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Conducting polymer materials based on Polypyrrole (PPy) and 

Polypyrrole/Montmorillonite (PPy/MMT) clay composite were synthesis by using 

chemical reaction process with iron (III) chloride (FeCl3) as oxidizing and dopant agent. 

During the mixing process of PPy, the solution changed from transparent to dark green 

indicating that the polymerization process took place instantaneously. The resulting 

powder was filtered, washed, grounded and press into pellet. The structural, thermal and 

electrical properties of the conducting polymer and conducting polymer composite were 

then investigated.  

 

The structure of the samples was analyzed by using X-ray diffractometer (XRD) with 

the scanning was carried out at 2θ of 15° to 35° for doped PPy and at 2θ of 2° to 35° for 

PPy/MMT clay composite. The XRD spectra showed dopant and filler effect with 
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appearance of broad peak at around the 2θ value of 25 to 26° corresponded to highly 

disordered parts and new peak at low angle at around the 2θ value of 5 to 6° 

corresponded to successfully intercalation of PPy chain in the galleries of MMT clay.  It 

was observed that all the peak angles shifted and the full width at half maximum 

(FWHM) values are difference with increasing in dopant concentrations and filler 

percentages indicate the strong interaction between dopant and filler with the conjugated 

polymer. The interchain separation showed good agreement with published data. 

 

The thermal diffusivity of PPy and PPy/MMT clay composite was analyzed at room 

temperature by using photoflash technique. The results showed that the thermal 

diffusivity, αc for PPy increased with increasing dopant concentrations with αc from 1 to     

4 x 10-3 cm2s-1. On the other hand, the thermal diffusivity for PPy/MMT clay composite 

decreased with increasing MMT clay percentages loading in the PPy which is from 3 to 

1 x 10-3 cm2s-1 indicating some electron motion interruption. It also observed that a 

correlation between the thermal diffusivity and electrical conductivity for all the samples 

showed a similar trend. 

 

The electrical conductivity studies were done by using four point probe technique and 

two probe technique with temperature dependence. At room temperature, the I-V 

characteristic for both techniques showed a linear behavior and obeys the Ohm’s law. 

From the results, the conductivity was calculated and showed a strongly dependent on 

dopant concentrations and filler percentages. To get more insight into the transport 

mechanism, various models have been used to fit the data from conductivity plots. 
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At low temperature range (100-300K), the charge carrier mechanism was dominated by 

3-D variable range hopping, VRH transport. However, the electrical conduction 

transport is also apparently based on hopping of polarons.  With regard to high 

temperature dependence (300-380K), the conductivity showed the same trend with 

observation in low temperature studies. Nevertheless, the electrical conduction showed a 

contribution of polarons and bipolarons mechanism which may due to some 

transformation at energy transport in the materials.  
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Polimer konduksi berasaskan pada bahan Polipirrole (PPy) dan 

Polipirrole/Montmorillonite (PPy/MMT) komposit telah disintesis dengan menggunakan 

proses tindakbalas kimia dengan iron (III) chloride (FeCl3) sebagai agen pengoksidaan 

dan dopan. Semasa proses percampuran bagi PPy, sebatian telah bertukar dari jernih ke 

hijau gelap menandakan proses pempolimeran berlaku serta merta. Hasil serbuk 

kemudianya dituras, dibasuh, dihaluskan dan dimampatkan menjadi pelet. Sifat struktur, 

terma dan elektrik bagi polimer konduksi dan polimer konduksi komposit ini telah 

dikaji. 

 

Stuktur sample-sampel ini telah dianalisis dengan menggunakan pembelauan sinar-X 

(XRD) pada sudut 2θ ialah 15° hingga 35° bagi PPy dan 2° hingga 35° bagi PPy/MMT 
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clay composite. Spektra XRD menunjukkan kesan dopan dan penyendat dengan 

kemunculan puncak lebar iaitu pada 2θ ialah 25 hingga 26° yang merupakan bahagian 

yang sangat tidak tersusun dan puncak yang baru disudut rendah iaitu pada 2θ ialah 5 

hingga 6° yang menujukkan rantaian PPy telah masuk ke dalam galeri tanah liat MMT. 

Dapat diperhatikan bahawa semua puncak sampel telah berganjak dan separuh 

maksimum kelebaran puncak (FWHM) telah berubah-ubah dengan peningkatan 

kepekatan dopan dan peratusan tanah liat MMT menandakan tindak balas yang kuat 

diantara dopan dan penyendat dengan polimer. Nilai jarak pemisah rantaian menunjukan 

persamaan dengan nilai yang telah diterbitkan oleh penyelidikan yang terdahulu.  

 

Proses resapan terma bagi PPy dan PPy/MMT komposit telah dianalisis pada suhu bilik 

dengan menggunakan teknik fotokilat. Keputusannya menunjukan resapan terma, αc 

bagi PPy meningkat dengan peningkatan kepekatan dopan iaitu αc dari 1 hingga 4 x 10-3 

cm2s-1. Manakala, resapan terma bagi PPy/MMT komposit menurun dengan peningkatan 

peratusan tanah liat MMT didalam PPy iaitu αc dari 3 hingga 1 x 10-3 cm2s-1dimana ia 

menandakan pergerakan elektron terganggu. Walaubagaimanapun, perkaitan antara 

resapan terma dan kekonduksian elektrik bagi kesemua sampel menunjukan bentuk yang 

sama.  

 

Kajian kekondusian elektrik tdijalakan dengan meggunakan teknik penduga empat titk 

dan penduga dua dalam mengkaji sifat permukaan dan pukal dengan penggantungan 

suhu. Pada suhu bilik, sifat I-V bagi kedua-dua teknik telah menunjukan garis lurus dan 

menepati hukum Ohm. Melalui keputusan ini, kekonduksian elektrik telah dikira dan 

menunjukkan bahawa sangat bergantung kepada kepekatan dopan dan peratusan 
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penyendat. Untuk mengkaji lebih jauh lagi tentang pergerakan mekanisma, pelbagai 

modul telah digunapakai untuk memandankan data dari plot kekonduksian. 

 

Pada julat suhu rendah (100-300K), mekanisma cas pembawa telah didominasi oleh 

pergerakan pelbagai julat lompatan (VRH). Walaubagaimanapun, pergerakan 

kekonduksian elektrik juga kelihatan melibatkan lompatan polaron. Berkenaan dengan 

suhu tinggi pula (300-380K), kekonduksiannya menunjukkan corak yang sama dengan 

pemerhatian pada suhu rendah. Namun begitu, kekonduksian elektriknya menunjukkan 

penglibatan mekanisma polaron dan bipolaron dimana ia mungkin disebabkan oleh 

perubahan pergerakan tenaga dalam bahan tersebut.  
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Plot of Ln σtwo probe versus 1000/T of doped PPy/MMT clay 
composite with 10% of MMT clay  
 

108 
 
 

5.47 
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Plot of Ln (σtwo probe (T)) versus 1000/T of doped PPy with 
2.0MR 

 

120 
 
 

5.61 
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