U|PIM

UNIVERSITI PUTRA MALAYSIA

ENHANCED Q-LEARNING ALGORITHM FOR POTENTIAL ACTIONS
SELECTION IN AUTOMATED GRAPHICAL USER INTERFACE TESTING

By

GOH KWANG YI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

July 2023

FSKTM 2023 7

All material contained within the thesis, including without limitation text, logos, icons,
photographs, and all other artwork, is copyright material of Universiti Putra Malaysia
unless otherwise stated. Use may be made of any material contained within the thesis for
non-commercial purposes from the copyright holder. Commercial use of material may
only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Master of Science

ENHANCED Q-LEARNING ALGORITHM FOR POTENTIAL ACTIONS
SELECTION IN AUTOMATED GRAPHICAL USER INTERFACE TESTING

By

GOH KWANG Yl

July 2023
Chairman . Associate Professor Salmi bt Baharom, PhD
Faculty : Computer Science and Information Technology

Researchers have proposed automated testing tools to minimise the effort and resources
spent on testing GUIs. A relatively simple strategy employed by the proposed tools thus
far is the observe-select-execute approach, where all of a GUI’s actions on its current
state are observed, one action is selected, and the selected action is executed on the
software. The strategy’s key function is to select an action that may achieve new and
desirable GUI states. Due to difficulties in comparing actions, most existing test
generators ignore this step and randomly select an action. However, a randomly selected
action has limitations. It does not test most parts of a GUI within a reasonable amount
of time and there is a high probability that the same actions are re-selected. This reduces
code coverage, thereby resulting in undetected failures. To overcome this limitation, the
Q-Learning algorithm was proposed by several researchers to minimise randomness.
The idea was to change the probability distribution over the sequence space. Instead of
making purely random selections, the least frequently executed action is selected so that
the GUI can be further explored. Q-Learning improve the overall exploration strategy,
but it also presented a weakness. Q-Learning’s reward function assigns the highest value
to the least frequently executed action without taking into consideration its potential
ability in detecting failures. Furthermore, the proposed techniques based on the Q-
Learning algorithm do not consider context-based actions. Thus, these techniques are
unable to detect failures that occur due to the improper use of context data, which is
becoming an increasingly common issue in mobile applications nowadays. We enhanced
the Q-Learning algorithm for action selection based on potential action abilities and
proposed a tool, namely CrashDroid, that allows the automation of testing context-aware
Android applications. We utilized the enhanced Q-Learning algorithm to compare
actions, including context-based actions, to effectively achieve higher code coverage.
An experiment was carried out, and the results collected were analyzed using a non-
parametric statistical test, the Mann-Whitney U test, which indicates the level of
significance between the distributions of data collection. The experimental results
showed that CrashDroid, which employs the technique considering the code complexity
of the action and the use of context data during the test, was more effective than the other

automated Android testing tool, AutoDroid, which did not consider the mentioned
metrics.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

ALGORITMA PEMBELAJARAN Q DIPERTINGKATKAN UNTUK
PEMILIHAN TINDAKAN BERPOTENSI DALAM PENGUJIAN ANTARA
MUKA PENGGUNA GRAFIK AUTOMATIK

Oleh

GOH KWANG Yl

Julai 2023
Pengerusi . Profesor Madya Salmi bt Baharom., PhD
Fakulti . Sains Komputer dan Teknologi Maklumat

Para penyelidik telah mencadangkan alat ujian automatik untuk mengurangkan usaha
dan sumber yang dihabiskan dalam ujian antaramuka pengguna grafik. Strategi yang
digunakan oleh alat-alat yang dicadangkan sejauh ini agak mudah iaitu pemerhatian-
pilih-laksana, di mana semua tindakan antaramuka pengguna grafik pada keadaan
semasa diambil perhatian, satu tindakan dipilih dan tindakan yang dipilih dilaksanakan
pada perisian. Fungsi utama strategi ini adalah untuk memilih tindakan yang boleh
mencapai keadaan antaramuka pengguna grafik yang baru dan diingini. Oleh kerana
kesukaran dalam membandingkan tindakan, kebanyakan penghasil ujian sedia ada
mengabaikan langkah ini dan secara rawak memilih satu tindakan. Walau bagaimanapun,
tindakan yang dipilih secara rawak mempunyai kekurangan. la tidak menguji sebahagian
besar bahagian antaramuka pengguna grafik dalam masa yang munasabah dan terdapat
kemungkinan yang tinggi bahawa tindakan yang sama dipilih semula. Ini mengurangkan
liputan kod, dengan itu mengakibatkan kegagalan yang tidak dikesan. Untuk mengatasi
kekurangan ini, algoritma Q-Learning dicadangkan oleh beberapa penyelidik untuk
mengurangkan kebarangkalian rawak. Idea adalah untuk mengubah taburan
kebarangkalian atas ruang urutan. Sebaliknya daripada membuat pilihan secara rawak,
tindakan yang jarang dilaksanakan dipilih agar antaramuka pengguna grafik dapat
dijelajahi lebih lanjut. Q-Learning meningkatkan strategi penerokaan keseluruhan, tetapi
juga mempunyai kelemahan. Fungsi ganjaran Q-Learning memberikan nilai tertinggi
kepada tindakan yang jarang dilaksanakan tanpa mengambil kira kemampuannya yang
berpotensi dalam mengesan kegagalan. Selain itu, teknik yang dicadangkan berdasarkan
algoritma Q-Learning tidak mempertimbangkan tindakan berdasarkan konteks. Oleh itu,
teknik ini tidak dapat mengesan kegagalan yang berlaku kerana penggunaan data
konteks yang tidak betul, yang menjadi isu yang semakin biasa dalam aplikasi mudah
alih pada masa kini. Kami meningkatkan algoritma Q-Learning untuk pemilihan
tindakan berdasarkan kebolehan tindakan yang berpotensi dan mencadangkan satu alat,
yang dinamakan CrashDroid, yang membolehkan automatik ujian aplikasi Android yang
peka konteks dan menggunakan algoritma Q-Learning yang diperkukuhkan untuk

