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In the realm of cybersecurity, the rise of fileless malware presents a significant 

challenge to endpoint security. Traditional malware detection methods often 

fall short against these sophisticated attacks, necessitating the use of 

advanced techniques such as deep learning models. This study addresses the 

limitations of Bi-Directional Long Short-Term Memory (BLSTM) models in 

dynamic malware analysis and proposes enhancements through the 

Convolutional Long Short-Term Memory (ConvLSTM) architecture. BLSTM 

models are commonly used in dynamic malware analysis, where they process 

input sequences in both forward and backward directions, combining the 

results into a single output. This dual-layer approach enhances the model's 

ability to analyze data from multiple perspectives. However, the process is 

time-consuming, potentially increasing the window for successful fileless 

malware attacks.  
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A key limitation of BLSTM models is the lack of parameter sharing between 

the forward and backward directions. This absence of shared parameters can 

restrict the model's ability to capture spatial and temporal features 

simultaneously, potentially reducing its effectiveness in detecting fileless 

malware attacks. To address these challenges, this study introduces the 

ConvLSTM model, which optimizes malware analysis by consolidating feature 

extraction within a single LSTM cell layer. ConvLSTM employs a two-

dimensional approach, breaking down samples into subsequences and 

leveraging timesteps for additional feature extraction. This strategy enables 

the analysis of spatial-temporal data, enhancing the prediction accuracy of true 

malware instances. 

 

Unlike traditional LSTM models, ConvLSTM integrates convolutional layers 

within its architecture, allowing for parameter sharing across both spatial and 

temporal dimensions. This approach reduces computational complexity and 

improves the model's performance in understanding multidimensional data 

structures. The research involved re-simulating existing work with the BLSTM 

model using the same malware dataset. The Spyder app was used to run the 

event simulator, and the results from previous work were replaced with those 

from the ConvLSTM model, applying the same parameters. Time, accuracy, 

and loss were selected as the primary performance metrics to assess the 

model's effectiveness. The ConvLSTM model demonstrated superior 

performance in detecting fileless malware, achieving a detection accuracy of 

98% compared to BLSTM's 90%. ConvLSTM also significantly reduced 

processing time, averaging 10 seconds per completion, while BLSTM took 22 
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seconds. Furthermore, ConvLSTM experienced lower losses, averaging 10% 

per epoch compared to BLSTM's 20%. 

 

In conclusion, ConvLSTM represents a promising advancement in fileless 

malware detection, offering superior performance over traditional BLSTM 

models. Its ability to accurately identify and swiftly mitigate threats, coupled 

with enhanced computational efficiency, makes it a robust solution for fortifying 

endpoint security against evolving cyber threats. As the cybersecurity 

landscape continues to evolve, ConvLSTM holds significant potential in 

bolstering defense mechanisms against sophisticated malware attacks, 

providing a proactive approach to safeguarding enterprise networks and data 

assets. 

 

Keywords: Fileless Malware Detection, Convolutional LSTM (ConvLSTM), Bi-

Directional LSTM (BLSTM), Cybersecurity & Dynamic Malware Analysis 

SDG: GOAL 9: Industry, Innovation, and Infrastructure   
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Dalam bidang keselamatan siber, peningkatan perisian hasad tanpa fail 

memberikan cabaran besar kepada keselamatan titik akhir. Kaedah 

pengesanan perisian hasad tradisional sering gagal dalam menghadapi 

serangan canggih ini, yang memerlukan penggunaan teknik lanjutan seperti 

model pembelajaran mendalam. Kajian ini menangani batasan model Memori 

Jangka Pendek (BLSTM) Dwi Arah dalam analisis perisian hasad dinamik dan 

mencadangkan penambahbaikan melalui seni bina Memori Jangka Pendek 

Konvolusi (ConvLSTM). Model BLSTM biasanya digunakan dalam analisis 

perisian hasad dinamik, di mana ia memproses urutan input dalam kedua-dua 

arah ke hadapan dan ke belakang, menggabungkan keputusan menjadi satu 

output. Pendekatan dwi-lapisan ini meningkatkan keupayaan model untuk 

menganalisis data daripada pelbagai perspektif. Walau bagaimanapun, proses 

itu memakan masa, berpotensi meningkatkan tetingkap untuk serangan 

perisian hasad tanpa fail yang berjaya.  
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Had utama model BLSTM ialah kekurangan perkongsian parameter antara 

