

Kata Kunci: Atribut Kualiti, Hakisan Seni Bina, Metrik, Pemodelan Persamaan
Struktur (SEM), Seni Bina Perisian.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since late 1989, software architecture (SA) has appeared as the initial
conception of the large-widely structures of software systems. SA
is getting increasing attention within the software engineering domain
over the past decade (Bosch & Molin, 1999). In both academia and industry,
SA has become a widely accepted concept (Bass, Weber, & Zhu, 2015;
Clements et al., 2003). As a result, the essence of software system design and
development is the key notion for SA (Taylor, Medvidovic, & Dashofy, 2009).
It plays a pivotal role in many aspects of software development, including
analysis, reuse, comprehension, evolution, construction, and management.
SA interplays and overlaps with the study of domain-specific design,
component-based reuse, software families, specific classes of components,
program analysis, and software design (Shaw & Clements, 2006). Accordingly,
the influence of SA change on software-intensive systems has a significant
impact on their long-term viability, whether positively or negatively. As part of
the software evolution life cycle, SA frequently provides components for the
fulfilment of non-functional and functional requirements (Bachmann, Bass,

Klein, & Shelton, 2005; Bass et al., 2015).



In essence, the SA can be defined as the structure of the system, which
includes software components, observable attributes of components, and their
interactions (Bass, Clements, & Kazman, 2021). As can be seen from this
definition, the internal characteristics of each entity's system structure have a
substantial impact on SA. It is concerned with the high-level structure and
properties of the system (Perry & Wolf, 1992; Shaw & Garlan, 1996). It is
important to highlight that SA refers to the highest level of abstraction and
fundamental reasoning applied in software development, regardless of
whether it is open-source software (OSS) or closed-source (proprietary

source).

Moreover, the architecture of a system refers to the collection of major design
decisions made throughout the system's development and any subsequent
evolution. As a subject, architecture is the proper major emphasis of software
engineering, because the production of high-quality, successful products is
dependent on the decisions made at the beginning of the development
process. The decisions and principles that will guide the development of the
system are considered to be part of the SA (Stringfellow, Amory, Potnuri,
Andrews, & Georg, 2006). The goal of concentrating on SA is to identify and
analyse crucial early design decisions (Klein et al., 1999; Pfeifer et al., 2022).
As a consequence, system designers and developers have realised that
getting the architecture right is a vital success factor in the process of

developing a system (Garlan, 2000).



Interestingly, as systems evolve, their SA usually erodes over time (Lehman,
1979, 1996). Inevitably, this problem does not happen overnight, but it is long-
standing in software engineering (Herold, Knieke, Schindler, & Rausch, 2020).
The eroding architecture drives the system to greater complexity, difficulty, and
frequency of change than previously (Stringfellow et al., 2006). As a result, the
system's lifetime is shortened, or it has a significant impact on software quality
or the maintenance and development systems life cycle (Garcia, Ivkovic, &
Medvidovic, 2013), necessitating an entire redesign of the system's
architecture from scratch (Lenhard, Blom, & Herold, 2019; Zude & Jun, 2011).
This phenomenon is referred to as Architecture Erosion (AEr) (Bosch, 2004;
Hochstein & Lindvall, 2005; Medvidovic, Egyed, & Grinbacher, 2003; Parnas,
1994), Software Architecture Degradation (SAD) (Amalfitano, Luca, &
Fasolino, 2023; Lenhard et al., 2019; Perry & Wolf, 1992; Taylor et al., 2009),
Architectural Decay (AD) (Jin et al., 2023; Riaz, Sulayman, & Naqgvi, 2009). In
accordance with the studies conducted by researchers in this field,
Architecture Erosion (AEr) or Architectural Erosion (AEr) emerges as the most

used term, and this will be the term adopted in this research.

Architecture Erosion (AEr) can be defined as the persistent divergence
between prescriptive and descriptive software architecture as intended and
implemented (Perry & Wolf, 1992; Taylor et al., 2009). It takes place when the
implemented software architecture (ISA), which represents the actual
functions of the system, deviates from the planned software architecture

(PSA), which represents the system's original design. The occurrence of AEr



represents by predefined mapping and accomplishing of systems based on
inconsistent properly regarding the architecture design and the source code.

