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By 
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Chairman: Lee Lai Soon, PhD 
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Bin Packing Problem is a branch of Cutting and Packing problems which has many 

applications in wood and metal industries. In this research we focus on non-oriented 

case of Two–Dimensional Rectangular Bin Packing Problem (2DRBPP). The objective 

of this problem is to pack a given set of small rectangles, which may be rotated by 90˚, 

without overlaps into a minimum numbers of identical large rectangles.  

 

Our aim is to improve the performance of the MultiCrossover Genetic Algorithm 

(MXGA) proposed from the literature for solving the problem. We focus on four major 

components of the MXGA which consist of selection, crossover, mutation and 

replacement. Initial computational experiments are conducted independently on the 

named components using some benchmark problem instances. The most competitive 

techniques from each component are combined to form a new algorithm called 
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Improved MXGA (MXGAi). Extensive computational experiments are performed using 

benchmark data sets to assess the effectiveness of the proposed algorithm. The MXGAi 

is shown to be competitive when compared with MXGA, Standard GA, Unified Tabu 

Search (UTS) and Randomised Descent Method (RDM). 
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PENAMBAHBAIKAN ALGORITMA GENETIK MULTI-LINTASAN BAGI 

PEMBUNGKUSAN BEKAS SEGIEMPAT TEPAT BERDIMENSI DUA 

 

 

                                                                   Oleh 

 

MARYAM SARABIAN 

 

Mac 2010 

 

 

Pengerusi: Lee Lai Soon, PhD 

Fakulti:      Sains 

 

Masalah Pembungkusan Bekas merupakan antara masalah dalam Pemotongan dan 

Pembungkusan yang mana banyak diaplikasikan dalam industri kayu dan logam. Dalam 

kajian ini, tumpuan adalah kepada kes yang bersifat bukan orientasi bagi Masalah 

Pembungkusan Segiempat Tepat Dua-Dimensi (2DRBPP). Objektif yang ingin dicapai 

ialah untuk membungkus set segiempat tepat kecil yang boleh diputarkan 90˚ tanpa 

berlaku pertindihan di dalam segiempat tepat serupa dengan jumlah minimum. 

 

Matlamat kami adalah untuk memperbaiki prestasi Algoritma Genetik Multi-Lintasan 

(MXGA) yang telah dicadang dari kesusasteraan bagi menyelesaikan masalah yang 

dihadapi. Terdapat empat komponen utama MXGA yang diberikan perhatian iaitu 

pemilihan, lintasan, mutasi dan penggantian. Pada peringkat awal, eksperimen 

komputasi telah dilakukan terhadap komponen-komponen yang disenaraikan dengan 
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menggunakan contoh masalah sebagai tanda aras. Teknik yang paling kompetitif 

daripada setiap komponen dipilih dan digabungkan bagi membentuk satu algoritma 

baharu yang dikenali sebagai Penambahbaikan Algoritma Genetik Multi-Lintasan 

(MXGAi). Seterusnya, eksperimen berkomputer lanjutan telah dijalankan dengan 

menggunakan data mengikut tanda aras yang ditetapkan. Ia bertujuan untuk mengenal 

pasti keberkesanan algoritma yang telah dicadangkan. Hasil kajian menunjukkan 

MXGAi adalah lebih kompetitif berbanding MXGA, GA piawai, Carian Tabu Seragam 

(UTS) dan Kaedah Rawakan Menurun (RDM). 
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CHAPTER 1 

INTRODUCTION 

 

Cutting and Packing (C&P) problems are classified as combinatorial optimization 

problems. These types of problems consist of two sets of elements, namely 

 a set of large objects (input, supply), and 

 a set of small items (output, demand) 

The objective of these problems is minimizing the overall size of unused part of the 

large objects or maximizing the number of small items to be packed in the large objects. 

These types of problems have many applications in business and industry (e.g. wood, 

glass and textile industries, vehicle or container loading, newspaper paging and etc).   

 

C&P problems can be defined in one, two, three or larger number (n) of dimensions and 

a solution of the problem may result in applying some or all large objects, and some or 

all small items. Bin Packing Problem (BPP) is a type of C&P problems which 

characterised by assortment of all small items into minimum number of large objects. 

This problem has many applications in wood and glass industries (cutting the 

rectangular component from large sheets of material) and in newspapers paging 

(arrangement of articles and advertisements into pages). BPP is classified as a class of 

NP-hard problem by Garey and Johnson [25]. 
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1.1  Scope of Study 

 

In this study we will concentrate on non-oriented case of Two-Dimensional Rectangular 

Single Bin Size Bin Packing Problem (2DRSBSBPP) based on classification of 

Wäscher et al. [61]. Without loss of generality, the problem will be referred as Two-

Dimensional Rectangular Bin Packing Problem (2DRBPP) henceforth. In this problem 

a given set of two-dimensional differently sized small rectangles (items), which may be 

rotated by 90 , has to be packed without being overlapped into the minimum number of 

identical large objects (bins).  It is worth noting that the additional requirements for the 

2DRBPP in this study are as below: 

 

1.  All the rectangles are packed in non-guillotine cuts pattern: items are not 

obtained from a sequence of edge-to-edge cuts.  

2. All the rectangles are packed in an orthogonal packing pattern: the edges of 

the rectangles are parallel to the edges of the bins. 

 

Since the 2DRBPP is a NP-hard problem, exact algorithms are only able to solve small 

to medium size problem instances. Big size problem instances with large number of 

rectangles have to be solved by heuristic or local search methods. This research 

concentrates on local search methods as a tool for solving the problem. 