arah hadapan dan belakang. Ketiadaan parameter dikongsi ini boleh 

menyekat keupayaan model untuk menangkap ciri spatial dan temporal secara 

serentak, yang berpotensi mengurangkan keberkesanannya dalam mengesan 

serangan perisian hasad tanpa fail. Untuk menangani cabaran ini, kajian ini 

memperkenalkan model ConvLSTM, yang mengoptimumkan analisis perisian 

hasad dengan menyatukan pengekstrakan ciri dalam satu lapisan sel LSTM. 

ConvLSTM menggunakan pendekatan dua dimensi, memecahkan sampel 

kepada urutan dan memanfaatkan langkah masa untuk pengekstrakan ciri 

tambahan. Strategi ini membolehkan analisis data spatial-temporal, 

meningkatkan ketepatan ramalan kejadian perisian hasad sebenar. 

 

Tidak seperti model LSTM tradisional, ConvLSTM menyepadukan lapisan 

konvolusi dalam seni binanya, membolehkan perkongsian parameter 

merentas kedua-dua dimensi spatial dan temporal. Pendekatan ini 

mengurangkan kerumitan pengiraan dan meningkatkan prestasi model dalam 

memahami struktur data berbilang dimensi. 

 

Penyelidikan itu melibatkan simulasi semula kerja sedia ada dengan model 

BLSTM menggunakan set data perisian hasad yang sama. Apl Spyder telah 

digunakan untuk menjalankan simulator acara dan hasil daripada kerja 

sebelumnya telah digantikan dengan hasil daripada model ConvLSTM, 

menggunakan parameter yang sama. Masa, ketepatan dan kehilangan telah 

dipilih sebagai metrik prestasi utama untuk menilai keberkesanan model. 

Model ConvLSTM menunjukkan prestasi unggul dalam mengesan perisian 
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hasad tanpa fail, mencapai ketepatan pengesanan sebanyak 98% berbanding 

90% BLSTM. ConvLSTM juga telah mengurangkan masa pemprosesan 

dengan ketara, dengan purata 10 saat setiap selesai, manakala BLSTM 

mengambil masa 22 saat. Tambahan pula, ConvLSTM mengalami kerugian 

yang lebih rendah, dengan purata 10% setiap zaman berbanding 20% BLSTM. 

 

Kesimpulannya, ConvLSTM mewakili kemajuan yang menjanjikan dalam 

pengesanan perisian hasad tanpa fail, menawarkan prestasi unggul 

berbanding model BLSTM tradisional. Keupayaannya untuk mengenal pasti 

dengan tepat dan mengurangkan ancaman dengan pantas, ditambah dengan 

kecekapan pengiraan yang dipertingkatkan, menjadikannya penyelesaian 

yang teguh untuk mengukuhkan keselamatan titik akhir terhadap ancaman 

siber yang berkembang. Memandangkan landskap keselamatan siber terus 

berkembang, ConvLSTM mempunyai potensi besar dalam memperkukuh 

mekanisme pertahanan terhadap serangan perisian hasad yang canggih, 

menyediakan pendekatan proaktif untuk melindungi rangkaian perusahaan 

dan aset data. 

 

Kata Kunci: Pengesanan Perisian Hasad Tanpa Fail, LSTM Konvolusi 
(ConvLSTM), LSTM Dwi Arah (BLSTM), Keselamatan Siber, Analisis Perisian 
Hasad Dinamik 

SDG: MATLAMAT 9 Industri, Inovasi, dan Infrastruktur Industri, Inovasi, dan 
Infrastruktur   
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CHAPTER 1 

 

INTRODUCTION 

1.1 Endpoint Security 

Endpoint Security protects endpoint devices such as laptops, mobile devices, 

desktops, and others, which serve as gateways to the enterprise network and 

can be exploited by attackers. Endpoint Security solutions defend entry points 

from vulnerable activities or harmful attacks. When organizations ensure 

endpoint compliance with data security standards, they also maintain greater 

control over the increasing number and various types of access points in the 

network. Devices like tablets, smartphones, or laptops are significant entry 

points for threats. The goal of endpoint security is to protect every endpoint 

connecting to the network, capable of blocking access and other vulnerable 

actions at these entry points.  

