
© C
OPYRIG

HT U
PM

1

ENHANCED Q-LEARNING ALGORITHM FOR POTENTIAL ACTIONS

SELECTION IN AUTOMATED GRAPHICAL USER INTERFACE TESTING

By

GOH KWANG YI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirements for the Degree of Master of Science

July 2023

 FSKTM 2023 7

© C
OPYRIG

HT U
PM

2

All material contained within the thesis, including without limitation text, logos, icons,

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis for

non-commercial purposes from the copyright holder. Commercial use of material may

only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Master of Science

ENHANCED Q-LEARNING ALGORITHM FOR POTENTIAL ACTIONS

SELECTION IN AUTOMATED GRAPHICAL USER INTERFACE TESTING

By

GOH KWANG YI

July 2023

Chairman : Associate Professor Salmi bt Baharom, PhD

Faculty : Computer Science and Information Technology

Researchers have proposed automated testing tools to minimise the effort and resources

spent on testing GUIs. A relatively simple strategy employed by the proposed tools thus

far is the observe-select-execute approach, where all of a GUI’s actions on its current

state are observed, one action is selected, and the selected action is executed on the

software. The strategy’s key function is to select an action that may achieve new and

desirable GUI states. Due to difficulties in comparing actions, most existing test

generators ignore this step and randomly select an action. However, a randomly selected

action has limitations. It does not test most parts of a GUI within a reasonable amount
of time and there is a high probability that the same actions are re-selected. This reduces

code coverage, thereby resulting in undetected failures. To overcome this limitation, the

Q-Learning algorithm was proposed by several researchers to minimise randomness.

The idea was to change the probability distribution over the sequence space. Instead of

making purely random selections, the least frequently executed action is selected so that

the GUI can be further explored. Q-Learning improve the overall exploration strategy,

but it also presented a weakness. Q-Learning’s reward function assigns the highest value

to the least frequently executed action without taking into consideration its potential

ability in detecting failures. Furthermore, the proposed techniques based on the Q-

Learning algorithm do not consider context-based actions. Thus, these techniques are

unable to detect failures that occur due to the improper use of context data, which is

becoming an increasingly common issue in mobile applications nowadays. We enhanced
the Q-Learning algorithm for action selection based on potential action abilities and

proposed a tool, namely CrashDroid, that allows the automation of testing context-aware

Android applications. We utilized the enhanced Q-Learning algorithm to compare

actions, including context-based actions, to effectively achieve higher code coverage.

An experiment was carried out, and the results collected were analyzed using a non-

parametric statistical test, the Mann-Whitney U test, which indicates the level of

significance between the distributions of data collection. The experimental results

showed that CrashDroid, which employs the technique considering the code complexity

of the action and the use of context data during the test, was more effective than the other

© C
OPYRIG

HT U
PM

ii

automated Android testing tool, AutoDroid, which did not consider the mentioned

metrics.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Master Sains

ALGORITMA PEMBELAJARAN Q DIPERTINGKATKAN UNTUK

PEMILIHAN TINDAKAN BERPOTENSI DALAM PENGUJIAN ANTARA

MUKA PENGGUNA GRAFIK AUTOMATIK

Oleh

GOH KWANG YI

Julai 2023

Pengerusi : Profesor Madya Salmi bt Baharom., PhD

Fakulti : Sains Komputer dan Teknologi Maklumat

Para penyelidik telah mencadangkan alat ujian automatik untuk mengurangkan usaha

dan sumber yang dihabiskan dalam ujian antaramuka pengguna grafik. Strategi yang

digunakan oleh alat-alat yang dicadangkan sejauh ini agak mudah iaitu pemerhatian-

pilih-laksana, di mana semua tindakan antaramuka pengguna grafik pada keadaan

semasa diambil perhatian, satu tindakan dipilih dan tindakan yang dipilih dilaksanakan

pada perisian. Fungsi utama strategi ini adalah untuk memilih tindakan yang boleh

mencapai keadaan antaramuka pengguna grafik yang baru dan diingini. Oleh kerana
kesukaran dalam membandingkan tindakan, kebanyakan penghasil ujian sedia ada

mengabaikan langkah ini dan secara rawak memilih satu tindakan. Walau bagaimanapun,

tindakan yang dipilih secara rawak mempunyai kekurangan. Ia tidak menguji sebahagian

besar bahagian antaramuka pengguna grafik dalam masa yang munasabah dan terdapat

kemungkinan yang tinggi bahawa tindakan yang sama dipilih semula. Ini mengurangkan

liputan kod, dengan itu mengakibatkan kegagalan yang tidak dikesan. Untuk mengatasi

kekurangan ini, algoritma Q-Learning dicadangkan oleh beberapa penyelidik untuk

mengurangkan kebarangkalian rawak. Idea adalah untuk mengubah taburan

kebarangkalian atas ruang urutan. Sebaliknya daripada membuat pilihan secara rawak,

tindakan yang jarang dilaksanakan dipilih agar antaramuka pengguna grafik dapat

dijelajahi lebih lanjut. Q-Learning meningkatkan strategi penerokaan keseluruhan, tetapi

juga mempunyai kelemahan. Fungsi ganjaran Q-Learning memberikan nilai tertinggi
kepada tindakan yang jarang dilaksanakan tanpa mengambil kira kemampuannya yang

berpotensi dalam mengesan kegagalan. Selain itu, teknik yang dicadangkan berdasarkan

algoritma Q-Learning tidak mempertimbangkan tindakan berdasarkan konteks. Oleh itu,

