ELECTRICAL CHARACTERISTICS AND THERMAL DIFFUSIVITY OF POLYPYRROLE-BASED CONDUCTING POLYMER

NORFAZLINAYATI OTHMAN
FS 2010 4
ELECTRICAL CHARACTERISTICS AND THERMAL DIFFUSIVITY OF POLYPYRROLE-BASED CONDUCTING POLYMER

By

NORFAZLINAYATI OTHMAN

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2009
DEDICATED TO MY HUSBAND AND PARENTS
Abstract of the thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ELECTRICAL CHARACTERISTICS AND THERMAL DIFFUSIVITY OF POLYPYRROLE-BASED CONDUCTING POLYMER

By

NORFAZLINAYATI BINTI OTHMAN

September 2009

Chairman: Associated Professor Zainal Abidin Talib, PhD

Faculty : Science

Conducting polymer materials based on Polypyrrole (PPy) and Polypyrrole/Montmorillonite (PPy/MMT) clay composite were synthesis by using chemical reaction process with iron (III) chloride (FeCl₃) as oxidizing and dopant agent. During the mixing process of PPy, the solution changed from transparent to dark green indicating that the polymerization process took place instantaneously. The resulting powder was filtered, washed, grounded and press into pellet. The structural, thermal and electrical properties of the conducting polymer and conducting polymer composite were then investigated.

The structure of the samples was analyzed by using X-ray diffractometer (XRD) with the scanning was carried out at 2θ of 15° to 35° for doped PPy and at 2θ of 2° to 35° for PPy/MMT clay composite. The XRD spectra showed dopant and filler effect with
appearance of broad peak at around the 2θ value of 25 to 26° corresponded to highly disordered parts and new peak at low angle at around the 2θ value of 5 to 6° corresponded to successfully intercalation of PPy chain in the galleries of MMT clay. It was observed that all the peak angles shifted and the full width at half maximum (FWHM) values are difference with increasing in dopant concentrations and filler percentages indicate the strong interaction between dopant and filler with the conjugated polymer. The interchain separation showed good agreement with published data.

The thermal diffusivity of PPy and PPy/MMT clay composite was analyzed at room temperature by using photoflash technique. The results showed that the thermal diffusivity, \(\alpha_c \) for PPy increased with increasing dopant concentrations with \(\alpha_c \) from 1 to \(4 \times 10^{-3} \text{ cm}^2\text{s}^{-1} \). On the other hand, the thermal diffusivity for PPy/MMT clay composite decreased with increasing MMT clay percentages loading in the PPy which is from 3 to \(1 \times 10^{-3} \text{ cm}^2\text{s}^{-1} \) indicating some electron motion interruption. It also observed that a correlation between the thermal diffusivity and electrical conductivity for all the samples showed a similar trend.

The electrical conductivity studies were done by using four point probe technique and two probe technique with temperature dependence. At room temperature, the \(I-V \) characteristic for both techniques showed a linear behavior and obeys the Ohm’s law. From the results, the conductivity was calculated and showed a strongly dependent on dopant concentrations and filler percentages. To get more insight into the transport mechanism, various models have been used to fit the data from conductivity plots.
At low temperature range (100-300K), the charge carrier mechanism was dominated by 3-D variable range hopping, VRH transport. However, the electrical conduction transport is also apparently based on hopping of polarons. With regard to high temperature dependence (300-380K), the conductivity showed the same trend with observation in low temperature studies. Nevertheless, the electrical conduction showed a contribution of polarons and bipolarons mechanism which may due to some transformation at energy transport in the materials.
Abstrak tesis ini dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk penganugerahan ijazah Master Sains