As many organizations implement enterprise practices such as BYOD (Bring 

Your Own Device) and enable mobile/remote work, the boundary of Enterprise 

Network Security is fundamentally blurred. The requirement for active 

endpoint security methodologies has significantly increased, particularly with 

the rise of mobile threats. When employees depend on mobile devices, home 

personal computers, and laptops to establish connections to the organization's 

network and conduct business, centralized security measures are no longer 

sufficient for the current undefined security perimeter. This is why Endpoint 

Security has increased as a centralized security solution with additional 
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defense at entry points for attacks and exit points for sensitive data. By 

ensuring that endpoint devices meet security standards before accessing the 

network, enterprises can exert greater control over the number of access 

points and more efficiently mitigate threats and attempts to gain unauthorized 

access. In addition to monitoring access, endpoint security tools offer 

capabilities such as monitoring and blocking vulnerable malicious activities. 

1.2 Fileless Malware 

In today's interconnected digital landscape, a significant and evolving threat to 

the integrity of endpoint security is presented by the rise of fileless malware. 

Unlike traditional malware variants, which rely on the presence of executable 

files stored on disk, fileless malware is operated entirely within a system's 

volatile memory, exploiting legitimate system processes and applications to 

execute malicious activities. This stealthy approach allows fileless malware to 

evade detection by conventional antivirus solutions, posing a formidable 

challenge to organizations seeking to safeguard their digital assets. The 

occurrence of fileless malware attacks continues to grow, driven by the 

increasing complexity of cybercriminals and their ability to exploit 

vulnerabilities in software and hardware ecosystems. These attacks target a 

wide range of endpoints, including desktops, laptops, mobile devices, and 

servers, making them particularly difficult to defend against. Moreover, fileless 

malware often exhibits polymorphic and obfuscated characteristics, further 

complicating detection and analysis efforts. 
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Recognizing the urgent need for enhanced endpoint security, novel 

approaches to fileless malware detection and mitigation are being explored in 

this research. By dissecting the structure of fileless malware attacks and 

understanding their behavior patterns, proactive defense mechanisms are 

aimed to be developed that can identify and neutralize these threats in real-

time. Through an in-depth analysis of fileless malware attack vectors and the 

development of innovative detection algorithms, organizations are required to 

be empowered with the tools and insights needed to bolster their cybersecurity 

posture. By cracking the nature of fileless malware and proposing effective 

countermeasures, efforts are being made to cover the way for a more strong 

and secure digital ecosystem. 

In the following chapters, the methodology used to conduct this research will 

be delved into, detailing the experimental setup, data collection techniques, 

and analytical frameworks utilized. The findings of the investigation will also 

be presented, discussing their implications for endpoint security, and 

recommendations for future research and industry best practices will be 

proposed. Through this comprehensive exploration, contributions are aimed 

to be made to the ongoing efforts to combat fileless malware and fortify the 

defenses of organizations against emerging cyber threats. As the digital 

landscape continues to evolve, organizations face mounting pressure to 

safeguard their sensitive data and critical infrastructure from malicious actors. 

In recent years, fileless malware has emerged as a potent weapon in the 

arsenal of cybercriminals, enabling them to bypass traditional security 

measures and infiltrate networks with unprecedented stealth and 
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sophistication. The insidious nature of fileless malware lies in its ability to 

exploit legitimate system processes and applications, making detection and 

remediation challenging for even the most advanced cybersecurity solutions. 

By residing solely in a system's memory and leveraging built-in functionalities, 

fileless malware can execute malicious code without leaving any traces on 

disk, thereby evading traditional signature-based detection mechanisms. 