 

Genetic Algorithm is an adaptive local search method which was first invented by 

Holland [33]. This algorithm is based on the genetic process of biological organisms. 
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According to the Darwin‟s principle “survival of the fittest”, the organisms which are 

most capable of acquiring resources and attracting mates will generate more offspring. 

By abstracting the evolutionary principles to a real world problem, GA is able to find 

an optimal solution.  

 

An implementation of Holland‟s GA begins with a random population of individuals. 

Each individual represents a feasible solution to the problem and is composed of a string 

of genes with the defined length. In each generation, the individuals are selected from 

the population according to their fitness values in order to generate new offspring via 

crossover operator. In the case that the crossover is not applied to the selected 

individuals, the offspring will be generated by the exact duplication of the parents. After 

performing the crossover operator, mutation will take place. At the end of each 

generation the parent population will be replaced by the offspring population by means 

of the replacement strategy. The process will be repeated for a fixed number of 

generations or a fixed amount of time with the hope of finding the optimal solution.  

 

MultiCrossover Genetic Algorithm (MXGA) is a specific variant of GA which proposed 

by Lee [40]. In the MXGA, offspring for the next generation are selected from a list of 

temporary offspring generated via a multicrossover operator. 
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1.2  Problem Statement 

 

The vast majority of the literatures concern heuristics and local search methods for 

solving 2DRBPP. Although computational results in the literature indicate that MXGA 

achieved better quality solutions compared to Standard Genetic Algorithm (SGA) but 

there are still rooms for improving the MXGA.  

 

Since the crossover operators which are applied in the multicrossover process of MXGA 

(Lee [40]), are standard 1-Point and 2-Point crossover operators it is predicted that 

applying the other crossover operators in the MXGA can improve the quality of 

solutions. The improvement can also be done by changing the other main components of 

MXGA such as selection mechanism, mutation operator and replacement strategy. 

 

1.3   Objectives 

 

Generally the objectives of this study are as below: 

 

      1.  Improving the implementation of MXGA for solving the problem. This can 

be done by focusing on four major components of the MXGA namely 

selection mechanism, crossover operator, mutation operator and replacement 

strategy. Our new proposed algorithm is construced by combining the most 

competetive techniques from each component.  
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2. Comparing the effectiveness of the new proposed algorithm with MXGA, 

SGA and other local search methods such as Unified Tabu Search (UTS) and 

Randomised Descent Method (RDM). We hope that our new proposed 

algorithm will be able to achieve a better quality solutions compared to other 

named local search methods. 

 

1.4   Overview of Thesis 

 

The remainder of this thesis is structured as follows: Chapter 2 begins with introducing 

the concept of time complexity and follows by giving a general overview of C&P 

problems. Different heuristic and metaheurstic approaches for solving 2DRBPP are also 

presented in Chapter 2. Detailed descriptions of the main components of GA and some 

of the well-known approaches in each component are given in Chapter 3. Different 

components of our proposed algorithm, the implementation of the other local search 

methods which are applied for solving the problem in this study and the experimental 

design are described in Chapter 4.  

 

Initial investigations on the four major components of MXGA are given in Chapter 5, 

also a comparison is made between our new proposed algorithm, MXGA, SGA, UTS 

and RDM through extended experimental results using benchmark data sets. We give 

conclusions and describe possible future woks in Chapter 6.        
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CHAPTER 2 

HEURISTIC AND METAHEURISTIC APPROACHES 

 

2.1   Introduction 

 

This chapter is structured as follows: in Section 2.2 we review the concept of time 

complexity. Definition of C&P problems and Wäscher‟s typology are given in Section 

2.3. Section 2.4 starts with giving a definition for heuristic and metaheuristic and 

follows by discussing some of the well-known heuristic and metaheuristic approaches   

for solving 2DRBPP.  A summary of this chapter is given in Section 2.5. 

 

2.2   Complexity Theory 

 

Computational complexity measures how much time is needed to solve different 

problems. This will help to find out whether a problem is easy or hard. If the problem is 

easy it can be solved as a linear program or network model. It is not easy to find an 

exact solution for the hard problems. In this case the problem needs to be solved by 

heuristics or local search algorithms. In this section we concentrate on the time 

complexity theory. The definitions in this section are extracted from Tovey [58] and 

Whitley and Watson [62]. 
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The time complexity of a problem is the number of steps that it takes to solve an 

instance of the problem as a function of the size of the input length (usually measured in 

bits) using the most efficient algorithm. For example, consider an instance that is n bits 

long which can be solved in
 
n

3 
steps, so in this case the problem has a time complexity 

of n
3
. Big-O notation is generally applied to interpret the time complexity of a problem. 

If a problem‟s time complexity is O(n
2
) on one typical computer, then it will also has 

time complexity of order O(n
2
) on most other computers, so this notation allows us to 

generalize away from the details of a particular computer. 

 

Suppose an algorithm solves a problem of size n in at most 12n
3
+8n

2
+15 steps. For 

such functions, we are primarily interested in the rate of growth as n increases. 

Therefore, the difference between 12n
3 

and n
3
 is not really important. We also can 

ignore the lower order terms, because at the large sizes it is the highest degree that 

determines the rate of growth. So we say that the algorithm is of order O(n
3
), it means 

this algorithm requires O(n
3
) time. This symbolism is a reminder that this function 

expresses the worst case behaviour at sufficiently large sizes. 

 

Such algorithms with running times of orders ),(log nO ),log( nnO ),(nO ),( 2nO )( 3nO    

are called „polynomial-time‟ algorithms. Algorithms with complexities which cannot be 

bounded by polynomial functions are called „exponential-time‟ algorithms. In practice 

exponential time algorithms are slower than polynomial time algorithms. 

 