SIFAT-SIFAT ELEKTRIK DAN RESAPAN TERMA BAGI POLIMER PENGALIR ELEKTRIK DARI POLIPIRROLE

Oleh

NORFAZLINAYATI BINTI OTHMAN

September 2009

Pengerusi : Profesor Madya Zainal Abidin Talib, PhD

Fakulti : Sains

Polimer konduksi berasaskan pada bahan Polipirrole (PPy) dan Polipirrole/Montmorillonite (PPy/MMT) komposit telah disintesis dengan menggunakan proses tindakbalas kimia dengan iron (III) chloride (FeCl₃) sebagai agen pengoksidaan dan dopan. Semasa proses percampuran bagi PPy, sebatian telah bertukar dari jernih ke hijau gelap menandakan proses pempolimeran berlaku serta merta. Hasil serbuk kemudianya dituras, dibasuh, dihaluskan dan dimampatkan menjadi pelet. Sifat struktur, terma dan elektrik bagi polimer konduksi dan polimer konduksi komposit ini telah dikaji.

Stuktur sample-sampel ini telah dianalisis dengan menggunakan pembeluaan sinar-X (XRD) pada sudut 2θ ialah 15° hingga 35° bagi PPy dan 2° hingga 35° bagi PPy/MMT
clay composite. Spektra XRD menunjukkan kesan dopan dan penyendat dengan kemunculan puncak lebar iaitu pada 2θ ialah 25 hingga 26° yang merupakan bahagian yang sangat tidak tersusun dan puncak yang baru disudut rendah iaitu pada 2θ ialah 5 hingga 6° yang menunjukkan rantaian PPy telah masuk ke dalam galeri tanah liat MMT. Dapat diperhatikan bahawa semua puncak sampel telah berganjar dan separuh maksimum kelebaran puncak (FWHM) telah berubah-ubah dengan peningkatan kepekatan dopan dan peratusan tanah liat MMT menandakan tindak balas yang kuat diantara dopan dan penyendat dengan polimer. Nilai jarak pemisah rantaian menunjukan persamaan dengan nilai yang telah diterbitkan oleh penyelidikan yang terdahulu.

Proses resapan terma bagi PPy dan PPy/MMT komposit telah dianalisis pada suhu bilik dengan menggunakan teknik fotokilat. Keputusannya menunjukkan resapan terma, α_c bagi PPy meningkat dengan peningkatan kepekatan dopan iaitu α_c dari 1 hingga 4×10^{-3} cm²s⁻¹. Manakala, resapan terma bagi PPy/MMT komposit menurun dengan peningkatan peratusan tanah liat MMT didalam PPy iaitu α_c dari 3 hingga 1×10^{-3} cm²s⁻¹ dimana ia menandakan pergerakan elektron terganggu. Walaubagaimanapun, perkaitan antara resapan terma dan kekonduksian elektrik bagi kesemua sampel menunjukan bentuk yang sama.

Kajian kekonduksian elektrik tdijalakan dengan menggunakan teknik penduga empat titik dan penduga dua dalam mengkaji sifat permukaan dan pukal dengan penggantungan suhu. Pada suhu bilik, sifat $I-V$ bagi kedua-dua teknik telah menunjukan garis lurus dan menepati hukum Ohm. Melalui keputusan ini, kekonduksian elektrik telah dikira dan menunjukkan bahawa sangat bergantung kepada kepekatan dopan dan peratusan
penyendat. Untuk mengkaji lebih jauh lagi tentang pergerakan mekanisma, pelbagai
modul telah digunapakai untuk memandankan data dari plot kekonduksian.

Pada julat suhu rendah (100-300K), mekanisma cas pembawa telah didominasi oleh
pergerakan pelbagai julat lompatan (VRH). Walau bagaimanapun, pergerakan
kekonduksian elektrik juga kelihatan melibatkan lompatan polaron. Berkenaan dengan
suhu tinggi pula (300-380K), kekonduksiannya menunjukkan corak yang sama dengan
pemerhatian pada suhu rendah. Namun begitu, kekonduksian elektriknya menunjukkan
penglibatan mekanisma polaron dan bipolaron dimana ia mungkin disebabkan oleh
perubahan pergerakan tenaga dalam bahan tersebut.
ACKNOWLEDGEMENT

Thanks to Allah S.W.T. for my good health, strength and patience during the undertaking of this project.