In response to this escalating threat landscape, this research seeks to delve 

deep into the mechanisms and behaviors of fileless malware, aiming to 

uncover vulnerabilities and develop effective mitigation strategies. By 

analyzing real-world attack scenarios and studying the tactics, techniques, and 

procedures (TTPs) employed by fileless malware actors, the study aims to 

provide organizations with actionable insights and best practices for defending 

against these stealthy threats. Through a combination of empirical research, 

data-driven analysis, and machine learning techniques, this study aims to 

advance the state-of-the-art in fileless malware detection and prevention. By 

leveraging cutting-edge technologies and methodologies, the study endeavor 

to equip organizations with the knowledge and tools needed to stay one step 

ahead of cyber adversaries and safeguard their digital assets in an 

increasingly hostile threat landscape. 

Dynamic malware analysis is a crucial component of modern cybersecurity 

strategies, aimed at identifying and mitigating the ever-evolving threats posed 

by malicious software. Unlike static analysis techniques that examine the code 

of a program without executing it, dynamic analysis involves the live execution 

of malware within a controlled environment. This allows security analysts to 
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observe the behavior of the malware as it interacts with a simulated system, 

providing valuable insights into its functionality and potential impact. 

By analyzing the runtime behavior of malware, security professionals can 

better understand its capabilities, detect evasion techniques, and develop 

effective countermeasures to protect against future attacks. In this chapter, will 

be explore the principles, methodologies, and significance of dynamic 

malware analysis in safeguarding digital assets and networks against cyber 

threats. 

1.3 Research Problem 

Despite traditional malwares being expired, fileless malware has emerged as 

a more extensive threat to current network infrastructure, leveraging its ability 

to remain undetectable by modern security protections. Malicious payloads 

are injected directly into the memory (RAM) using JavaScript to execute 

malware code in web browsers without relying on common legitimate tools and 

applications. This susceptibility can lead to zero-day attacks, as the code and 

programs can be easily manipulated. To address this issue, dynamic malware 

analysis is conducted to gather data on malware behavior, running in isolated 

virtual environments to execute suspicious code captured from real users and 

test its impact on the host system using sandboxing. 

Dynamic malware analysis typically employs deep learning models, such as 

Long Short-Term Memory (LSTM), for malware classification. LSTM is an 

artificial recurrent neural network (RNN) architecture commonly used in the 
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field of deep learning. This approach analyzes past and future malware 

behavior sequences to classify possible zero-day attacks. Despite the success 

achieved using LSTM models in dynamic malware analysis, such as the 

Bidirectional LSTM model used by Weizhong Qiang, Lin Yang, Hai Jin (2022), 

but there are several unresolved challenges persist. 

The BLSTM model reads input sequences in both forward and backward 

directions, combining the analyzed results into an output. This is achieved by 

combining two LSTM cells with opposite timings to the same output, creating 

a dual layer between the sequences. However, this process consumes more 

time to complete the analysis, potentially increasing the likelihood of 

successful files malware attacks. (Weizhong Qiang, Lin Yang, Hai Jin 2022). 

The BLSTM model operates on spatial-temporal data structured in a 3D 

format: [samples, time steps, features]. It processes data both forward and 

backward using separate LSTM networks, but parameters are not shared 

between directions. This lack of parameter sharing may limit the model's 

effectiveness in capturing spatial and temporal features simultaneously, 

potentially impacting its accuracy in understanding data across both 

dimensions especially in detecting fileless malware attacks. (Weizhong Qiang, 

Lin Yang, Hai Jin 2022). 
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1.4 Research Objective 

 

1) We used ConvLSTM Model which shorten the process of malware 
analysis and reduce the time taken to increase the number of 
malware detectable.  
 

2) We used four-dimensional approach which able to run the samples 
into single sequence input and produce output in accurate and 
better results on the prediction. 

1.5 Research Scope  

The scope of this research is: 

This study aims to investigate the efficacy of Convolutional Long Short-Term 

Memory (ConvLSTM) architecture in enhancing dynamic malware analysis, 

particularly in detecting fileless malware threats. The research will focus on 

addressing the limitations of traditional Bi-Directional Long Short-Term 

Memory (BLSTM) models in capturing spatial and temporal features 

simultaneously. The scope encompasses the development and 

implementation of ConvLSTM-based malware detection models, alongside a 

comparative analysis with existing BLSTM models.  

