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In the realm of cybersecurity, the rise of fileless malware presents a significant
challenge to endpoint security. Traditional malware detection methods often
fall short against these sophisticated attacks, necessitating the use of
advanced technigues such as deep learning models. This study addresses the
limitations of Bi-Directional Long Short-Term Memory (BLSTM) models in
dynamic malware analysis and proposes enhancements through the
Convolutional Long Short-Term Memory (ConvLSTM) architecture. BLSTM
models are commonly used in dynamic malware analysis, where they process
input sequences in both forward and backward directions, combining the
results into a single output. This dual-layer approach enhances the model's
ability to analyze data from multiple perspectives. However, the process is
time-consuming, potentially increasing the window for successful fileless

malware attacks.



A key limitation of BLSTM models is the lack of parameter sharing between
the forward and backward directions. This absence of shared parameters can
restrict the model's ability to capture spatial and temporal features
simultaneously, potentially reducing its effectiveness in detecting fileless
malware attacks. To address these challenges, this study introduces the
ConvLSTM model, which optimizes malware analysis by consolidating feature
extraction within a single LSTM cell layer. ConvLSTM employs a two-
dimensional approach, breaking down samples into subsequences and
leveraging timesteps for additional feature extraction. This strategy enables
the analysis of spatial-temporal data, enhancing the prediction accuracy of true

malware instances.

Unlike traditional LSTM models, ConvLSTM integrates convolutional layers
within its architecture, allowing for parameter sharing across both spatial and
temporal dimensions. This approach reduces computational complexity and
improves the model's performance in understanding multidimensional data
structures. The research involved re-simulating existing work with the BLSTM
model using the same malware dataset. The Spyder app was used to run the
event simulator, and the results from previous work were replaced with those
from the ConvLSTM model, applying the same parameters. Time, accuracy,
and loss were selected as the primary performance metrics to assess the
model's effectiveness. The ConvLSTM model demonstrated superior
performance in detecting fileless malware, achieving a detection accuracy of
98% compared to BLSTM's 90%. ConvLSTM also significantly reduced

processing time, averaging 10 seconds per completion, while BLSTM took 22



seconds. Furthermore, ConvLSTM experienced lower losses, averaging 10%

per epoch compared to BLSTM's 20%.

In conclusion, ConvLSTM represents a promising advancement in fileless
malware detection, offering superior performance over traditional BLSTM
models. Its ability to accurately identify and swiftly mitigate threats, coupled
with enhanced computational efficiency, makes it a robust solution for fortifying
endpoint security against evolving cyber threats. As the cybersecurity
landscape continues to evolve, ConvLSTM holds significant potential in
bolstering defense mechanisms against sophisticated malware attacks,
providing a proactive approach to safeguarding enterprise networks and data

assets.

Keywords: Fileless Malware Detection, Convolutional LSTM (ConvLSTM), Bi-
Directional LSTM (BLSTM), Cybersecurity & Dynamic Malware Analysis
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Dalam bidang keselamatan siber, peningkatan perisian hasad tanpa fall
memberikan cabaran besar kepada keselamatan titik akhir. Kaedah
pengesanan perisian hasad tradisional sering gagal dalam menghadapi
serangan canggih ini, yang memerlukan penggunaan teknik lanjutan seperti
model pembelajaran mendalam. Kajian ini menangani batasan model Memori
Jangka Pendek (BLSTM) Dwi Arah dalam analisis perisian hasad dinamik dan
mencadangkan penambahbaikan melalui seni bina Memori Jangka Pendek
Konvolusi (ConvLSTM). Model BLSTM biasanya digunakan dalam analisis
perisian hasad dinamik, di mana ia memproses urutan input dalam kedua-dua
arah ke hadapan dan ke belakang, menggabungkan keputusan menjadi satu
output. Pendekatan dwi-lapisan ini meningkatkan keupayaan model untuk
menganalisis data daripada pelbagai perspektif. Walau bagaimanapun, proses
itu memakan masa, berpotensi meningkatkan tetingkap untuk serangan

perisian hasad tanpa fail yang berjaya.