teknik ini tidak dapat mengesan kegagalan yang berlaku kerana penggunaan data

konteks yang tidak betul, yang menjadi isu yang semakin biasa dalam aplikasi mudah

alih pada masa kini. Kami meningkatkan algoritma Q-Learning untuk pemilihan

tindakan berdasarkan kebolehan tindakan yang berpotensi dan mencadangkan satu alat,

yang dinamakan CrashDroid, yang membolehkan automatik ujian aplikasi Android yang

peka konteks dan menggunakan algoritma Q-Learning yang diperkukuhkan untuk

© C
OPYRIG

HT U
PM

iv

membandingkan tindakan, termasuk tindakan berasaskan konteks, untuk mencapai

liputan kod yang lebih tinggi secara efektif. Satu eksperimen dijalankan, dan hasil yang

dikumpulkan dianalisis menggunakan ujian statistik bukan parametrik, ujian Mann-

Whitney U, yang menunjukkan tahap kepentingan di antara distribusi pengumpulan data.

Hasil eksperimen menunjukkan bahawa CrashDroid, yang menggunakan teknik yang

mempertimbangkan kompleksiti kod tindakan dan penggunaan data konteks semasa
ujian, lebih efektif daripada alat ujian Android automatik lain, AutoDroid, yang tidak

mempertimbangkan metrik yang disebutkan.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my three Supervisory Committee

members, ASSOCIATE PROFESSOR DR. SALMI BINTI BAHAROM, DR.

JAMILAH BINTI DIN, and ASSOCIATE PROFESSOR TS. DR. NURFADHLINA

BINTI MOHD SHAREF, for their invaluable guidance, encouragement, and support

throughout the entire research process. Their feedback, expertise, and commitment were

instrumental to the completion of this thesis.

I would also like to thank the Faculty of Computer Science & Information Technology

 at University of Putra Malaysia for providing me with access to the necessary resources,

facilities, and equipment. Their support was critical to the success of this research.

Furthermore, I am grateful to my colleagues and classmates for their valuable insights,

helpful discussions, and support throughout my academic journey. Their contributions
were invaluable to the completion of this work.

I would also like to express my appreciation to my family and friends for their

unwavering love, encouragement, and support throughout my academic career. Their

belief in me sustained me through the challenges of this thesis.

Finally, I would like to acknowledge the countless authors, researchers, and scholars

whose work provided the foundation for this thesis. Their dedication to advancing

knowledge in their respective fields is an inspiration to me and countless others.
Thank you all for your unwavering support and contributions to this thesis.

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the Master of Science. The members of the

Supervisory Committee were as follows:

Salmi binti Baharom, PhD
Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Jamilah binti Din, PhD

Senior Letutrer

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Nurfadhlina binti Mohd Sharef, PhD
Associate Professor Ts.

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 14 March 2024

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1

1.1 Overview 1
1.2 Problem Statement 2

1.3 Research Objective 3

1.4 Research Scope 3

1.5 Research Contributions 4

1.6 Thesis Organization 4

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Automated Android GUI Testing 6