Key performance metrics such as detection accuracy, processing time, and 

loss rates will be evaluated to assess the effectiveness of ConvLSTM in 

mitigating fileless malware attacks. The research will utilize real-world 

malware datasets and employ simulation tools to conduct experiments and 

validate the findings. Additionally, the study aims to explore the potential of 
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ConvLSTM in improving endpoint security measures and contributing to the 

advancement of cybersecurity technologies. 

1.6 Research Questions: 

1) Why Fileless Malware attacks are hard to detect and vulnerable? 

Fileless Malware is hard to detect because usually the payload is the medium 

to execute a traditional malware attack but this attack directly injected the 

malicious code into the victim machine’s memory. There is no code placed in 

the victim’s machine. Besides, this attack using legitimate programs. There is 

nothing there to find but still, attack takes place. Current EDR solutions can 

detect malicious activity done by Fileless Malware through behavior scanning. 

Behavior scanning scans the legitimate programs that running or used for 

malicious activity but still fails when comes to the latest attack. 

2) Does the current Fileless Malware solutions like Sandboxing is real-time? 

Only known malwares are can be real real-time detection but for zero-day 

malware only can be detected using analyzing type detecting. Attackers are 

working to take over the machine as fast as they can so their malware injection 

and execution timing will try to archive maximum 99% real-time attack. 

1.7 Research Contribution 

This research makes significant contributions to the field of cybersecurity by 

addressing the escalating threat of fileless malware, which poses a formidable 
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challenge to endpoint security. Traditional malware detection methods have 

proven ineffective against these sophisticated attacks, necessitating the 

exploration of advanced techniques. In response, this study introduces the 

Convolutional Long Short-Term Memory (ConvLSTM) architecture, a novel 

approach designed to enhance dynamic malware analysis. By consolidating 

feature extraction within a single LSTM cell layer, ConvLSTM aims to 

overcome the limitations of existing Bi-Directional Long Short-Term Memory 

(BLSTM) models. 

The primary contribution of this research lies in its endeavor to optimize 

malware analysis processes through the implementation of ConvLSTM. By 

leveraging this innovative architecture, the study seeks to reduce processing 

time while simultaneously improving prediction accuracy for identifying 

genuine malware instances. Through a comparative evaluation between 

ConvLSTM and BLSTM models, the research aims to provide insights into the 

performance differences and efficacy of ConvLSTM in detecting fileless 

malware instances. 

The findings of this study demonstrate promising results, indicating that 

ConvLSTM outperforms BLSTM in key metrics such as detection completion 

rate, processing time, and loss minimization. These results underscore the 

potential of ConvLSTM as an advanced solution for mitigating the threat of 

fileless malware and strengthening endpoint security measures. Overall, the 

contributions of this research lie in its innovative approach to addressing the 

challenges posed by fileless malware and advancing the capabilities of 

dynamic malware analysis through ConvLSTM architecture. 
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Figure 1.1: Overall Framework 

From the framework, this research should be able to: 

i. This able to increase layers in an LSTM capture progressively 

higher higher-level features in Deep Learning Dynamic Malware 

Analysis.  

ii. Increase handling spatiotemporal correlations for malware behavior 

sequence. 

iii. Archive more accuracy on malware behavior detection on zero-day 

attack.  

iv. Reduce Overhead on entire analysis proceed and increase the 

response time.  
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1.8 Thesis Organization 

The remainder of the thesis is organized as follows: 

Chapter 2: Presents a literature review, which includes an overview Types, 

Strength and Weakness of Fileless Malware, Deep Learning Techniques for 

mitigation. This chapter also discusses related research concerning the 

proposed ideas. 

Chapter 3: Describes the research methodology, beginning with an overview 

of the research framework. It includes details on the experimental setups, 

topologies, requirements, performance metrics, and validation procedures. 

Chapter 4: Details the Hybrid Deep Learning Approach by comparing 

existing/used models and explain how it works including flow of the design with 

Python Script explanation.  

Chapter 5: Execute experiments with BLSTM and ConvLSTM, then discuss 

and compare the results with those from previous studies. 

Chapter 6: Concludes the thesis and provides recommendations for potential 

future research directions. 
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