This phenomenon is caused by factors that may lead to AEr such as
undocumented, unforeseen, unplanned, random, scattered, and confused
architectural design decisions. Furthermore, architectural change (ACH) of a
system over time (Jin et al.,, 2023; Lindvall, Tesoriero, & Costa, 2002),
disregard for fundamental architectural rules of a system due to the
modification, developer mistakes, and bad practices (Bandara & Perera, 2018)
have a strong impact for continuing AEr, which may shorten the system lifetime
or require reengineering from scratch (Bandara & Perera, 2018; Zude & Jun,

2011).

Numerous experimental studies have been conducted to address the issue of
AEr, aiming to identify, avoid, minimize, or repair it. To achieve this, various
tools, models, and measures have been suggested to detect deviations from
the intended architecture and erosion in its early stages. These efforts have
resulted in a variety of proposed solutions to combat AEr. These solutions
encompass different strategies, such as models, measurements, approaches,
algorithms, tools, techniques, and methods, which may be combined to form a
comprehensive solution. Some of the most important solutions include a
metrics-based detection strategy, Prioritisation of architectural anomalies,
investigation and remediation of architectural rule violations, refactoring,

architectural recovery, and other proposed solutions.



1.2 Research Motivation

Addressing AEr in software development is essential for the success of
software projects, as the multifaceted nature of this issue has garnered
significant attention in discussions and research, highlighting its crucial
importance. This phenomenon can result in instability in structural issues
(Ruiyin Li, Peng Liang, Mohamed Soliman, & Avgeriou, 2021) due to violation
of design rules about encapsulation, accumulation of cyclic dependencies,
increased coupling, and an inability to meet evolving business requirements.
Moreover, maintenance, evolution, quality issues (Ruiyin Li et al., 2021), and
increased development costs (Andrews & Sheppard, 2020) can ultimately

threaten software projects' success.

Understanding and mitigating AEr is essential for maintaining the long-term
viability and sustainability of software systems. It enables organisations to
preserve the integrity of their software architectures, enhance system
maintainability, and facilitate future evolution and adaptation to changing
business needs. Therefore, proactive measures to determine and mitigate AEr
are essential for ensuring the resilience and longevity of software systems

(Whiting & Andrews, 2020).

The prevalence of AEr in software development has prompted the exploration
of various solutions, with the metrics approach emerging as the most used and
effective technique (Misra, Adewumi, Fernandez-Sanz, & Damasevicius,

2018). This method, as highlighted by Misra (2011), emphasise the



significance of employing software metrics throughout the software
development lifecycle (SDLC) to enhance and monitor diverse software

engineering practices.

The underlying logic is that "you cannot control what you cannot measure”
(DeMarco, 1986). Typically, several systems lack an explicit and precise
description of Prescriptive Architecture (PA) in practice, contributing to AEr. It
was found that a mere 5% of open-source projects maintain software
architectural documentation (Ding, Liang, Tang, & Vliet, 2015), emphasising
the challenge of addressing AEr. This indicates the necessity to construct
architectural specifications from scratch, a daunting task for systems that have
hundreds of thousands or even millions of lines of code. Therefore, it is
obviously difficult to draught up a detailed architectural specification in the face

of AEr.

When architectural documentation is missing, the code is typically the major
source of information concerning the possibility of architectural violations and
erosion (Lenhard et al., 2019; Lenhard, Hassan, Blom, & Herold, 2017).
Hence, having a solid understanding of the fundamentals behind the metrics
strategy is an effective method for determining whether there are issues with
the underlying architecture or its source code, particularly in the context of AEr.
Thus, the significance of leveraging metrics as a strategy to address AEr is
emphasised, guided by the principle that "you cannot control what you cannot
measure." Evaluating software systems requires measuring both architectural

quality attributes and software metrics (SMs) at the architectural level (Alenezi,



2016). Aligning these attributes with metrics is essential for measuring AEr in

software architecture.