2.2.1 Random Technique 6

2.2.2 Model-based Testing 8
2.2.3 Capture and Replay 10

2.2.4 Genetic Algorithm 11

2.2.5 Deep Learning 12

2.2.6 Q-Learning 13

2.3 Implication of Literature Review 17

2.4 Q-Learning Algorithm 18

2.4.1 Reward Function, R 19

2.4.2 Q-value Function, Q 19

2.4.3 Action Selection 20

2.4.4 Example 20

2.5 Impact of Code Complexity Metric in Weight Calculation of

Widget 23
2.6 Distance Algorithm 24

2.7 Context-Aware Mobile Applications 25

2.8 Overview of Android Structure 25

2.8.1 Android Project Structure 26

2.8.2 Android Activity and Fragment Life Cycle 27

2.9 Tools and Plugins in Application Testing 29

2.10 Assessment of GUI Testing Technique and Tools 30

2.10.1 Application Under Test 30

2.10.2 Experiment Setup 31

© C
OPYRIG

HT U
PM

xi

2.10.3 Evaluation Metrics 31

2.11 Summary 32

3 RESEARCH METHODOLOGY 33

3.1 Introduction 33

3.2 Phase 1: Conduct Literature Review 34
3.3 Phase 2: Q-Learning Enhancement and Prototype

Development 35

3.3.1 Enhanced Q-Learning Algorithm 36

3.3.2 Potential Action Calculation 36

3.3.3 Prototype Development 36

3.4 Phase 3: Research Evaluation 37

3.5 Summary 39

4 THE ENHANCEMENT OF Q-LEARNING AND

IMPLEMENTATION OF CRASHDROID 40

4.1 Introduction 40

4.2 Enhancement of Q-Learning Algorithm 40
4.3 Implementation of Enhancement Algorithm in CrashDroid 41

4.4 Pre-Testing Phase 42

4.4.1 APK Extraction 43

4.4.2 Code Formatting 44

4.4.3 XML File Scanning 44

4.4.4 Java File Scanning 46

4.4.5 Total Weight Calculation 52

4.4.5.1 Weight Calculation Process 53

4.4.5.2 The Response for Class (RFC) weight of

an action 54

4.4.5.3 The Cyclomatic Complexity (CC) weight
of an action 54

4.4.5.4 The Network-related Function weight of

an action 55

4.4.5.5 The GPS-related Function weight of an

action 55

4.4.5.6 Total Weight 56

4.5 Testing Phase 57

4.5.1 Q-Learning on Testing Phase 60

4.5.1.1 Reward Function 60

4.5.1.2 Q-value Function 61

4.5.2 Jaccard Distance on Testing Phase 61

4.5.2.1 Jaccard Distance Calculation Process 62
4.5.3 Use case with enhanced of Q-Learning algorithm 66

4.5.4 Test Report 69

4.6 Summary 70

5 RESULTS AND DISCUSSION 71

5.1 Introduction 71

5.2 Assessment Approach 72

5.3 Experimental Definition 73

5.4 Experiment Setup 73

© C
OPYRIG

HT U
PM

xii

5.4.1 AUT Selection 73

5.4.2 Test Parameter 74

5.4.3 Test Environment 75

5.4.4 Test Suites Generation 75

5.4.5 Selection of Tool for Comparison 75

5.5 Experiment Procedure 75
5.6 Data Interpretation & Analysis 76

5.6.1 Percentage of Code Coverage 76

5.6.2 Number of Crashes 80

5.7 Threats to Validity 82

5.8 Analysis of Results in Relation to the Problem Statemen 83

5.9 Summary 84

6 CONCLUSION AND FURTHER RESEARCH 85

6.1 Introduction 85

6.2 Summary of the research 85

6.3 Contributions of the research 87

6.4 Limitation of the Study 87
6.5 Recommendation for further research 88

REFERENCES 89

BIODATA OF STUDENT 96

LIST OF PUBLICATIONS 97

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

2.1 Summary of techniques 15

2.2 Comparison of GUI Testing Technique 18

2.3 Q-value calculation based on the sample application 22

2.4 Activity Lifecycle 29

2.5 Fragment Lifecycle 29

4.1 Actions and their corresponding metric values 53

4.2 Actions and their corresponding metric weights 56

4.3 Total Weights and Initial Q-Values of Actions 62

4.4 Initial Q-values of Actions 67

4.5 Examples of rewards and Q-values for six episodes 68

5.1 Test Result of Code Complexity Metrics 72

5.2 List of AUT 74

5.3 The Experiment Parameters 74

5.4 Test Result of CrashDroid 77

5.5 Test Result of AutoDroid 77

5.6 Mean of data collected and different of mean 79

5.7 Crash result of CrashDroid 81

5.8 Crash result of AutoDroid 81

5.9 Data Collection 82

© C
OPYRIG

HT U
PM

xiv

LIST OF FIGURES

Figure Page

2.1 Process of GA 11

2.2 Example of Android application represented in term of states and

actions 20

2.3 Example of the relationship between JAVA and XML layout file 27

2.4 Android activity lifecycle and Android fragment lifecycle 28

3.1 Research Methodology 34

3.2 Interface of the Loaned application 35

3.3 Overview of Experimental Process 38

4.1 Enhanced Q-Learning algorithm 40

4.2 An Android application represented in terms of states and actions 41

4.3 Overview diagram of CrashDroid 42

4.4 The steps of the pre-testing phase 43

4.5 Two sets of codes in different formats with the same functionality 44

4.6 Sample of an XML layout file in an Android application 45

4.7 Pictorial representation of how CrashDroid saves the XML file data 45

4.8 Example of a search pattern 46

4.9 Example of extraction of function details from a Java class 47

4.10 Android activity lifecycle and Android fragment lifecycle 48

4.11 Pictorial representation of how CrashDroid saves the function details 49

4.12 Sample code of onCreate function 49

4.13 Sample code of action being tied to a listener content. 50

4.14 Another sample for coding the OnClickListener function 51

4.15 Pictorial representation of how CrashDroid saves the information

collected 52

4.16 The process of checking required tools 58

© C
OPYRIG

HT U
PM

xv

4.17 The testing phase process 59

4.18 An AUT represented in terms of states and actions 62

4.19 Source codes for a0 and b0 64

4.20 Sources code for a0 and b1 65

4.21 An example application in terms of states and actions 66

4.22 Example of test report 69

5.1 Experiment Procedure 76

5.2 Box plot of collected data 78

5.3 Mean of two approaches 78

5.4 Histogram 79

5.5 Box plot of collected crash data 82

© C
OPYRIG

HT U
PM

xvi

LIST OF ABBREVIATIONS

GUI Graphical User Interface

AUT Application Under Test

XML Extensible Markup Language

GA Genetic Algorithm

REGEX Regular Expression

OS Operating System

App Application

CPU Central Processing Unit

UI User Interface

VB Visual Basic

APK Android Package Kit

MDP Markov Decision Processes

ADB Android Debug Bridge

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

1.1 Overview

Smartphones have become a crucial part of our lifestyles. Mobile applications have

transformed the way we perform daily activities, whether ordering food, booking a flight,

paying bills, or chatting with friends. Considering the fact that 3.2 billion smartphones
were sold, 8.3 billion mobile subscriptions were registered, more than 3.14 million

applications were developed, and 204 billion applications were downloaded worldwide

in 2019 (Statista.com, 2021b, 2021c), the significance of testing should not be neglected

for quality assurance purposes.

Graphic user interface also known as GUI allows users to operate the application

functions easily. The better the GUI, the easier the user interacts with the mobile

application. Hence, mobile applications GUI is one of the important factors of mobile

application success. Because of that, GUI testing often replaces system testing. Testing

GUIs involves creating sequences of GUI events that exercise GUI widgets (i.e., test

cases), executing those events (i.e., test execution) and monitoring resulting changes to

the software state (i.e., test oracle) (Memon et al., 2003; Nguyen et al., 2014). Even

though the creation of test cases is associated with GUI widgets, research has shown that

GUI testing is efficient at finding both non-GUI and GUI errors (Robinson & Brooks,

2009). This is because the test cases not only execute GUI codes but also non-GUI codes.