membandingkan tindakan, termasuk tindakan berasaskan konteks, untuk mencapai
liputan kod yang lebih tinggi secara efektif. Satu eksperimen dijalankan, dan hasil yang
dikumpulkan dianalisis menggunakan ujian statistik bukan parametrik, ujian Mann-
Whitney U, yang menunjukkan tahap kepentingan di antara distribusi pengumpulan data.
Hasil eksperimen menunjukkan bahawa CrashDroid, yang menggunakan teknik yang
mempertimbangkan kompleksiti kod tindakan dan penggunaan data konteks semasa
ujian, lebih efektif daripada alat ujian Android automatik lain, AutoDroid, yang tidak
mempertimbangkan metrik yang disebutkan.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my three Supervisory Committee
members, ASSOCIATE PROFESSOR DR. SALMI BINTI BAHAROM, DR.
JAMILAHBINTIDIN, and ASSOCIATE PROFESSOR TS. DR. NURFADHLINA
BINTI MOHD SHAREF, for their invaluable guidance, encouragement, and support
throughout the entire research process. Their feedback, expertise, and commitment were
instrumental to the completion of this thesis.

I would also like to thank the Faculty of Computer Science & Information Technology
at University of Putra Malaysia for providing me with access to the necessary resources,
facilities, and equipment. Their support was critical to the success of this research.

Furthermore, | am grateful to my colleagues and classmates for their valuable insights,
helpful discussions, and support throughout my academic journey. Their contributions
were invaluable to the completion of this work.

I would also like to express my appreciation to my family and friends for their
unwavering love, encouragement, and support throughout my academic career. Their
belief in me sustained me through the challenges of this thesis.

Finally, 1 would like to acknowledge the countless authors, researchers, and scholars
whose work provided the foundation for this thesis. Their dedication to advancing
knowledge in their respective fields is an inspiration to me and countless others.

Thank you all for your unwavering support and contributions to this thesis.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the Master of Science. The members of the
Supervisory Committee were as follows:

Salmi binti Baharom, PhD

Associate Professor

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Chairman)

Jamilah binti Din, PhD

Senior Letutrer

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Member)

Nurfadhlina binti Mohd Sharef, PhD

Associate Professor Ts.

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean

School of Graduate Studies
Universiti Putra Malaysia

Date: 14 March 2024

vii

TABLE OF CONTENTS

Page
ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS %
APPROVAL vi
DECLARATION viii
LIST OF TABLES xiii
LIST OF FIGURES Xiv
LIST OF ABBREVIATIONS XVi
CHAPTER

1 INTRODUCTION

1
1.1 Overview 1
1.2 Problem Statement 2
1.3 Research Objective 3
1.4 Research Scope 3
1.5 Research Contributions 4
1.6 Thesis Organization 4

2 LITERATURE REVIEW 6
2.1 Introduction 6
2.2 Automated Android GUI Testing 6

2.21 Random Technique 6
2.2.2 Model-based Testing 8
2.2.3 Capture and Replay 10
2.2.4 Genetic Algorithm 11
2.25 Deep Learning 12
2.26 Q-Learning 13
2.3 Implication of Literature Review 17
2.4 Q-Learning Algorithm 18
2.4.1 Reward Function, R 19
2.4.2 Q-value Function, Q 19
2.4.3 Action Selection 20
2.4.4 Example 20
2.5 Impact of Code Complexity Metric in Weight Calculation of
Widget 23
2.6 Distance Algorithm 24
2.7 Context-Aware Mobile Applications 25
2.8 Overview of Android Structure 25
2.8.1 Android Project Structure 26
2.8.2 Android Activity and Fragment Life Cycle 27
2.9 Tools and Plugins in Application Testing 29
2.10 Assessment of GUI Testing Technique and Tools 30
2.10.1 Application Under Test 30
2.10.2 Experiment Setup 31

2.10.3 Evaluation Metrics

2.11 Summary

RESEARCH METHODOLOGY

3.1
3.2
3.3

3.4
3.5

THE

Introduction

Phase 1: Conduct Literature Review

Phase 2: Q-Learning Enhancement and Prototype
Development

3.3.1 Enhanced Q-Learning Algorithm

3.3.2 Potential Action Calculation

3.3.3 Prototype Development

Phase 3: Research Evaluation

Summary

ENHANCEMENT OF Q-LEARNING AND

IMPLEMENTATION OF CRASHDROID

4.1
4.2
4.3
4.4

4.5

4.6

Introduction
Enhancement of Q-Learning Algorithm
Implementation of Enhancement Algorithm in CrashDroid
Pre-Testing Phase
4.4.1 APK Extraction
4.4.2 Code Formatting
4.4.3 XML File Scanning
4.4.4 Java File Scanning
4.45 Total Weight Calculation
4.45.1 Weight Calculation Process
4.45.2 The Response for Class (RFC) weight of
an action
4.45.3 The Cyclomatic Complexity (CC) weight
of an action
4.45.4 The Network-related Function weight of
an action
4.455 The GPS-related Function weight of an
action
4.45.6 Total Weight
Testing Phase
45.1 Q-Learning on Testing Phase
4511 Reward Function
45.1.2 Q-value Function
4.5.2 Jaccard Distance on Testing Phase
4.5.2.1 Jaccard Distance Calculation Process
453 Use case with enhanced of Q-Learning algorithm
454 Test Report
Summary