Had utama model BLSTM ialah kekurangan perkongsian parameter antara
arah hadapan dan belakang. Ketiadaan parameter dikongsi ini boleh
menyekat keupayaan model untuk menangkap ciri spatial dan temporal secara
serentak, yang berpotensi mengurangkan keberkesanannya dalam mengesan
serangan perisian hasad tanpa fail. Untuk menangani cabaran ini, kajian ini
memperkenalkan model ConvLSTM, yang mengoptimumkan analisis perisian
hasad dengan menyatukan pengekstrakan ciri dalam satu lapisan sel LSTM.
ConvLSTM menggunakan pendekatan dua dimensi, memecahkan sampel
kepada urutan dan memanfaatkan langkah masa untuk pengekstrakan ciri
tambahan. Strategi ini membolehkan analisis data spatial-temporal,

meningkatkan ketepatan ramalan kejadian perisian hasad sebenar.

Tidak seperti model LSTM tradisional, ConvLSTM menyepadukan lapisan
konvolusi dalam seni binanya, membolehkan perkongsian parameter
merentas kedua-dua dimensi spatial dan temporal. Pendekatan ini
mengurangkan kerumitan pengiraan dan meningkatkan prestasi model dalam

memahami struktur data berbilang dimensi.

Penyelidikan itu melibatkan simulasi semula kerja sedia ada dengan model
BLSTM menggunakan set data perisian hasad yang sama. Apl Spyder telah
digunakan untuk menjalankan simulator acara dan hasil daripada kerja
sebelumnya telah digantikan dengan hasil daripada model ConvLSTM,
menggunakan parameter yang sama. Masa, ketepatan dan kehilangan telah
dipilih sebagai metrik prestasi utama untuk menilai keberkesanan model.

Model ConvLSTM menunjukkan prestasi unggul dalam mengesan perisian



hasad tanpa fail, mencapai ketepatan pengesanan sebanyak 98% berbanding
90% BLSTM. ConvLSTM juga telah mengurangkan masa pemprosesan
dengan ketara, dengan purata 10 saat setiap selesai, manakala BLSTM
mengambil masa 22 saat. Tambahan pula, ConvLSTM mengalami kerugian

yang lebih rendah, dengan purata 10% setiap zaman berbanding 20% BLSTM.

Kesimpulannya, ConvLSTM mewakili kemajuan yang menjanjikan dalam
pengesanan perisian hasad tanpa fail, menawarkan prestasi unggul
berbanding model BLSTM tradisional. Keupayaannya untuk mengenal pasti
dengan tepat dan mengurangkan ancaman dengan pantas, ditambah dengan
kecekapan pengiraan yang dipertingkatkan, menjadikannya penyelesaian
yang teguh untuk mengukuhkan keselamatan titik akhir terhadap ancaman
siber yang berkembang. Memandangkan landskap keselamatan siber terus
berkembang, ConvLSTM mempunyai potensi besar dalam memperkukuh
mekanisme pertahanan terhadap serangan perisian hasad yang canggih,
menyediakan pendekatan proaktif untuk melindungi rangkaian perusahaan

dan aset data.

Kata Kunci: Pengesanan Perisian Hasad Tanpa Fail, LSTM Konvolusi
(ConvLSTM), LSTM Dwi Arah (BLSTM), Keselamatan Siber, Analisis Perisian
Hasad Dinamik
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CHAPTER 1

INTRODUCTION

1.1 Endpoint Security

Endpoint Security protects endpoint devices such as laptops, mobile devices,
desktops, and others, which serve as gateways to the enterprise network and
can be exploited by attackers. Endpoint Security solutions defend entry points
from vulnerable activities or harmful attacks. When organizations ensure
endpoint compliance with data security standards, they also maintain greater
control over the increasing number and various types of access points in the
network. Devices like tablets, smartphones, or laptops are significant entry
points for threats. The goal of endpoint security is to protect every endpoint
connecting to the network, capable of blocking access and other vulnerable

actions at these entry points.