GUI testing can be used to identify security flaws, crashes and exceptions that occur
while using mobile applications. All of these necessitate simulating user behaviors

within the software and therefore automatic GUI testing needs to mimic human

interaction with the GUI widgets. However, GUI testing is costly and time consuming,

thus it will cause the overall development cost and development man days to increase.

Therefore, researchers have proposed automated testing tools to minimize the effort and

resources spent on testing GUIs. A lot of research had been done by the researchers

which implemented various types of techniques like random technique, model based and

capture & replay in their proposed automated testing tools. However, techniques like

model based and capture & replay still require human intervention, so there are still

many researchers who prefer random techniques (Ardito et al., 2020). Most of these

proposed automated testing tools that implement random techniques use a relatively

simple strategy which is the observe-select-execute approach. The strategy starts by
launching the application under test (AUT) and then proceeds by observing the GUI

actions on the AUT’s current state, selecting an action from those observed actions, and

executing the selected action. The strategy’s key function is to select an action that may

achieve new and desirable GUI states.

Due to difficulties in comparing actions, most existing tools ignore this strategy’s key

functions and randomly select an action. However, a randomly selected action has

limitations due to most GUIs having numerous and deeply nested actions. It does not

test most parts of a GUI within a reasonable amount of time and re-selection of the same

actions is quite likely to occur. Several researchers (Bauersfeld & Vos, 2012; Buzdalov

© C
OPYRIG

HT U
PM

2

& Buzdalova, 2013; Carino & Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012)

have adopted Q-Learning algorithm in their automated testing tools to overcome these

limitations. The behavior of action reward in Q-Learning further explores the GUI by

selecting the least frequently executed action instead of making purely random selections.

The prospect of discovery in such an approach is considered more “interesting” to a

tester. However, these techniques select an action based solely on its execution
frequency without considering its potential ability to detect and reveal failures. For

example, let’s compare tapping a button to submit data to a database and tapping a button

to reset data within the interface. If both these tapping actions have never been executed,

the probability of each action being selected would be equal if the selection is based

solely on the execution frequency. However, the former button executes a complex code

that might involve data transmission over the network and multiple servers. Hence, from

a tester’s point of view, the action has a more significant potential for bringing more

interesting results than the latter.

Furthermore, these techniques do not consider context-aware applications, therefore they

may not detect defects that occur due to the improper use of context data. This is ongoing

research that aims to propose a testing tool that can automatically GUI test Android

applications. The Android platform is selected as it is the most popular mobile operating

system in the world. As of July 2017, the number of available applications available on

Google Play Store is 2.95 billion (Nguyen et al., 2014). Its popularity among developers

is owing to the accessible development environment that is based on the familiar Java
programming language as well as the availability of open-source libraries implementing

diverse functionalities that accelerate the development process.

1.2 Problem Statement

Due to the fact that, the increase of the popularity of mobile application (Statista.com,

2021b, 2021c), the GUI testing of mobile application getting important to maintain the

application quality (Robinson & Brooks, 2009). However, GUI testing requires huge

resources and cost, hence building a tool to automate the testing process is becoming the

trend.

There are a lot of past research which implemented automated testing tools with various

types of techniques such as random, model based and capture & replay. Among these

three techniques, many researchers prefer random technique, because random technique

requires lower user intervention compared to the other two techniques (Muangsiri &
Takada, 2017). Other than that, the biasness of the tester when creating the model or

recording the test script, which resulting in low significant defect-finding power (Ardito

et al., 2020) is one of the reasons that researchers prefer random technique. But, due to

the nature of random technique and most GUIs have numerous and deeply nested actions,

automated testing tools that implement random technique do not test most parts of a GUI

within a reasonable amount of time. Besides that, there is a high probability for re-

selection of same actions to be occured with the automated testing tools which

implement random technique.

© C
OPYRIG

HT U
PM

3

Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino &

Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning

algorithm in their automated testing tools and it show better results to improve the

random exploration strategy. The core of using Q-Learning is to intelligently guide the

action selection with the purpose to favor exploration of the GUI which reduces the

redundant execution of events and increases coverage.

However, a common limitation to these techniques is that the reward function assigns

the highest reward when the action is executed for the first time to maximize coverage

or locate crashes. The selection of action is only based on the least executed action

without taking into consideration that some actions are more potential than others with
respect to testing (Adamo et al., 2018). For example, once completed a form to add a

new event in a personal agenda, the application usually displays the entire calendar,

producing a major change in terms of displayed widgets, and enabling many new actions

to be tested. On the contrary, actions like filling text areas or clicking on combo boxes

cause small changes of the GUI state and are thus less potential to be tested. Other than

that, the existing implementations also do not take context aware applications into

consideration. Therefore, there is a need to further investigate the adoption of Q-

Learning in GUI testing to improve coverage and crash detection by selecting potential

actions and consider context of the actions.

1.3 Research Objective

This research objectives that are addressed in this thesis are as follows:

1. To propose an action selection algorithm based on actions potentials abilities.

2. To implement the proposed action selection algorithm into an automated GUI

testing tool.

3. To evaluate the effectiveness of the proposed action selection algorithm.

1.4 Research Scope

Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino &

Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning

algorithm in their automated testing tools to overcome the limitation of the random

algorithm. However, their techniques select an action based solely on its execution
frequency without considering the code complexity. Besides that, these techniques also

do not consider context-aware action, therefore they may not detect defects that occur

due to the improper use of context data. Our research focuses on:

1. Improving the exploration strategy of the Q-Learning algorithm by proposing

a technique to calculate the action weight based on the code complexity.