RESULTS AND DISCUSSION

51
5.2
5.3
5.4

Introduction
Assessment Approach
Experimental Definition
Experiment Setup

Xi

31
32

33
33
34

35
36
36
36
37
39

40
40
40
41
42
43
44
44
46
52
53

54

54

55

55
56
57
60
60
61
61
62
66
69
70

71
71
72
73
73

5.41 AUT Selection

5.4.2 Test Parameter

5.4.3 Test Environment

5.4.4 Test Suites Generation

5.45 Selection of Tool for Comparison

5.5 Experiment Procedure
5.6 Data Interpretation & Analysis
5.6.1 Percentage of Code Coverage
5.6.2 Number of Crashes
5.7 Threats to Validity
5.8 Analysis of Results in Relation to the Problem Statemen
5.9 Summary
6 CONCLUSION AND FURTHER RESEARCH
6.1 Introduction
6.2 Summary of the research
6.3 Contributions of the research
6.4 Limitation of the Study
6.5 Recommendation for further research
REFERENCES

BIODATA OF STUDENT
LIST OF PUBLICATIONS

Xii

73
74
75
75
75
75
76
76
80
82
83
84

85
85
85
87
87
88

89
96
97

LIST OF TABLES

Table Page
2.1 Summary of techniques 15
2.2 Comparison of GUI Testing Technique 18
2.3 Q-value calculation based on the sample application 22
2.4 Activity Lifecycle 29
2.5 Fragment Lifecycle 29
4.1 Actions and their corresponding metric values 53
4.2 Actions and their corresponding metric weights 56
4.3 Total Weights and Initial Q-Values of Actions 62
4.4 Initial Q-values of Actions 67
4.5 Examples of rewards and Q-values for six episodes 68
5.1 Test Result of Code Complexity Metrics 72
5.2 List of AUT 74
5.3 The Experiment Parameters 74
5.4 Test Result of CrashDroid 77
5.5 Test Result of AutoDroid 77
5.6 Mean of data collected and different of mean 79
5.7 Crash result of CrashDroid 81
5.8 Crash result of AutoDroid 81
5.9 Data Collection 82

xiii

Figure
2.1
2.2

2.3
2.4
3.1
3.2
33
4.1
4.2
43
44
45
46
4.7
48
4.9
4.10
411
4.12
413
4.14

4.15

4.16

LIST OF FIGURES

Process of GA

Example of Android application represented in term of states and
actions

Example of the relationship between JAVA and XML layout file
Android activity lifecycle and Android fragment lifecycle

Research Methodology

Interface of the Loaned application

Overview of Experimental Process

Enhanced Q-Learning algorithm

An Android application represented in terms of states and actions
Overview diagram of CrashDroid

The steps of the pre-testing phase

Two sets of codes in different formats with the same functionality
Sample of an XML layout file in an Android application

Pictorial representation of how CrashDroid saves the XML file data
Example of a search pattern

Example of extraction of function details from a Java class

Android activity lifecycle and Android fragment lifecycle

Pictorial representation of how CrashDroid saves the function details
Sample code of onCreate function

Sample code of action being tied to a listener content.

Another sample for coding the OnClickListener function

Pictorial representation of how CrashDroid saves the information
collected

The process of checking required tools

Xiv

Page

11

20
27
28
34
35
38
40
41
42
43
44
45
45
46
47
48
49
49
50

51

52
58

4.17
4.18
4.19
4.20
421
4.22
5.1
5.2
5.3
5.4

5.5

The testing phase process

An AUT represented in terms of states and actions
Source codes for a0 and b0

Sources code for a0 and bl

An example application in terms of states and actions
Example of test report

Experiment Procedure

Box plot of collected data

Mean of two approaches

Histogram

Box plot of collected crash data

XV

59
62
64
65
66
69
76
78
78
79

82

GUI
AUT
XML
GA
REGEX
(ON)
App
CPU
ul
VB
APK
MDP

ADB

LIST OF ABBREVIATIONS

Graphical User Interface
Application Under Test
Extensible Markup Language
Genetic Algorithm

Regular Expression
Operating System
Application

Central Processing Unit
User Interface

Visual Basic

Android Package Kit
Markov Decision Processes

Android Debug Bridge

Xvi

CHAPTER 1

INTRODUCTION

1.1 Overview

Smartphones have become a crucial part of our lifestyles. Mobile applications have
transformed the way we perform daily activities, whether ordering food, booking a flight,
paying bills, or chatting with friends. Considering the fact that 3.2 billion smartphones
were sold, 8.3 billion mobile subscriptions were registered, more than 3.14 million
applications were developed, and 204 billion applications were downloaded worldwide
in 2019 (Statista.com, 2021b, 2021c), the significance of testing should not be neglected
for quality assurance purposes.