The key motivation behind this research is to address the challenges posed by
AEr in software development. With growing attention on AEr, the study aims
to provide a clear understanding of metrics practices, particularly in analysing
source code in the absence of explicit architectural documentation, thus

clarifying its role in mitigating issues related to AEr.

1.3 Problem Statement

The practice of utilising metrics is crucial in determining and mitigating the
impact of AEr (Le Duc, Carlos, Rafael, & Nenad, 2016; Lenhard et al., 2019;
Ruiyin Li et al., 2021). In addition, when evaluating software systems, both
quality attributes and (SMs) are essential. Quantifying these attributes at the
architectural level provides valuable insights into the software's design, as
quality is typically assessed at this higher level rather than at the code level
(Alenezi, 2016). Consequently, these attributes are referred to as architectural
guality attributes (AQASs). The alignment of quality attributes with relevant

metrics is crucial for accurately measuring AEr in software architecture.

The challenge of determining approaches-based metrics to measure AEr is a
significant concern for software engineers and researchers. Addressing these
challenges is crucial for providing valuable insights and measures to control

AEr, forming a basis for further exploration of this critical issue (Lakshitha &



Balasubramaniam, 2012; Ruiyin Li et al., 2021; Whiting & Andrews, 2020).
Empirical evidence highlights the adoption of approaches-based metrics to
illustrate architectural enhancements (Lindvall, Tvedt, & Costa, 2003), who
widely applied these metrics to propose solutions for determining AEr,
measuring architectural significant attributes (ASA), and identifying indicators

of architectural deviations aligned with architectural guidelines.

Several models have emerged that focus on establishing metrics for evaluation
purposes. For instance, Dayanandan and Vivekanandan (2016) developed a
framework that emphasizes the importance of quantitative metrics in
assessing architectural decisions, while Pan, Liu, Li, Wang, and Li (2023)
introduced a model that integrates machine learning techniques to enhance
the measurement of AEr, providing a more nuanced understanding of
architectural changes. In addition, Lindvall et al. (2002) also contributed a
model that assesses the impact of architectural modifications on system

quality attributes through scenario-based analysis.

Moreover, Zi Li, Li, and Kang (2016) proposed a model for assessing system
resilience using minimal path analysis and various resilience metrics, which
aids in identifying critical components and potential failure points within system
architecture. These models collectively underscore the need for robust

approaches-based metrics to evaluate AEr comprehensively.

However, despite the growing body of empirical evidence, there remains a gap

in knowledge regarding the comprehensive elements necessary to evaluate



the phenomenon of AEr. The adoption of approaches-based metrics is gaining
increased attention, particularly in the context of architectural change
approaches, as highlighted by Jin et al. (2023) and Tonu, Ashkan, and
Tahvildari (2006). These studies illustrate the necessity for a more integrated
model that synthesizes existing approaches and metrics, thereby justifying the
method used in the current study. By addressing these gaps, the proposed
research aims to establish a more holistic understanding of AEr and the

metrics that can measure it.

The gap in the use of metrics often arises from their application based on
researchers' perspectives without adequate specificity and clarity (Alsulami,
2021; Fenton & Pfleeger, 2015; Mantyla, 2008; Nufiez-Varela, Pérez-
Gonzalez, Martinez-Perez, & Soubervielle-Montalvo, 2017). This variation in
how metrics are presented leads to confusion among practitioners,
misunderstandings, and misapplications (Fenton & Pfleeger, 2015). As a
result, measurements become ineffective, hindering improvement efforts
(Basili & Rombach, 2002). These issues complicate the understanding of
fundamental concepts and contribute to increasing the challenges in achieving
widespread acceptance of these metrics. Therefore, metrics need to be clearly
defined and context-specific, which is crucial for reproducibility, understanding
(Barbara & Charters, 2007), and supporting decision-making to enhance the

development process (Buse & Zimmermann, 2012).