As many organizations implement enterprise practices such as BYOD (Bring
Your Own Device) and enable mobile/remote work, the boundary of Enterprise
Network Security is fundamentally blurred. The requirement for active
endpoint security methodologies has significantly increased, particularly with
the rise of mobile threats. When employees depend on mobile devices, home
personal computers, and laptops to establish connections to the organization's
network and conduct business, centralized security measures are no longer
sufficient for the current undefined security perimeter. This is why Endpoint

Security has increased as a centralized security solution with additional



defense at entry points for attacks and exit points for sensitive data. By
ensuring that endpoint devices meet security standards before accessing the
network, enterprises can exert greater control over the number of access
points and more efficiently mitigate threats and attempts to gain unauthorized
access. In addition to monitoring access, endpoint security tools offer

capabilities such as monitoring and blocking vulnerable malicious activities.

1.2 Fileless Malware

In today's interconnected digital landscape, a significant and evolving threat to
the integrity of endpoint security is presented by the rise of fileless malware.
Unlike traditional malware variants, which rely on the presence of executable
files stored on disk, fileless malware is operated entirely within a system's
volatile memory, exploiting legitimate system processes and applications to
execute malicious activities. This stealthy approach allows fileless malware to
evade detection by conventional antivirus solutions, posing a formidable
challenge to organizations seeking to safeguard their digital assets. The
occurrence of fileless malware attacks continues to grow, driven by the
increasing complexity of cybercriminals and their ability to exploit
vulnerabilities in software and hardware ecosystems. These attacks target a
wide range of endpoints, including desktops, laptops, mobile devices, and
servers, making them particularly difficult to defend against. Moreover, fileless
malware often exhibits polymorphic and obfuscated characteristics, further

complicating detection and analysis efforts.



Recognizing the urgent need for enhanced endpoint security, novel
approaches to fileless malware detection and mitigation are being explored in
this research. By dissecting the structure of fileless malware attacks and
understanding their behavior patterns, proactive defense mechanisms are
aimed to be developed that can identify and neutralize these threats in real-
time. Through an in-depth analysis of fileless malware attack vectors and the
development of innovative detection algorithms, organizations are required to
be empowered with the tools and insights needed to bolster their cybersecurity
posture. By cracking the nature of fileless malware and proposing effective
countermeasures, efforts are being made to cover the way for a more strong

and secure digital ecosystem.

In the following chapters, the methodology used to conduct this research will
be delved into, detailing the experimental setup, data collection techniques,
and analytical frameworks utilized. The findings of the investigation will also
be presented, discussing their implications for endpoint security, and
recommendations for future research and industry best practices will be
proposed. Through this comprehensive exploration, contributions are aimed
to be made to the ongoing efforts to combat fileless malware and fortify the
defenses of organizations against emerging cyber threats. As the digital
landscape continues to evolve, organizations face mounting pressure to
safeguard their sensitive data and critical infrastructure from malicious actors.
In recent years, fileless malware has emerged as a potent weapon in the
arsenal of cybercriminals, enabling them to bypass traditional security

measures and infiltrate networks with unprecedented stealth and



sophistication. The insidious nature of fileless malware lies in its ability to
exploit legitimate system processes and applications, making detection and
remediation challenging for even the most advanced cybersecurity solutions.
By residing solely in a system's memory and leveraging built-in functionalities,
fileless malware can execute malicious code without leaving any traces on

disk, thereby evading traditional signature-based detection mechanisms.