2. Propose a technique to consider context data when calculating the action

weight, but only focus on WIFI and GPS.

© C
OPYRIG

HT U
PM

4

3. Development an automated testing tool for android application.

4. Determine which code complexity metric to use to measure the action weight.

5. Include Jaccard Distance in the enhancement of algorithm.

1.5 Research Contributions

This research aimed to improve the exploration strategy of the Q-Learning algorithm

based on the gaps left by previous work in this field. Based on the limitations and gaps,

this research has made the following contributions:

● It provides an algorithm for selecting potential actions (Adamo et al., 2018).

● It implemented automated Android testing tools which consider the code

complexity of the action and the use of context data.

● It provides empirical evidence based on the comparisons made between
previous study by Adamo et al. (Adamo et al., 2018) and our implemented

automated Android testing tools. The measurement uses the same AUTs and

same action selection algorithm which is Q-Learning, but different

approaches in selecting an action.

● The proposed action selection algorithm, implemented in an automated GUI

testing tool, offers substantial benefits to software developers, quality

assurance teams, and stakeholders involved in the mobile application

development lifecycle. By enhancing testing efficiency and effectiveness, the

contribution ensures that developers can release more robust and reliable
mobile applications, QA teams can streamline their testing processes, and

stakeholders can have increased confidence in the overall quality of the

deployed applications, ultimately fostering a more successful and user-

friendly mobile app ecosystem.

1.6 Thesis Organization

The thesis comprises seven chapters. The first chapter consists of the introduction of this

research. Hence, the research problem, the objective and scope, as well as the

contributions of this research are also described in the first chapter.

The second chapter presents the detailed study of the existing automated testing

technique. The research background, which consisted of the issues that have been left

out by the existing works, are discussed in detail in this chapter. The knowledge gaps

left by previous works are also highlighted in this chapter.

The third chapter presents the methodology involved in this research. The research

methods, materials or resources, and the deliverables obtained throughout the phases are

explained in this chapter. Generally, this chapter highlights the three phases that have

been previously defined, namely, the definition of the analysis and problems, the design

© C
OPYRIG

HT U
PM

5

and development of the tool to support the proposed approach, and finally, the evaluation

phase involved in producing the empirical result.

The fourth chapter describes the implementation of the testing tool, which involves the

four criteria in calculating the action weight. This chapter discusses in detail how each

criterion was processed during the tool execution phase.

The fifth chapter presents the experimental procedure and the results of the experiments.

It provides statistical analysis using the Mann-Whitney U test.

The final chapter is Chapter Six, which consists of the conclusion and future works for

this research. Some suggestions for future work that can be investigated by future

researchers are explained in this chapter.

© C
OPYRIG

HT U
PM

89

7 REFERENCES

Adamo, D., Khan, M. K., Koppula, S., & Bryce, R. (2018). Reinforcement learning for

android GUI testing. A-TEST 2018 - Proceedings of the 9th ACM SIGSOFT

International Workshop on Automating TEST Case Design, Selection, and

Evaluation, Co-Located with FSE 2018, 2–8.

https://doi.org/10.1145/3278186.3278187

Ahmad, J. (2018). Multifactor Approach to Prioritize Event Sequence Test Cases.

Al-Ahmad, B. I., Altaharwa, I., Alkhawaldeh, R. S., Alazzam, I. M., & Ghatasheh, N.

A. (2021). Jacoco-coverage based statistical approach for ranking and selecting

key classes in object-oriented software. Journal of Engineering Science and

Technology, 16(4), 3358–3386.

Aljahdali, S. H., Ghiduk, A. S., & El-Telbany, M. (2010). The limitations of genetic

algorithms in software testing. 2010 ACS/IEEE International Conference on

Computer Systems and Applications, AICCSA 2010, June.

https://doi.org/10.1109/AICCSA.2010.5586984

Amalfitano, D., Amatucci, N., Fasolino, A. R., Tramontana, P., Kowalczyk, E., &

Memon, A. M. (2015). Exploiting the Saturation Effect in Automatic Random

Testing of Android Applications. Proceedings - 2nd ACM International
Conference on Mobile Software Engineering and Systems, MOBILESoft 2015,

33–43. https://doi.org/10.1109/MobileSoft.2015.11

Amalfitano, D., Riccio, V., Amatucci, N., Simone, V. De, & Fasolino, A. R. (2019).

Combining Automated GUI Exploration of Android apps with Capture and

Replay through Machine Learning. Information and Software Technology,

105(November 2017), 95–116. https://doi.org/10.1016/j.infsof.2018.08.007

Arcuri, A., & Briand, L. (2011). A practical guide for using statistical tests to assess

randomized algorithms in software engineering. Proceedings - International

Conference on Software Engineering, 1–10.

https://doi.org/10.1145/1985793.1985795

Ardito, L., Coppola, R., Leonardi, S., Morisio, M., & Buy, U. (2020). Automated Test
Selection for Android Apps Based on APK and Activity Classification. IEEE

Access, 8, 187648–187670. https://doi.org/10.1109/ACCESS.2020.3029735

Baek, Y. M., & Bae, D. H. (2016). Automated model-based android GUI testing using

multi-level GUI comparison criteria. ASE 2016 - Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering,

December, 238–249. https://doi.org/10.1145/2970276.2970313

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A Survey on context-aware systems.