In view of the importance of approaches-based metrics for determining AEr, it

is beneficial for researchers and practitioners to understand the metrics



practices pertaining to every approach in the context of AEr, and the essential
quality attributes from the AEr perspective. Hence, developing a model for
measuring the suitability of the chosen metrics, accompanied by a well-defined
classification aimed at clarifying vague metric definitions and their associated
approaches and categories, that provides this set of information, is in demand
to be researched. This model aims to identify and classify metrics associated
with AEr, propose a correlation of metrics with architectural quality attributes
to measure AEr, and subsequently evaluate the validity and reliability of the

model.

1.4 Research Objectives

The research objectives are as follow:

i. Toidentify and classify the metrics adopted from approaches related to
AEr.

ii. To develop a model for determining metrics and architectural quality
attributes to determine AEr.

iii. To assess the validity and reliability of the model.

15 Research Scope

This study investigates the metrics approaches that could determine AEr.
Therefore, the adopted metrics approaches based on determination of AEr
perspective is the purpose of this research. Consequently, the research
scopes are:

i. This research is limited to measures, metrics approaches, and AEr
attributes that are outcomes of systematic mapping study and experts’
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opinions. However, this study does not claim exclusivity to these
metrics’ approaches, measures, or AEr attributes.

ii. Even while this study will provide an empirical report of the
determination of each metrics approach on AEr as defined by a set of
quality attributes, it will not account for the identification of each metrics
approach on each attribute of AEr.

iii. This study primarily focuses on AEr context based on the researcher's
strategic use of the chance to find potentially helpful panellists. This
could include panellists who work in academic researchers and industry
practitioners.

1.6 Research Contribution

This study's contribution is presented both in theory and in practice.
Theoretically, this research contributes to the body of knowledge for software
engineering and information systems (ISs) in many different ways; however,
the most important contribution is the construction and evaluation of the
approaches, adopted metrics, and quality attributes of AEr model to determine
erosion. This is especially important given that no studies have been
conducted for the potential determination of various types of metrics and their
approaches to identify AEr. In addition, the model provides information that
could be used to measure different various types of metrics and their
approaches to determine AEr. The information lists that are supplied by this
model as well as the significance of each one is described in more depth
below.

I. A comprehensive classification for the aim of determining AEr, having

specific and consistent metrics that can be used to study and evaluate
a wide variety of relevant approaches for AEr context.

ii. Additionally, such an approach can provide a better understanding of
the complexity of the AEr problem and its underlying causes.
Furthermore, it can contribute to the development of better approaches

11



and solutions to manage and control the AEr process. Finally, it can
help to identify the most effective metrics strategies to mitigate the risks
associated with AEr.

iii. This model has been subjected to both an empirical evaluation and an
evaluation from the perspective of Software Engineering Professionals
(SEPs), yielding a plethora of information (such as erosion
classifications, approach metrics, and quality attributes) that can
provide useful insights into the nature of AEr and that it is able to help
identification areas requiring improvement.

The development of questionnaires to measure AEr in light of the established
approaches metrics through the use of research instruments is a practical
significant contribution to the field. Valid and reliable studies provide important
guidelines and references for future researchers whose goals are similar to

this study intentions.

1.7 Organisation of the Thesis

This thesis is structured to critically review relevant information on approach
metrics and AEr, providing details on the research methodology and key
findings. It is organised into six chapters. This chapter provides an overview of
the background of the research area, highlights the motivation and problem
statement, and discusses the objectives, scope, and key contributions of the

study.

Chapter 2 provides an in-depth literature review of the research problem. It
covers various topics related to the research problem such as approaches
metrics, quality attributes, and AEr. It also presents a comprehensive overview

of the research findings.
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Chapter 3 addresses the research technique and supports the design of the
research methodology employed to perform this study. In addition, procedures
for the research process, design, instrument development, pilot study,
population, sample, and data collecting, and data analysis are described.
Detailed descriptions of how each aim was attained are provided in each

corresponding chapter.

Chapter 4 presents the conceptualisation of the model and the development
of hypotheses. It includes a detailed explanation of the research model, its

justification, and the formulation of hypotheses.

Chapter 5 presents the results of the research. It provides a detailed

description of the results of the research and a discussion of the implications

of the results.

Chapter 6 provides a conclusion to the research and discussing

recommendations for future research.
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