Graphic user interface also known as GUI allows users to operate the application
functions easily. The better the GUI, the easier the user interacts with the mobile
application. Hence, mobile applications GUI is one of the important factors of mobile
application success. Because of that, GUI testing often replaces system testing. Testing
GUIs involves creating sequences of GUI events that exercise GUI widgets (i.e., test
cases), executing those events (i.e., test execution) and monitoring resulting changes to
the software state (i.e., test oracle) (Memon et al., 2003; Nguyen et al., 2014). Even
though the creation of test cases is associated with GUI widgets, research has shown that
GUI testing is efficient at finding both non-GUI and GUI errors (Robinson & Brooks,
2009). This is because the test cases not only execute GUI codes but also non-GUI codes.
GUI testing can be used to identify security flaws, crashes and exceptions that occur
while using mobile applications. All of these necessitate simulating user behaviors
within the software and therefore automatic GUI testing needs to mimic human
interaction with the GUI widgets. However, GUI testing is costly and time consuming,
thus it will cause the overall development cost and development man days to increase.
Therefore, researchers have proposed automated testing tools to minimize the effort and
resources spent on testing GUIs. A lot of research had been done by the researchers
which implemented various types of techniques like random technique, model based and
capture & replay in their proposed automated testing tools. However, techniques like
model based and capture & replay still require human intervention, so there are still
many researchers who prefer random techniques (Ardito et al., 2020). Most of these
proposed automated testing tools that implement random techniques use a relatively
simple strategy which is the observe-select-execute approach. The strategy starts by
launching the application under test (AUT) and then proceeds by observing the GUI
actions on the AUT’s current state, selecting an action from those observed actions, and
executing the selected action. The strategy’s key function is to select an action that may
achieve new and desirable GUI states.

Due to difficulties in comparing actions, most existing tools ignore this strategy’s key
functions and randomly select an action. However, a randomly selected action has
limitations due to most GUIs having numerous and deeply nested actions. It does not
test most parts of a GUI within a reasonable amount of time and re-selection of the same
actions is quite likely to occur. Several researchers (Bauersfeld & Vos, 2012; Buzdalov

1

& Buzdalova, 2013; Carino & Andrews, 2016; Koroglu et al., 2018; Mariani etal., 2012)
have adopted Q-Learning algorithm in their automated testing tools to overcome these
limitations. The behavior of action reward in Q-Learning further explores the GUI by
selecting the least frequently executed action instead of making purely random selections.
The prospect of discovery in such an approach is considered more “interesting” to a
tester. However, these techniques select an action based solely on its execution
frequency without considering its potential ability to detect and reveal failures. For
example, let’s compare tapping a button to submit data to a database and tapping a button
to reset data within the interface. If both these tapping actions have never been executed,
the probability of each action being selected would be equal if the selection is based
solely on the execution frequency. However, the former button executes a complex code
that might involve data transmission over the network and multiple servers. Hence, from
a tester’s point of view, the action has a more significant potential for bringing more
interesting results than the latter.

Furthermore, these techniques do not consider context-aware applications, therefore they
may not detect defects that occur due to the improper use of context data. This is ongoing
research that aims to propose a testing tool that can automatically GUI test Android
applications. The Android platform is selected as it is the most popular mobile operating
system in the world. As of July 2017, the number of available applications available on
Google Play Store is 2.95 billion (Nguyen et al., 2014). Its popularity among developers
is owing to the accessible development environment that is based on the familiar Java
programming language as well as the availability of open-source libraries implementing
diverse functionalities that accelerate the development process.

1.2 Problem Statement

Due to the fact that, the increase of the popularity of mobile application (Statista.com,
2021b, 2021c), the GUI testing of mobile application getting important to maintain the
application quality (Robinson & Brooks, 2009). However, GUI testing requires huge
resources and cost, hence building a tool to automate the testing process is becoming the
trend.

There are a lot of past research which implemented automated testing tools with various
types of techniques such as random, model based and capture & replay. Among these
three techniques, many researchers prefer random technique, because random technique
requires lower user intervention compared to the other two techniques (Muangsiri &
Takada, 2017). Other than that, the biasness of the tester when creating the model or
recording the test script, which resulting in low significant defect-finding power (Ardito
et al., 2020) is one of the reasons that researchers prefer random technique. But, due to
the nature of random technique and most GUIs have numerous and deeply nested actions,
automated testing tools that implement random technique do not test most parts of a GUI
within a reasonable amount of time. Besides that, there is a high probability for re-
selection of same actions to be occured with the automated testing tools which
implement random technique.

Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino &
Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning
algorithm in their automated testing tools and it show better results to improve the
random exploration strategy. The core of using Q-Learning is to intelligently guide the
action selection with the purpose to favor exploration of the GUI which reduces the
redundant execution of events and increases coverage.

However, a common limitation to these techniques is that the reward function assigns
the highest reward when the action is executed for the first time to maximize coverage
or locate crashes. The selection of action is only based on the least executed action
without taking into consideration that some actions are more potential than others with
respect to testing (Adamo et al., 2018). For example, once completed a form to add a
new event in a personal agenda, the application usually displays the entire calendar,
producing a major change in terms of displayed widgets, and enabling many new actions
to be tested. On the contrary, actions like filling text areas or clicking on combo boxes
cause small changes of the GUI state and are thus less potential to be tested. Other than
that, the existing implementations also do not take context aware applications into
consideration. Therefore, there is a need to further investigate the adoption of Q-
Learning in GUI testing to improve coverage and crash detection by selecting potential
actions and consider context of the actions.