Special thanks to my family, especially my lovely husband and not forgotten my mother and father, who gave their moral support. They always pushed me to strive on for the best and gave a lot of encouragement throughout the years.

I would like to dedicate this thesis to all my respective lectures, especially my project supervisor, Associate Professor Dr. Zainal Abidin Bin Talib and my co-supervisor Professor Anuar Bin Kassim for giving me the platform to pursue my studies and spend their times and knowledge to help me to succeed in this thesis. Their contribution to this masterpiece is highly regarded.

It is pleasure to acknowledge my colleagues, especially Josephine, Emma, Zalita, Walter, Ira, Aina, Khor, Malin, Izrini, Mazni, Firdaus and Faris who have been so helpful and willing to share.

Lastly, I would like to extend my gratitude to Ministry of Science and Technology for granting the National Science Fellowship (NSF) Scholarship for their financial support.

Thank you.
I certify that an Examination Committee met on date of viva to conduct the final examination of Norfazlinayati Hj. Othman on her Master of Science thesis entitled “Electrical Characteristics and Thermal Diffusivity of Polypyrrole Based Conducting Polymer” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination are as follows:

Zaidan Abd. Wahab, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

W. Mahmood Mat Yunus, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

W. Mohd. Daud W. Yusoff, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Muhammad Deraman, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

Bujang Kim Huat, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: x
This thesis submitted to the Senate of University Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zainal Abidin Talib, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Anuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 8 April 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citations that have been duly acknowledge. I also declare that it has not been previously of concurrently submitted for any other degree at UPM or other institutions.

NORFAZLINAYATI HJ. OTHMAN

Date: 14 September 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DEDICATION</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Introduction 1
1.2 Significance of Study 5
1.3 Objectives 7
1.4 Outline of the Thesis 8

2 LITERATURE REVIEW
2.1 Introduction 9
2.2 Synthesis of Conducting Polymer 10
2.3 Mechanical properties of conducting polymer 12
2.4 Polypyrrole conducting polymer 16
2.5 X-Ray Diffraction of Conducting Polymers 16
2.6 Thermal Diffusivity of Conducting Polymer 20
2.7 DC Conductivity and Temperature Effect 23

3 THEORY
3.1 Conjugated Polymer 30
3.2 Charge Transport and Electrical Conduction 32
3.2.1 Solitons, Polarons and Bipolarons 33
3.2.2 Conduction 37
3.2.3 Electrical Conductivity 38
3.3 Properties of Layered Clay 40
3.4 Structure of Polymers 42
3.4.1 XRD Interference 42
3.4.2 Fine Texture of Polymer 43
3.4.3 Identification of Crystals in Polymers 45
3.5 Heat Conduction 45

xiii
4 MATERIALS AND METHODS
4.1 Synthesis of Conducting PPY 48
4.2 Synthesis PPY/MMT Clay Composite 50
4.3 XRD Measurement 51
4.4 Thermal Diffusivity Measurement 51
 4.4.1 Thermal Radiation Heat Loss 54
4.5 DC conductivity Measurement 55
 4.5.1 Four-Point Probe Technique 55
 4.5.2 Two Probe Technique 59

5 RESULTS AND DISCUSSION
5.1 XRD Studies 61
 5.1.1 Effect of Dopant Concentrations 61
 5.1.2 Effect of MMT Clay Percentages 65
5.2 Thermal Diffusivity Studies 68
 5.2.1 Effect of Sample Thickness 68
 5.2.2 Effect of Dopant Concentrations 68
 5.2.3 Effect of MMT Clay Percentages 72
5.3 DC Conductivity Studies 75
 5.3.1 Effect of Dopant Concentrations 75
 5.3.2 Effect of MMT Clay Percentages 80
5.4 Dependency of Conductivity on Temperature 82
 5.4.1 Low Temperature Dependence 83
 5.4.2 High Temperature Dependence 113