Information Systems, 2. https://doi.org/10.1504/IJAHUC.2007.014070

Bauersfeld, S., & Vos, T. (2012). A Reinforcement Learning Approach to Automated

GUI Robustness Testing. In 4th Symposium on Search Based- Software

Engineering (SSBSE2012), 7–12.

© C
OPYRIG

HT U
PM

90

Butler, C. W., & McCabe, T. J. (2021). Cyclomatic Complexity-Based Encapsulation,

Data Hiding, and Separation of Concerns. Journal of Software Engineering and

Applications, 14(01), 44–66. https://doi.org/10.4236/jsea.2021.141004

Buzdalov, M., & Buzdalova, A. (2013). Adaptive selection of helper-objectives for test

case generation. 2013 IEEE Congress on Evolutionary Computation, CEC

2013, 2245–2250. https://doi.org/10.1109/CEC.2013.6557836

Carino, S., & Andrews, J. H. (2016). Dynamically testing GUIs using ant colony

optimization. Proceedings - 2015 30th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2015, 138–148.

https://doi.org/10.1109/ASE.2015.70

Chang, J.-F. (2009). Algorithms And Particle Swarm Optimization Applied.

International Journal of Innovative Computing, Information and Control, 5(12

(B)), 5069–5079.

Chen, T. Y., Kuo, F. C., Merkel, R. G., & Tse, T. H. (2010). Adaptive Random Testing:
The ART of test case diversity. Journal of Systems and Software, 83(1), 60–66.

https://doi.org/10.1016/j.jss.2009.02.022

Chhillar, U., & Bhasin, S. (2011). A New Weighted Composite Complexity Measure for

Object-Oriented Systems. International Journal of Information and

Communication Technology Research, 1(3), 101–108.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.2952&rep=rep

1&type=pdf

Costa, P., Paiva, A. C. R., & Nabuco, M. (2014). Pattern based GUI testing for mobile

applications. Proceedings - 2014 9th International Conference on the Quality

of Information and Communications Technology, QUATIC 2014, 66–74.

https://doi.org/10.1109/QUATIC.2014.16

Dayan, C. J. W. and P. (1992). Q-learning, Machine learning 8 (1992) (pp. 3–4, 279–

292).

De Cleva Farto, G., & Endo, A. T. (2015). Evaluating the model-based testing approach

in the context of mobile applications. Electronic Notes in Theoretical Computer

Science, 314, 3–21. https://doi.org/10.1016/j.entcs.2015.05.002

Dey, A. K., Abowd, G. D., & Salber, D. (2001). A Conceptual Framework and a Toolkit

for Supporting the Rapid Prototyping of Context-Aware Applications. Human–

Computer Interaction, 16(2–4), 97–166.

https://doi.org/10.1207/S15327051HCI16234_02

Esparcia-Alcázar, A. I., Almenar, F., Martínez, M., Rueda, U., & Vos, T. E. J. (n.d.). Q-

learning strategies for action selection in the TESTAR automated testing tool.

http://www.testar.org

Gomez, L., Neamtiu, I., Azim, T., & Millstein, T. (2013). RERAN: Timing- and touch-

sensitive record and replay for Android. Proceedings - International

Conference on Software Engineering, 72–81.

https://doi.org/10.1109/ICSE.2013.6606553

© C
OPYRIG

HT U
PM

91

Google. UI/Application Exerciser Monkey|Android Developers. (2021).

https://developer.android.com/studio/test/ monkey

Google. (2021). Android Overview. https://developer.android.com/

Google Java Format. (2015). https://github.com/google/google-java-format

Gu, T., Cao, C., Liu, T., Sun, C., Deng, J., Ma, X., & Lü, J. (2017). AIMDROID:

Activity-insulated multi-level automated testing for android applications.
Proceedings - 2017 IEEE International Conference on Software Maintenance

and Evolution, ICSME 2017, 103–114.

https://doi.org/10.1109/ICSME.2017.72

Halpern, M., Zhu, Y., Peri, R., & Reddi, V. J. (2015). Mosaic: Cross-platform user-

interaction record and replay for the fragmented android ecosystem. ISPASS

2015 - IEEE International Symposium on Performance Analysis of Systems and

Software, 215–224. https://doi.org/10.1109/ISPASS.2015.7095807

Hu, C., & Neamtiu, I. (2011). Automating GUI testing for android applications.

Proceedings - International Conference on Software Engineering, 77–83.

https://doi.org/10.1145/1982595.1982612

Hu, Y., & Neamtiu, I. (2016). VALERA: An effective and efficient record-and-replay

tool for android. Proceedings - International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2016, 285–286.

https://doi.org/10.1145/2897073.2897712

Javaparser. (2008). https://javaparser.org/about.html

Joshi, S., & Orso, a. (2005). Capture and Replay of User Executions to Improve

Software Quality.

http://www.cc.gatech.edu/people/home/orso/papers/joshi.orso.TR06.pdf

Kaasila, J., Ferreira, D., Kostakos, V., & Ojala, T. (2012). Testdroid. 1.

https://doi.org/10.1145/2406367.2406402

Kim, H. K. (2013). Hybrid model based testing for mobile applications. International

Journal of Software Engineering and Its Applications, 7(3), 223–238.

Koppula, & Sreedevi. (2017). Automated GUI Tests Generation for Android Apps Using

Q-Learning. https://search-proquest-

com.proxy.lib.uwaterloo.ca/docview/2008972348/?pq-origsite=primo

Koroglu, Y., & Sen, A. (2018). QBE : QLearning-Based Exploration of Android

Applications. 2018 IEEE 11th International Conference on Software Testing,

Verification and Validation (ICST), 105–115.

https://doi.org/10.1109/ICST.2018.00020

Koroglu, Y., Sen, A., Muslu, O., Mete, Y., Ulker, C., Tanriverdi, T., & Donmez, Y.