1.3 Research Objective

This research objectives that are addressed in this thesis are as follows:

1. Topropose an action selection algorithm based on actions potentials abilities.

2. Toimplement the proposed action selection algorithm into an automated GUI
testing tool.

3. Toevaluate the effectiveness of the proposed action selection algorithm.

14 Research Scope

Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino &
Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning
algorithm in their automated testing tools to overcome the limitation of the random
algorithm. However, their techniques select an action based solely on its execution
frequency without considering the code complexity. Besides that, these techniques also
do not consider context-aware action, therefore they may not detect defects that occur
due to the improper use of context data. Our research focuses on:

1. Improving the exploration strategy of the Q-Learning algorithm by proposing
a technique to calculate the action weight based on the code complexity.

2. Propose a technique to consider context data when calculating the action
weight, but only focus on WIFI and GPS.

3. Development an automated testing tool for android application.
4. Determine which code complexity metric to use to measure the action weight.

5. Include Jaccard Distance in the enhancement of algorithm.

15 Research Contributions

This research aimed to improve the exploration strategy of the Q-Learning algorithm
based on the gaps left by previous work in this field. Based on the limitations and gaps,
this research has made the following contributions:

° It provides an algorithm for selecting potential actions (Adamo et al., 2018).

) It implemented automated Android testing tools which consider the code
complexity of the action and the use of context data.

) It provides empirical evidence based on the comparisons made between
previous study by Adamo et al. (Adamo et al., 2018) and our implemented
automated Android testing tools. The measurement uses the same AUTSs and
same action selection algorithm which is Q-Learning, but different
approaches in selecting an action.

° The proposed action selection algorithm, implemented in an automated GUI
testing tool, offers substantial benefits to software developers, quality
assurance teams, and stakeholders involved in the mobile application
development lifecycle. By enhancing testing efficiency and effectiveness, the
contribution ensures that developers can release more robust and reliable
mobile applications, QA teams can streamline their testing processes, and
stakeholders can have increased confidence in the overall quality of the
deployed applications, ultimately fostering a more successful and user-
friendly mobile app ecosystem.

1.6 Thesis Organization

The thesis comprises seven chapters. The first chapter consists of the introduction of this
research. Hence, the research problem, the objective and scope, as well as the
contributions of this research are also described in the first chapter.

The second chapter presents the detailed study of the existing automated testing
technique. The research background, which consisted of the issues that have been left
out by the existing works, are discussed in detail in this chapter. The knowledge gaps
left by previous works are also highlighted in this chapter.

The third chapter presents the methodology involved in this research. The research
methods, materials or resources, and the deliverables obtained throughout the phases are
explained in this chapter. Generally, this chapter highlights the three phases that have
been previously defined, namely, the definition of the analysis and problems, the design

4

and development of the tool to support the proposed approach, and finally, the evaluation
phase involved in producing the empirical result.

The fourth chapter describes the implementation of the testing tool, which involves the
four criteria in calculating the action weight. This chapter discusses in detail how each
criterion was processed during the tool execution phase.

The fifth chapter presents the experimental procedure and the results of the experiments.
It provides statistical analysis using the Mann-Whitney U test.

The final chapter is Chapter Six, which consists of the conclusion and future works for
this research. Some suggestions for future work that can be investigated by future
researchers are explained in this chapter.

REFERENCES

Adamo, D., Khan, M. K., Koppula, S., & Bryce, R. (2018). Reinforcement learning for
android GUI testing. A-TEST 2018 - Proceedings of the 9th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection, and
Evaluation, Co-Located with FSE 2018, 2-8.
https://doi.org/10.1145/3278186.3278187

Ahmad, J. (2018). Multifactor Approach to Prioritize Event Sequence Test Cases.

Al-Ahmad, B. I., Altaharwa, I., Alkhawaldeh, R. S., Alazzam, |. M., & Ghatasheh, N.
A. (2021). Jacoco-coverage based statistical approach for ranking and selecting
key classes in object-oriented software. Journal of Engineering Science and
Technology, 16(4), 3358-3386.

Aljahdali, S. H., Ghiduk, A. S., & El-Telbany, M. (2010). The limitations of genetic
algorithms in software testing. 2010 ACS/IEEE International Conference on
Computer ~ Systems and Applications, AICCSA 2010, June.
https://doi.org/10.1109/AICCSA.2010.5586984

Amalfitano, D., Amatucci, N., Fasolino, A. R., Tramontana, P., Kowalczyk, E., &
Memon, A. M. (2015). Exploiting the Saturation Effect in Automatic Random
Testing of Android Applications. Proceedings - 2nd ACM International
Conference on Mobile Software Engineering and Systems, MOBILESoft 2015,
33-43. https://doi.org/10.1109/MobileSoft.2015.11

Amalfitano, D., Riccio, V., Amatucci, N., Simone, V. De, & Fasolino, A. R. (2019).
Combining Automated GUI Exploration of Android apps with Capture and
Replay through Machine Learning. Information and Software Technology,
105(November 2017), 95-116. https://doi.org/10.1016/j.infsof.2018.08.007

Arcuri, A., & Briand, L. (2011). A practical guide for using statistical tests to assess
randomized algorithms in software engineering. Proceedings - International
Conference on Software Engineering, 1-10.
https://doi.org/10.1145/1985793.1985795

Ardito, L., Coppola, R., Leonardi, S., Morisio, M., & Buy, U. (2020). Automated Test
Selection for Android Apps Based on APK and Activity Classification. IEEE
Access, 8, 187648-187670. https://doi.org/10.1109/ACCESS.2020.3029735

Baek, Y. M., & Bae, D. H. (2016). Automated model-based android GUI testing using
multi-level GUI comparison criteria. ASE 2016 - Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
December, 238-249. https://doi.org/10.1145/2970276.2970313

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A Survey on context-aware systems.
Information Systems, 2. https://doi.org/10.1504/1JAHUC.2007.014070

Bauersfeld, S., & Vos, T. (2012). A Reinforcement Learning Approach to Automated

GUI Robustness Testing. In 4th Symposium on Search Based- Software
Engineering (SSBSE2012), 7-12.