6 CONCLUSION AND SUGGESTION
6.1 Conclusion 136
6.2 Suggestion for Future Work 139

REFERENCES 141
APPENDICES 146
BIODATA OF STUDENT 147
LIST OF PUBLICATIONS 148
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The calculated interplanar d Bragg's spacing for pure MMT clay, pure PPY and PPY/MMT composite</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Thermal diffusivity values for conducting polymer PANI</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Conductivity of PPy–MMT composites with the increase in MMT clay Percentage of MMT used Conductivity of PPy–MMT composites (Scm(^{-1}))</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Spin-charge relations for soliton in polyacetylene</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical formula and characteristic parameter of commonly layered silicate family</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Specimen formulation of PPy at various concentration of FeCl(_3)</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Specimen formulation of doped PPy/MMT clay composite at various percentage of MMT clay</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>XRD analysis for doped PPy with various dopant concentrations</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Parameters of XRD data of PPy/MMT clay composite prepared with various MMT clay percentages</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Half rise time and corrected thermal diffusivity value of doped PPy</td>
<td>71</td>
</tr>
<tr>
<td>5.4</td>
<td>Half rise time and corrected thermal diffusivity value for doped PPy/MMT clay composite</td>
<td>73</td>
</tr>
<tr>
<td>5.5</td>
<td>Calculated values of linear regression with different mechanisms of doped PPy for four-point probe technique</td>
<td>92</td>
</tr>
<tr>
<td>5.6</td>
<td>Calculated values of linear regression with different mechanisms of doped PPy for two probe technique</td>
<td>93</td>
</tr>
<tr>
<td>5.7</td>
<td>Calculated values of linear regression with different mechanisms for doped PPy with 3.0MR</td>
<td>95</td>
</tr>
<tr>
<td>5.8</td>
<td>VRH parameters for four-point probe technique of doped PPy</td>
<td>97</td>
</tr>
<tr>
<td>5.9</td>
<td>VRH parameters for two probe technique of doped PPy</td>
<td>97</td>
</tr>
<tr>
<td>5.10</td>
<td>Calculated values of linear regression at different mechanisms for doped PPy/MMT clay composite with 2% of MMT</td>
<td>102</td>
</tr>
<tr>
<td>5.11</td>
<td>Calculated values of linear regression at different mechanisms for doped PPy/MMT clay composite with 4% of MMT clay</td>
<td>104</td>
</tr>
<tr>
<td>5.12</td>
<td>Calculated values of linear regression at different mechanisms for doped PPy/MMT clay composite with 6% of MMT clay</td>
<td>105</td>
</tr>
<tr>
<td>5.13</td>
<td>Calculated values of linear regression at different mechanisms for doped PPy/MMT clay composite with 8% of MMT clay</td>
<td>107</td>
</tr>
<tr>
<td>5.14</td>
<td>Calculated values of linear regression at different mechanisms for doped PPy/MMT clay composite with 10% of MMT clay</td>
<td>109</td>
</tr>
<tr>
<td>5.15</td>
<td>Calculated values of linear regression at different mechanisms for doped PPy/MMT clay composite with 12% of MMT clay</td>
<td>110</td>
</tr>
<tr>
<td>5.16</td>
<td>VRH parameters for doped PPy/MMT clay composite for four-point probe technique below 200K</td>
<td>112</td>
</tr>
<tr>
<td>5.17</td>
<td>VRH parameters for doped PPy/MMT clay composite for two probe technique below 200K</td>
<td>112</td>
</tr>
<tr>
<td>5.18</td>
<td>Calculated values of linear regression of doped PPy for four-point probe technique at high temperatures</td>
<td>122</td>
</tr>
<tr>
<td>5.19</td>
<td>Calculated values of linear regression of doped PPy for two probe technique at high temperatures</td>
<td>123</td>
</tr>
<tr>
<td>5.20</td>
<td>Calculated values of activation energy at different mechanisms of doped PPy</td>
<td>123</td>
</tr>
<tr>
<td>5.21</td>
<td>Calculated values of linear regression of doped PPy/MMT clay composite for four-point probe technique at high temperatures</td>
<td>134</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.22</td>
<td>Calculated values of linear regression of doped PPy/MMT clay composite for two probe technique at high temperatures</td>
<td>134</td>
</tr>
<tr>
<td>5.23</td>
<td>Calculated values of activation energy at different mechanisms of doped PPy/MMT clay composite</td>
<td>135</td>
</tr>
<tr>
<td>6.1</td>