(2018). QBE: QLearning-Based Exploration of Android Applications.
Proceedings - 2018 IEEE 11th International Conference on Software Testing,

Verification and Validation, ICST 2018, 105–115.

© C
OPYRIG

HT U
PM

92

https://doi.org/10.1109/ICST.2018.00020

Lafi, M., Osman, M. S., & Wasmi, H. A. (2019). Improved Monkey Tool for Random
Testing in Mobile Applications. 2019 IEEE Jordan International Joint

Conference on Electrical Engineering and Information Technology, JEEIT

2019 - Proceedings, 658–662. https://doi.org/10.1109/JEEIT.2019.8717506

Lam, W., Wu, Z., Li, D., Wang, W., Zheng, H., Luo, H., Yan, P., Deng, Y., & Xie, T.

(2017). Record and replay for android: Are we there yet in industrial cases?

Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, Part F1301, 854–859. https://doi.org/10.1145/3106237.3117769

Lämsä, T., & Mäntylä, M. (2017). Comparison of GUI testing tools for Android

applications. 105.

Leotta, M., Clerissi, D., Ricca, F., & Tonella, P. (2013). Capture-replay vs.

programmable web testing: An empirical assessment during test case evolution.

Proceedings - Working Conference on Reverse Engineering, WCRE, 272–281.
https://doi.org/10.1109/WCRE.2013.6671302

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. https://doi.org/10.1016/S0074-7742(08)60036-7

Li, Y., Yang, Z., Guo, Y., & Chen, X. (2017). DroidBot: A lightweight UI-guided test
input generator for android. Proceedings - 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion, ICSE-C 2017, 23–26.

https://doi.org/10.1109/ICSE-C.2017.8

Li, Y., Yang, Z., Guo, Y., & Chen, X. (2019). Humanoid: A deep learning-based

approach to automated black-box android app testing. Proceedings - 2019 34th

IEEE/ACM International Conference on Automated Software Engineering,

ASE 2019, 1070–1073. https://doi.org/10.1109/ASE.2019.00104

Lin, Y. D., Rojas, J. F., Chu, E. T. H., & Lai, Y. C. (2014). On the accuracy, efficiency,

and reusability of automated test oracles for android devices. IEEE

Transactions on Software Engineering, 40(10), 957–970.

https://doi.org/10.1109/TSE.2014.2331982

Liu, C. H., Lu, C. Y., Cheng, S. J., Chang, K. Y., Hsiao, Y. C., & Chu, W. M. (2014).

Capture-replay testing for android applications. Proceedings - 2014

International Symposium on Computer, Consumer and Control, IS3C 2014,

1129–1132. https://doi.org/10.1109/IS3C.2014.293

Liu, Z., Gao, X., & Long, X. (2010). Adaptive random testing of mobile application.

ICCET 2010 - 2010 International Conference on Computer Engineering and

Technology, Proceedings, 2, 297–301.

https://doi.org/10.1109/ICCET.2010.5485442

Luna, J. M. (2021). Introduction to Data Mining. Periodic Pattern Mining: Theory,

Algorithms, and Applications, 1–22. https://doi.org/10.1007/978-981-16-3964-

7_1

© C
OPYRIG

HT U
PM

93

Malik, Y. M. (2010). Model Based Testing : An Evaluation.

Mao, K., Harman, M., & Jia, Y. (2016). Sapienz: Multi-objective automated testing for
android applications. ISSTA 2016 - Proceedings of the 25th International

Symposium on Software Testing and Analysis, 94–105.

https://doi.org/10.1145/2931037.2931054

Mariani, L., Pezzè, M., Riganelli, O., & Santoro, M. (2011). AutoBlackTest: A tool for

automatic black-box testing. Proceedings - International Conference on

Software Engineering, January, 1013–1015.

https://doi.org/10.1145/1985793.1985979

Mariani, L., Pezzè, M., Riganelli, O., & Santoro, M. (2012). AutoBlackTest: Automatic

black-box testing of interactive applications. Proceedings - IEEE 5th

International Conference on Software Testing, Verification and Validation,

ICST 2012, 81–90. https://doi.org/10.1109/ICST.2012.88

Martin L Puterman. (2014). Markov decision processes: discrete stochastic dynamic
programming. In John Wiley & Sons, 2014 (pp. 3–4, 279–292).

Memon, A., Banerjee, I., & Nagarajan, A. (2003). GUI ripping: Reverse engineering of

graphical user interfaces for testing. Proceedings - Working Conference on

Reverse Engineering, WCRE. https://doi.org/10.1109/WCRE.2003.1287256

Menninghaus, M., Wilke, F., Schleutker, J. P., & Pulvermüller, E. (2017). Search based

GUI test generation in Java comparing code-based and EFG-based optimization

goals. ENASE 2017 - Proceedings of the 12th International Conference on

Evaluation of Novel Approaches to Software Engineering, Enase, 179–186.

https://doi.org/10.5220/0006277801790186

Muangsiri, W., & Takada, S. (2017). Random GUI testing of android application using

behavioral model. Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, SEKE, 266–271.

https://doi.org/10.18293/SEKE2017-099

Nguyen, B. N., Robbins, B., Banerjee, I., & Memon, A. (2014). GUITAR: An innovative

tool for automated testing of GUI-driven software. Automated Software

Engineering. https://doi.org/10.1007/s10515-013-0128-9

Nicola, A. (2016). Automated GUI Testing Techniques For Android Applications.