89

Butler, C. W., & McCabe, T. J. (2021). Cyclomatic Complexity-Based Encapsulation,
Data Hiding, and Separation of Concerns. Journal of Software Engineering and
Applications, 14(01), 44-66. https://doi.org/10.4236/jsea.2021.141004

Buzdalov, M., & Buzdalova, A. (2013). Adaptive selection of helper-objectives for test
case generation. 2013 IEEE Congress on Evolutionary Computation, CEC
2013, 2245-2250. https://doi.org/10.1109/CEC.2013.6557836

Carino, S., & Andrews, J. H. (2016). Dynamically testing GUIs using ant colony
optimization. Proceedings - 2015 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, 138-148.
https://doi.org/10.1109/ASE.2015.70

Chang, J.-F. (2009). Algorithms And Particle Swarm Optimization Applied.
International Journal of Innovative Computing, Information and Control, 5(12
(B)), 5069-5079.

Chen, T. Y., Kuo, F. C., Merkel, R. G., & Tse, T. H. (2010). Adaptive Random Testing:
The ART of test case diversity. Journal of Systems and Software, 83(1), 60-66.
https://doi.org/10.1016/j.jss.2009.02.022

Chhillar, U., & Bhasin, S. (2011). A New Weighted Composite Complexity Measure for
Object-Oriented Systems. International Journal of Information and

Communication Technology Research, 1(3), 101-108.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.2952&rep=rep
1&type=pdf

Costa, P., Paiva, A. C. R., & Nabuco, M. (2014). Pattern based GUI testing for mobile
applications. Proceedings - 2014 9th International Conference on the Quality
of Information and Communications Technology, QUATIC 2014, 66-74.
https://doi.org/10.1109/QUATIC.2014.16

Dayan, C. J. W. and P. (1992). Q-learning, Machine learning 8 (1992) (pp. 3-4, 279—
292).

De Cleva Farto, G., & Endo, A. T. (2015). Evaluating the model-based testing approach
in the context of mobile applications. Electronic Notes in Theoretical Computer
Science, 314, 3-21. https://doi.org/10.1016/j.entcs.2015.05.002

Dey, A. K., Abowd, G. D., & Salber, D. (2001). A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human-—
Computer Interaction, 16(2-4), 97-166.
https://doi.org/10.1207/S15327051HCI116234_02

Esparcia-Alcézar, A. I., Almenar, F., Martinez, M., Rueda, U., & Vos, T. E. J. (n.d.). Q-
learning strategies for action selection in the TESTAR automated testing tool.
http://www.testar.org

Gomez, L., Neamtiu, I., Azim, T., & Millstein, T. (2013). RERAN: Timing- and touch-
sensitive record and replay for Android. Proceedings - International
Conference on Software Engineering, 72-81.
https://doi.org/10.1109/ICSE.2013.6606553

90

Google. Ul/Application Exerciser ~ Monkey|Android Developers. (2021).
https://developer.android.com/studio/test/ monkey

Google. (2021). Android Overview. https://developer.android.com/
Google Java Format. (2015). https://github.com/google/google-java-format

Gu, T, Cao, C,, Liu, T., Sun, C., Deng, J., Ma, X., & L, J. (2017). AIMDROID:
Activity-insulated multi-level automated testing for android applications.
Proceedings - 2017 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2017, 103-114.
https://doi.org/10.1109/ICSME.2017.72

Halpern, M., Zhu, Y., Peri, R., & Reddi, V. J. (2015). Mosaic: Cross-platform user-
interaction record and replay for the fragmented android ecosystem. ISPASS
2015 - IEEE International Symposium on Performance Analysis of Systems and
Software, 215-224. https://doi.org/10.1109/ISPASS.2015.7095807

Hu, C., & Neamtiu, I. (2011). Automating GUI testing for android applications.
Proceedings - International Conference on Software Engineering, 77-83.
https://doi.org/10.1145/1982595.1982612

Hu, Y., & Neamtiu, I. (2016). VALERA: An effective and efficient record-and-replay
tool for android. Proceedings - International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2016, 285-286.
https://doi.org/10.1145/2897073.2897712

Javaparser. (2008). https://javaparser.org/about.html

Joshi, S., & Orso, a. (2005). Capture and Replay of User Executions to Improve
Software Quality.
http://www.cc.gatech.edu/people/home/orso/papers/joshi.orso. TR06. pdf

Kaasila, J., Ferreira, D., Kostakos, V., & Oijala, T. (2012). Testdroid. 1.
https://doi.org/10.1145/2406367.2406402

Kim, H. K. (2013). Hybrid model based testing for mobile applications. International
Journal of Software Engineering and Its Applications, 7(3), 223-238.