<td>Calibration of photoflash measurements</td>
<td>146</td>
</tr>
<tr>
<td>6.2</td>
<td>Calibration of four-point probe technique measurements</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Chemical structure of some conjugated polymers</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Evolution of energy densities for rechargeable batteries</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Conductivity chart for various conducting polymers</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Conductivity of conductive polymers by doping effect</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Doping mechanism and related applications</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Tensile strengths of PCE containing MMT-20A with several different weight contents (wt%)</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>The Young’s modulus of the MMT-PANI series for various clay contents</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>The hardness of the MMT-PANI series for various clay contents</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>XRD spectra of PPy/1, 5-NDS; i) as-synthesized ii), base treated and iii) treated with 1M H2SO4 for 60 min at 100°C</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison of XRD patterns of the clay, PPy–DBSA, and PPy–DBSA/clay samples</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>X-ray diffraction patterns for: (A) pure MMT clay, (B) pure PPy, (C) 0.2 % clay, (D) 0.4 % clay, (E) 0.6 % clay, (F) 0.8 % clay and (G) 1.0 % clay respectively</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Thermal diffusivity as a function of temperature</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>The electrical conductivity and thermal diffusivity of PPy-PEG composite against different PEG concentrations</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>Dc conductivity versus concentration of PPy conducting particles at 300 K</td>
<td>24</td>
</tr>
<tr>
<td>2.13</td>
<td>Arrhenius representation of the total conductivity, at different frequencies and of the σ_{dc} conductivity for a PPy–POP film. The broken curve corresponds to σ_{dc}</td>
<td>26</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Typical Arrhenius representation of the σ_{ac} (at different frequencies) and σ_{dc} (broken curve) for the PPy–POP composite films doped with the MPcTS (M = Cu$^{2+}$)</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Temperature dependence of dc conductivity for the PPy-DBSA and PPy–DBSA/clay samples</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Temperature dependence of the surface conductivity for the composite films containing different contents of PPy</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical structure of (i) polyethylene, (ii) synthesis of polyacetylene by removing hydrogen from polyethylene and (iii) formation of Peierls transformation</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic of (i) metallic state and (ii) Peierls distortion</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Misfit of polyacetylene</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Soliton and anti-soliton in polyacetylene</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Creation of solitons by chemical doping (oxidation reaction)</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Energy band structure of soliton</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Energy band structure of polaron</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Energy band structure of bipolaron</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Intersoliton hopping where charged solitons (bottom) are trapped by dopant counter-ions, while neutral solitons (top) are free to move</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Electronic level for hopping conductivity</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>The structure of layered silicate</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Schematically illustration of achievable polymer/layered silicate nanocomposites</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>The general Bragg interference</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>Stacked lamellae structure which is formed by stiffer polymers and commonly accepted crystal model for conjugated polymers</td>
<td></td>
</tr>
</tbody>
</table>
3.15 Fringed micelles structure which is typically formed by very flexible polymers such as polyethylene