In response to this escalating threat landscape, this research seeks to delve
deep into the mechanisms and behaviors of fileless malware, aiming to
uncover vulnerabilities and develop effective mitigation strategies. By
analyzing real-world attack scenarios and studying the tactics, techniques, and
procedures (TTPs) employed by fileless malware actors, the study aims to
provide organizations with actionable insights and best practices for defending
against these stealthy threats. Through a combination of empirical research,
data-driven analysis, and machine learning techniques, this study aims to
advance the state-of-the-art in fileless malware detection and prevention. By
leveraging cutting-edge technologies and methodologies, the study endeavor
to equip organizations with the knowledge and tools needed to stay one step
ahead of cyber adversaries and safeguard their digital assets in an

increasingly hostile threat landscape.

Dynamic malware analysis is a crucial component of modern cybersecurity
strategies, aimed at identifying and mitigating the ever-evolving threats posed
by malicious software. Unlike static analysis techniques that examine the code
of a program without executing it, dynamic analysis involves the live execution

of malware within a controlled environment. This allows security analysts to



observe the behavior of the malware as it interacts with a simulated system,

providing valuable insights into its functionality and potential impact.

By analyzing the runtime behavior of malware, security professionals can
better understand its capabilities, detect evasion techniques, and develop
effective countermeasures to protect against future attacks. In this chapter, will
be explore the principles, methodologies, and significance of dynamic
malware analysis in safeguarding digital assets and networks against cyber

threats.

1.3 Research Problem

Despite traditional malwares being expired, fileless malware has emerged as
a more extensive threat to current network infrastructure, leveraging its ability
to remain undetectable by modern security protections. Malicious payloads
are injected directly into the memory (RAM) using JavaScript to execute
malware code in web browsers without relying on common legitimate tools and
applications. This susceptibility can lead to zero-day attacks, as the code and
programs can be easily manipulated. To address this issue, dynamic malware
analysis is conducted to gather data on malware behavior, running in isolated
virtual environments to execute suspicious code captured from real users and

test its impact on the host system using sandboxing.

Dynamic malware analysis typically employs deep learning models, such as
Long Short-Term Memory (LSTM), for malware classification. LSTM is an

artificial recurrent neural network (RNN) architecture commonly used in the



field of deep learning. This approach analyzes past and future malware
behavior sequences to classify possible zero-day attacks. Despite the success
achieved using LSTM models in dynamic malware analysis, such as the
Bidirectional LSTM model used by Weizhong Qiang, Lin Yang, Hai Jin (2022),

but there are several unresolved challenges persist.

The BLSTM model reads input sequences in both forward and backward
directions, combining the analyzed results into an output. This is achieved by
combining two LSTM cells with opposite timings to the same output, creating
a dual layer between the sequences. However, this process consumes more
time to complete the analysis, potentially increasing the likelihood of

successful files malware attacks. (Weizhong Qiang, Lin Yang, Hai Jin 2022).

The BLSTM model operates on spatial-temporal data structured in a 3D
format: [samples, time steps, features]. It processes data both forward and
backward using separate LSTM networks, but parameters are not shared
between directions. This lack of parameter sharing may limit the model's
effectiveness in capturing spatial and temporal features simultaneously,
potentially impacting its accuracy in understanding data across both
dimensions especially in detecting fileless malware attacks. (Weizhong Qiang,

Lin Yang, Hai Jin 2022).



1.4 Research Objective

1) We used ConvLSTM Model which shorten the process of malware
analysis and reduce the time taken to increase the number of
malware detectable.

2) We used four-dimensional approach which able to run the samples
into single sequence input and produce output in accurate and
better results on the prediction.

1.5 Research Scope

The scope of this research is:

This study aims to investigate the efficacy of Convolutional Long Short-Term
Memory (ConvLSTM) architecture in enhancing dynamic malware analysis,
particularly in detecting fileless malware threats. The research will focus on
addressing the limitations of traditional Bi-Directional Long Short-Term
Memory (BLSTM) models in capturing spatial and temporal features
simultaneously. The scope encompasses the development and
implementation of ConvLSTM-based malware detection models, alongside a

comparative analysis with existing BLSTM models.