Koppula, & Sreedevi. (2017). Automated GUI Tests Generation for Android Apps Using
Q-Learning. https://search-proquest-
com.proxy.lib.uwaterloo.ca/docview/2008972348/?pg-origsite=primo

Koroglu, Y., & Sen, A. (2018). QBE: QLearning-Based Exploration of Android
Applications. 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), 105-115.
https://doi.org/10.1109/ICST.2018.00020

Koroglu, Y., Sen, A., Muslu, O., Mete, Y., Ulker, C., Tanriverdi, T., & Donmez, Y.
(2018). QBE: QLearning-Based Exploration of Android Applications.
Proceedings - 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation, ICST 2018, 105-115.

91

https://doi.org/10.1109/ICST.2018.00020

Lafi, M., Osman, M. S., & Wasmi, H. A. (2019). Improved Monkey Tool for Random
Testing in Mobile Applications. 2019 IEEE Jordan International Joint
Conference on Electrical Engineering and Information Technology, JEEIT
2019 - Proceedings, 658-662. https://doi.org/10.1109/JEEIT.2019.8717506

Lam, W., Wu, Z., Li, D., Wang, W., Zheng, H., Luo, H., Yan, P., Deng, Y., & Xie, T.
(2017). Record and replay for android: Are we there yet in industrial cases?
Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Part F1301, 854-859. https://doi.org/10.1145/3106237.3117769

Lamsd, T., & Mantyld, M. (2017). Comparison of GUI testing tools for Android
applications. 105.

Leotta, M., Clerissi, D., Ricca, F., & Tonella, P. (2013). Capture-replay vs.
programmable web testing: An empirical assessment during test case evolution.
Proceedings - Working Conference on Reverse Engineering, WCRE, 272-281.
https://doi.org/10.1109/WCRE.2013.6671302

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. https://doi.org/10.1016/S0074-7742(08)60036-7

Li, Y., Yang, Z,, Guo, Y., & Chen, X. (2017). DroidBot: A lightweight Ul-guided test
input generator for android. Proceedings - 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion, ICSE-C 2017, 23-26.
https://doi.org/10.1109/ICSE-C.2017.8

Li, Y., Yang, Z., Guo, Y., & Chen, X. (2019). Humanoid: A deep learning-based
approach to automated black-box android app testing. Proceedings - 2019 34th
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2019, 1070-1073. https://doi.org/10.1109/ASE.2019.00104

Lin, Y. D., Rojas, J. F., Chu, E. T. H., & Lai, Y. C. (2014). On the accuracy, efficiency,
and reusability of automated test oracles for android devices. IEEE
Transactions on Software Engineering, 40(10), 957-970.
https://doi.org/10.1109/TSE.2014.2331982

Liu, C. H.,, Lu, C. Y., Cheng, S. J., Chang, K. Y., Hsiao, Y. C., & Chu, W. M. (2014).
Capture-replay testing for android applications. Proceedings - 2014
International Symposium on Computer, Consumer and Control, 1S3C 2014,
1129-1132. https://doi.org/10.1109/1S3C.2014.293

Liu, Z., Gao, X., & Long, X. (2010). Adaptive random testing of mobile application.
ICCET 2010 - 2010 International Conference on Computer Engineering and
Technology, Proceedings, 2, 297-301.
https://doi.org/10.1109/ICCET.2010.5485442

Luna, J. M. (2021). Introduction to Data Mining. Periodic Pattern Mining: Theory,

Algorithms, and Applications, 1-22. https://doi.org/10.1007/978-981-16-3964-
71

92

Malik, Y. M. (2010). Model Based Testing : An Evaluation.

Mao, K., Harman, M., & Jia, Y. (2016). Sapienz: Multi-objective automated testing for
android applications. ISSTA 2016 - Proceedings of the 25th International
Symposium on Software Testing and Analysis, 94-105.
https://doi.org/10.1145/2931037.2931054

Mariani, L., Pezzé, M., Riganelli, O., & Santoro, M. (2011). AutoBlackTest: A tool for
automatic black-box testing. Proceedings - International Conference on
Software Engineering, January, 1013-1015.
https://doi.org/10.1145/1985793.1985979

Mariani, L., Pezze, M., Riganelli, O., & Santoro, M. (2012). AutoBlackTest: Automatic
black-box testing of interactive applications. Proceedings - IEEE 5th
International Conference on Software Testing, Verification and Validation,
ICST 2012, 81-90. https://doi.org/10.1109/1CST.2012.88

Martin L Puterman. (2014). Markov decision processes: discrete stochastic dynamic
programming. In John Wiley & Sons, 2014 (pp. 3-4, 279-292).

Memon, A., Banerjee, |., & Nagarajan, A. (2003). GUI ripping: Reverse engineering of
graphical user interfaces for testing. Proceedings - Working Conference on
Reverse Engineering, WCRE. https://doi.org/10.1109/WCRE.2003.1287256

Menninghaus, M., Wilke, F., Schleutker, J. P., & Pulvermiller, E. (2017). Search based
GUI test generation in Java comparing code-based and EFG-based optimization
goals. ENASE 2017 - Proceedings of the 12th International Conference on
Evaluation of Novel Approaches to Software Engineering, Enase, 179-186.
https://doi.org/10.5220/0006277801790186

Muangsiri, W., & Takada, S. (2017). Random GUI testing of android application using
behavioral model. Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, SEKE, 266-271.
https://doi.org/10.18293/SEKE2017-099

Nguyen, B. N., Robbins, B., Banerjee, I., & Memon, A. (2014). GUITAR: An innovative
tool for automated testing of GUI-driven software. Automated Software
Engineering. https://doi.org/10.1007/s10515-013-0128-9

Nicola, A. (2016). Automated GUI Testing Techniques For Android Applications.