4.1 Photo flash technique set up

4.2 Schematic of the flash method

4.3 Schematic of four-point probe configuration

4.4 The schematic of cryostat for low temperature measurement

4.5 Correction divisor for probes

4.6 The schematic of parallel-plate sample holder

5.1 The effect of doping FeCl$_3$ to PPy at different molar ratio, MR

5.2 Schematic texture of PPy or polyaniline in the overall amorphous structure where L_{ii} is the crystallite grain and R is the distance between the crystallite grains

5.3 The effect of filling MMT clay to PPy/MMT clay composite

5.4 Profile of heat loss with different thickness of doped PPy with 0.5MR.

5.5 Thermograms for doped PPy with 0.5MR

5.6 The thermal diffusivity of doped PPy at different MR

5.7 Thermograms for doped PPy/MMT clay composite with 2% of MMT clay

5.8 The effect of MMT clay percentages to PPy/MMT clay composite

5.10 $V-I$ characteristic for conducting doped PPy by four-point probe technique

5.11 $I-V$ characteristic for conducting doped PPy by two probe technique

5.12 Conductivity of doped PPy for four-point probe technique and two probe technique at various MR

xx
5.13 Formation of polaron-bipolaron in the PPy chain.

5.14 $V-I$ characteristic for doped PPy/MMT clay by four-point probe technique

5.15 $I-V$ characteristic for doped PPy/MMT clay by two probe technique

5.16 Conductivity of doped PPy/MMT clay composite for four-point probe technique and two probe technique at various MMT clay percentages.

5.17 The dc electrical of doped PPy at various temperatures, T and MR for four-point probe technique.

5.18 The dc electrical of doped PPy at various temperatures, T and MR for two probe technique

5.19 Plot of $\ln \sigma_{\text{four-point probe}}$ versus $1000/T$ of doped PPy at various temperatures, T and MR.

5.20 Plot of $\ln \sigma_{\text{two probe}}$ versus $1000/T$ of doped PPy at various temperatures, T and MR.

5.21 Plot of $\ln \sigma_{\text{four-point probe}}$ versus $T^{-1/4}$ of doped PPy with 0.5MR.

5.22 Plot of $\ln \sigma_{\text{two probe}}$ versus $T^{-1/4}$ of doped PPy with 0.5MR.

5.23 Plot of $\ln \sigma_{\text{four-point probe}}$ versus $T^{-1/4}$ of doped PPy with 1.0MR.

5.24 Plot of $\ln \sigma_{\text{two probe}}$ versus $T^{-1/4}$ of doped PPy with 1.0MR.

5.25 Plot of $\ln \sigma_{\text{four-point probe}}$ versus $T^{-1/4}$ of doped PPy with 1.5MR.

5.26 Plot of $\ln \sigma_{\text{four-point probe}}$ versus $T^{-1/4}$ of doped PPy with 2.0MR.

5.27 Plot of $\ln \sigma_{\text{four-point probe}}$ versus $T^{-1/4}$ of doped PPy with 2.0MR.

5.28 Plot of $\ln \sigma_{\text{two probe}}$ versus $T^{-1/4}$ of doped PPy with 2.0MR.
5.29 Plot of Ln $\sigma_{\text{four-point probe}}$ versus $T^{-1/4}$ of doped PPy with 2.5MR

5.30 Plot of Ln $\sigma_{\text{two probe}}$ versus $T^{-1/4}$ of doped PPy with 2.5MR.

5.31 Plot of Ln $\sigma_{\text{four-point probe}}$ (T) versus 1000/T of doped PPy with 3.0MR.

5.32 Plot of Ln $\sigma_{\text{two probe}}$ (T) versus 1000/T of doped PPy with 3.0MR.

5.33 $\sigma_{\text{four-point probe}}$ value of doped PPy/MMT at various temperatures and MMT clay percentages

5.34 $\sigma_{\text{two probe}}$ value of doped PPy/MMT clay at various temperatures and MMT clay percentages

5.35 Plot of Ln $\sigma_{\text{four-point probe}}$ versus 1000/T of doped PPy/MMT at various temperatures and MMT clay percentages

5.36 Plot of Ln $\sigma_{\text{two probe}}$ versus 1000/T of doped PPy/MMT clay at various temperatures and MMT clay percentages

5.37 Plot of Ln ($\sigma_{\text{four-point probe}}$ (T)) versus 1000/T of doped PPy/MMT clay composite with 2% of MMT clay

5.38 Plot of Ln ($\sigma_{\text{two probe}}$ (T)) versus 1000/T of doped PPy/MMT clay composite with 2% of MMT clay

5.39 Plot of Ln ($\sigma_{\text{four-point probe}}$ (T)) versus 1000/T of doped PPy/MMT clay composite with 4% of MMT clay