Key performance metrics such as detection accuracy, processing time, and
loss rates will be evaluated to assess the effectiveness of ConvLSTM in
mitigating fileless malware attacks. The research will utilize real-world
malware datasets and employ simulation tools to conduct experiments and

validate the findings. Additionally, the study aims to explore the potential of



ConvLSTM in improving endpoint security measures and contributing to the

advancement of cybersecurity technologies.

1.6 Research Questions:

1) Why Fileless Malware attacks are hard to detect and vulnerable?

Fileless Malware is hard to detect because usually the payload is the medium
to execute a traditional malware attack but this attack directly injected the
malicious code into the victim machine’s memory. There is no code placed in
the victim’s machine. Besides, this attack using legitimate programs. There is
nothing there to find but still, attack takes place. Current EDR solutions can
detect malicious activity done by Fileless Malware through behavior scanning.
Behavior scanning scans the legitimate programs that running or used for

malicious activity but still fails when comes to the latest attack.

2) Does the current Fileless Malware solutions like Sandboxing is real-time?

Only known malwares are can be real real-time detection but for zero-day
malware only can be detected using analyzing type detecting. Attackers are
working to take over the machine as fast as they can so their malware injection

and execution timing will try to archive maximum 99% real-time attack.

1.7 Research Contribution

This research makes significant contributions to the field of cybersecurity by

addressing the escalating threat of fileless malware, which poses a formidable



challenge to endpoint security. Traditional malware detection methods have
proven ineffective against these sophisticated attacks, necessitating the
exploration of advanced techniques. In response, this study introduces the
Convolutional Long Short-Term Memory (ConvLSTM) architecture, a novel
approach designed to enhance dynamic malware analysis. By consolidating
feature extraction within a single LSTM cell layer, ConvLSTM aims to
overcome the limitations of existing Bi-Directional Long Short-Term Memory

(BLSTM) models.

The primary contribution of this research lies in its endeavor to optimize
malware analysis processes through the implementation of ConvLSTM. By
leveraging this innovative architecture, the study seeks to reduce processing
time while simultaneously improving prediction accuracy for identifying
genuine malware instances. Through a comparative evaluation between
ConvLSTM and BLSTM models, the research aims to provide insights into the
performance differences and efficacy of ConvLSTM in detecting fileless

malware instances.

The findings of this study demonstrate promising results, indicating that
ConvLSTM outperforms BLSTM in key metrics such as detection completion
rate, processing time, and loss minimization. These results underscore the
potential of ConvLSTM as an advanced solution for mitigating the threat of
fileless malware and strengthening endpoint security measures. Overall, the
contributions of this research lie in its innovative approach to addressing the
challenges posed by fileless malware and advancing the capabilities of

dynamic malware analysis through ConvLSTM architecture.
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Figure 1.1: Overall Framework

From the framework, this research should be able to:

This able to increase layers in an LSTM capture progressively
higher higher-level features in Deep Learning Dynamic Malware
Analysis.

Increase handling spatiotemporal correlations for malware behavior
sequence.

Archive more accuracy on malware behavior detection on zero-day
attack.

Reduce Overhead on entire analysis proceed and increase the

response time.
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1.8 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2: Presents a literature review, which includes an overview Types,
Strength and Weakness of Fileless Malware, Deep Learning Techniques for
mitigation. This chapter also discusses related research concerning the

proposed ideas.

Chapter 3: Describes the research methodology, beginning with an overview
of the research framework. It includes details on the experimental setups,

topologies, requirements, performance metrics, and validation procedures.

Chapter 4: Details the Hybrid Deep Learning Approach by comparing
existing/used models and explain how it works including flow of the design with

Python Script explanation.

Chapter 5: Execute experiments with BLSTM and ConvLSTM, then discuss

and compare the results with those from previous studies.

Chapter 6: Concludes the thesis and provides recommendations for potential

future research directions.

11
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