Prykhodko, S., & Prykhodko, N. (2022). A Technique for Detecting Software Quality

Based on the Confidence and Prediction Intervals of Nonlinear Regression for

RFC Metric. International Scientific and Technical Conference on Computer

Sciences and Information Technologies, 2022-Novem, 499–502.

https://doi.org/10.1109/CSIT56902.2022.10000532

Prykhodko, S., Prykhodko, N., & Smykodub, T. (2022). A Joint Statistical Estimation

of the RFC and CBO Metrics for Open-Source Applications Developed in Java.

International Scientific and Technical Conference on Computer Sciences and

Information Technologies, 2022-Novem, 442–445.

https://doi.org/10.1109/CSIT56902.2022.10000457

© C
OPYRIG

HT U
PM

94

Rauf, A., Jaffar, A., & Shahid, A. A. (2011). Fully automated gui testing and coverage

analysis using genetic algorithms. International Journal of Innovative

Computing, Information and Control, 7(6), 3281–3294.

Reddivari, S., & Raman, J. (2019). Software quality prediction: An investigation based

on machine learning. Proceedings - 2019 IEEE 20th International Conference

on Information Reuse and Integration for Data Science, IRI 2019, 115–122.

https://doi.org/10.1109/IRI.2019.00030

Regular Expression. (2020). https://www.datakwery.com/techniques/regular-

expressions/.

Richard Hamming. (1950). Error Detecting and Error Correcting Codes. Journal of the

Franklin Institute. https://doi.org/10.1016/s0016-0032(23)90506-5

Riley, G., & Henderson, T. (2010). The ns-3 Network Simulator. In Modeling and Tools

for Network Simulation, ISBN 978-3-642-12330-6. Springer-Verlag Berlin

Heidelberg, 2010, p. 15 (pp. 15–34). https://doi.org/10.1007/978-3-642-12331-
3_2

Robinson, B., & Brooks, P. (2009). An initial study of customer-reported GUI defects.

IEEE International Conference on Software Testing, Verification, and

Validation Workshops, ICSTW 2009, 267–274.

https://doi.org/10.1109/ICSTW.2009.22

Run Apps on the Android Emulator. (2021).

https://developer.android.com/studio/run/emulator

Sahin, O., Aliyeva, A., Mathavan, H., Coskun, A., & Egele, M. (2019). RANDR: Record

and replay for android applications via targeted runtime instrumentation.

Proceedings - 2019 34th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2019, 128–138.
https://doi.org/10.1109/ASE.2019.00022

Statista.com. (2021a). gps-required-apps-share-by-category-worldwide.

https://www.statista.com/statistics/906644/gps-required-apps-share-by-

category-worldwide/

Statista.com. (2021b). Number of apps available in leading app stores as of 4th quarter

2020.

Statista.com. (2021c). Number of mobile app downloads worldwide from 2016 to

2020(in billions).

Statista.com. (2022). share of mobile apps bycategory that require internet access.

https://www.statista.com/statistics/649070/share-of-mobile-apps-by-category-

that-require-internet-access/

Su, T. (2016). FSMdroid: Guided GUI testing of android apps. Proceedings -

International Conference on Software Engineering, May 2016, 689–691.

https://doi.org/10.1145/2889160.2891043

© C
OPYRIG

HT U
PM

95

Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y., & Su, Z. (2017).

Guided, stochastic model-based GUI testing of android apps. Proceedings of

the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

Part F1301, 245–256. https://doi.org/10.1145/3106237.3106298

Suram, S. (2019). Android App Code Coverage with Manual + Appium automation tests.

https://www.linkedin.com/pulse/android-app-code-coverage-manual-appium-

automation-tests-suram/

Suresh, Y., Pati, J., & Rath, S. K. (2012). Effectiveness of Software Metrics for Object-

oriented System. Procedia Technology, 6, 420–427.

https://doi.org/10.1016/j.protcy.2012.10.050

Vaattovaara, M. (2019). Performance of Model-Based Testing for an Android

Application. October.

Vuong, T., & Takada, S. (2019). Semantic analysis for deep Q-network in android GUI

testing. Proceedings of the International Conference on Software Engineering
and Knowledge Engineering, SEKE, 2019-July, 123–128.

https://doi.org/10.18293/SEKE2019-080

Wang, Y. (2008). Fuzzy Clustering Analysis By Using Genetic Algorithm. ICIC Express

Letters, 2(4), 331—337.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.510.4905&rep

Wijendra, D. R., & Hewagamage, K. P. (2021). Analysis of Cognitive Complexity with

Cyclomatic Complexity Metric of Software. International Journal of Computer

Applications, 174(19), 14–19. https://doi.org/10.5120/ijca2021921066

Witte. (2016). Statistics.

Yan, J., Yan, J., Wu, T., & Zhang, J. (2017). Widget-sensitive and back-stack-aware

GUI exploration for testing android apps. Proceedings - 2017 IEEE

International Conference on Software Quality, Reliability and Security, QRS

2017, 42–53. https://doi.org/10.1109/QRS.2017.14

Yasin, H. N., Hamid, S. H. A., & Yusof, R. J. R. (2021). Droidbotx: Test case generation

tool for android applications using q-learning. Symmetry, 13(2), 1–30.
https://doi.org/10.3390/sym13020310

Zhang, M., & Baddoo, N. (2007). Performance Comparison of Software Complexity

Metrics in an Open Source Project. https://doi.org/10.1007/978-3-540-75381-

0_15