5.40 Plot of Ln ($\sigma_{\text{two probe}}$ (T)) versus 1000/T of doped PPy/MMT clay composite with 4% of MMT clay

5.41 Plot of Ln ($\sigma_{\text{four-point probe}}$ (T)) versus 1000/T of doped PPy/MMT clay composite with 6% of MMT clay

5.42 Plot of Ln ($\sigma_{\text{two probe}}$ (T)) versus 1000/T of doped PPy/MMT clay composite with 6% of MMT clay

5.43 Plot of Ln ($\sigma_{\text{four-point probe}}$ (T)) versus 1000/T of doped PPy/MMT clay composite with 8% of MMT clay
5.44 Plot of \(\ln(\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy/MMT clay composite with 8% of MMT clay

5.45 Plot of \(\ln(\sigma_{\text{four-point probe}}) \) versus \(1000/T \) of doped PPy/MMT clay composite with 10% of MMT clay

5.46 Plot of \(\ln(\sigma_{\text{two probe}}) \) versus \(1000/T \) of doped PPy/MMT clay composite with 10% of MMT clay

5.47 Plot of \(\ln(\sigma_{\text{four-point probe}}) \) versus \(1000/T \) of doped PPy/MMT clay composite with 12% of MMT clay

5.48 Plot of \(\ln(\sigma_{\text{two probe}}) \) versus \(1000/T \) of doped PPy/MMT clay composite with 12% of MMT clay

5.49 Electrical conductivity value of doped PPy for four-point probe technique at high temperatures with various MR

5.50 Electrical conductivity value of doped PPy for two probe technique at high temperatures with various MR

5.51 Plot of \(\ln(\sigma_{\text{four-point probe}}) \) versus \(1000/T \) of doped PPy at high temperatures and various MR

5.52 Plot of \(\ln(\sigma_{\text{two probe}}) \) versus \(1000/T \) of doped PPy at high temperatures and various MR

5.53 Plot of \(\ln(\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy with 0.5MR

5.54 Plot of \(\ln(\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy with 0.5MR

5.55 Plot of \(\ln(\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy with 1.0MR

5.56 Plot of \(\ln(\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy with 1.0MR

5.57 Plot of \(\ln(\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy with 1.5MR

5.58 Plot of \(\ln(\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy with 1.5MR

5.59 Plot of \(\ln(\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy with 2.0MR

xxiii
5.60 Plot of \(\ln (\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy with 2.0MR

5.61 Plot of \(\ln (\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy with 2.5MR

5.62 Plot of \(\ln (\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy with 2.5MR

5.63 Plot of \(\ln (\sigma_{\text{four-point probe}}(T^{1/2})) \) versus \(1000/T \) of doped PPy with 2.5MR

5.64 Plot of \(\ln (\sigma_{\text{two probe}}(T^{1/2})) \) versus \(1000/T \) of doped PPy with 3.0MR

5.65 \(\sigma_{\text{four-point probe}} \) value of doped PPy/MMT clay at high temperatures with various MMT clay percentages

5.66 \(\sigma_{\text{two probe}} \) value of doped PPy/MMT clay composite at high temperatures with various MMT clay percentages

5.67 Plot of \(\ln \sigma_{\text{four-point probe}} \) versus \(1000/T \) of doped PPy/MMT clay composite at high temperatures and various MMT clay percentages

5.68 Plot of \(\ln \sigma_{\text{two probe}} \) versus \(1000/T \) of doped PPy/MMT clay composite at high temperatures and various MMT clay percentages

5.69 Plot of \(\ln (\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy/MMT clay composite with 2% of MMT clay

5.70 Plot of \(\ln (\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy/MMT clay composite with 2% of MMT clay

5.71 Plot of \(\ln (\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy/MMT clay composite with 4% of MMT clay

5.72 Plot of \(\ln (\sigma_{\text{two probe}}(T)) \) versus \(1000/T \) of doped PPy/MMT clay composite with 4% of MMT clay

5.73 Plot of \(\ln (\sigma_{\text{four-point probe}}(T)) \) versus \(1000/T \) of doped PPy/MMT clay composite with 6% of MMT clay