Prykhodko, S., & Prykhodko, N. (2022). A Technique for Detecting Software Quality
Based on the Confidence and Prediction Intervals of Nonlinear Regression for
RFC Metric. International Scientific and Technical Conference on Computer
Sciences and Information Technologies, 2022-Novem, 499-502.
https://doi.org/10.1109/CSIT56902.2022.10000532

Prykhodko, S., Prykhodko, N., & Smykodub, T. (2022). A Joint Statistical Estimation
of the RFC and CBO Metrics for Open-Source Applications Developed in Java.
International Scientific and Technical Conference on Computer Sciences and
Information Technologies, 2022-Novem, 442-445,
https://doi.org/10.1109/CSIT56902.2022.10000457

93

Rauf, A., Jaffar, A., & Shahid, A. A. (2011). Fully automated gui testing and coverage
analysis using genetic algorithms. International Journal of Innovative
Computing, Information and Control, 7(6), 3281-3294.

Reddivari, S., & Raman, J. (2019). Software quality prediction: An investigation based
on machine learning. Proceedings - 2019 IEEE 20th International Conference
on Information Reuse and Integration for Data Science, IRl 2019, 115-122.
https://doi.org/10.1109/IR1.2019.00030

Regular Expression. (2020). https://www.datakwery.com/techniques/regular-
expressions/.

Richard Hamming. (1950). Error Detecting and Error Correcting Codes. Journal of the
Franklin Institute. https://doi.org/10.1016/s0016-0032(23)90506-5

Riley, G., & Henderson, T. (2010). The ns-3 Network Simulator. In Modeling and Tools
for Network Simulation, ISBN 978-3-642-12330-6. Springer-Verlag Berlin
Heidelberg, 2010, p. 15 (pp. 15-34). https://doi.org/10.1007/978-3-642-12331-
32

Robinson, B., & Brooks, P. (2009). An initial study of customer-reported GUI defects.
IEEE International Conference on Software Testing, Verification, and
Validation Workshops, ICSTW 20009, 267-274.
https://doi.org/10.1109/ICSTW.2009.22

Run Apps on the Android Emulator. (2021).
https://developer.android.com/studio/run/emulator

Sahin, O., Aliyeva, A., Mathavan, H., Coskun, A., & Egele, M. (2019). RANDR: Record
and replay for android applications via targeted runtime instrumentation.
Proceedings - 2019 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, 128-138.
https://doi.org/10.1109/ASE.2019.00022

Statista.com. (2021a). gps-required-apps-share-by-category-worldwide.
https://www.statista.com/statistics/906644/gps-required-apps-share-by-
category-worldwide/

Statista.com. (2021b). Number of apps available in leading app stores as of 4th quarter
2020.

Statista.com. (2021c). Number of mobile app downloads worldwide from 2016 to
2020(in billions).

Statista.com. (2022). share of mobile apps bycategory that require internet access.
https://www.statista.com/statistics/649070/share-of-mobile-apps-by-category-
that-require-internet-access/

Su, T. (2016). FSMdroid: Guided GUI testing of android apps. Proceedings -
International Conference on Software Engineering, May 2016, 689-691.
https://doi.org/10.1145/2889160.2891043

94

Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G,, Liu, Y., & Su, Z. (2017).
Guided, stochastic model-based GUI testing of android apps. Proceedings of
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Part F1301, 245-256. https://doi.org/10.1145/3106237.3106298

Suram, S. (2019). Android App Code Coverage with Manual + Appium automation tests.
https://www.linkedin.com/pulse/android-app-code-coverage-manual-appium-
automation-tests-suram/

Suresh, Y., Pati, J., & Rath, S. K. (2012). Effectiveness of Software Metrics for Object-
oriented System. Procedia Technology, 6, 420-427.
https://doi.org/10.1016/j.protcy.2012.10.050

Vaattovaara, M. (2019). Performance of Model-Based Testing for an Android
Application. October.

Vuong, T., & Takada, S. (2019). Semantic analysis for deep Q-network in android GUI
testing. Proceedings of the International Conference on Software Engineering
and Knowledge Engineering, SEKE, 2019-July, 123-128.
https://doi.org/10.18293/SEKE2019-080

Wang, Y. (2008). Fuzzy Clustering Analysis By Using Genetic Algorithm. ICIC Express
Letters, 2(4), 331—337.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.510.4905&rep

Wijendra, D. R., & Hewagamage, K. P. (2021). Analysis of Cognitive Complexity with
Cyclomatic Complexity Metric of Software. International Journal of Computer
Applications, 174(19), 14-19. https://doi.org/10.5120/ijca2021921066

Witte. (2016). Statistics.

Yan, J., Yan, J., Wu, T., & Zhang, J. (2017). Widget-sensitive and back-stack-aware
GUI exploration for testing android apps. Proceedings - 2017 IEEE
International Conference on Software Quality, Reliability and Security, QRS
2017, 42-53. https://doi.org/10.1109/QRS.2017.14

Yasin, H. N., Hamid, S. H. A., & Yusof, R. J. R. (2021). Droidbotx: Test case generation
tool for android applications using g-learning. Symmetry, 13(2), 1-30.
https://doi.org/10.3390/sym13020310

Zhang, M., & Baddoo, N. (2007). Performance Comparison of Software Complexity

Metrics in an Open Source Project. https://doi.org/10.1007/978-3-540-75381-
015

95

