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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
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SELECTION IN AUTOMATED GRAPHICAL USER INTERFACE TESTING

By

GOH KWANG Yl

July 2023
Chairman . Associate Professor Salmi bt Baharom, PhD
Faculty : Computer Science and Information Technology

Researchers have proposed automated testing tools to minimise the effort and resources
spent on testing GUIs. A relatively simple strategy employed by the proposed tools thus
far is the observe-select-execute approach, where all of a GUI’s actions on its current
state are observed, one action is selected, and the selected action is executed on the
software. The strategy’s key function is to select an action that may achieve new and
desirable GUI states. Due to difficulties in comparing actions, most existing test
generators ignore this step and randomly select an action. However, a randomly selected
action has limitations. It does not test most parts of a GUI within a reasonable amount
of time and there is a high probability that the same actions are re-selected. This reduces
code coverage, thereby resulting in undetected failures. To overcome this limitation, the
Q-Learning algorithm was proposed by several researchers to minimise randomness.
The idea was to change the probability distribution over the sequence space. Instead of
making purely random selections, the least frequently executed action is selected so that
the GUI can be further explored. Q-Learning improve the overall exploration strategy,
but it also presented a weakness. Q-Learning’s reward function assigns the highest value
to the least frequently executed action without taking into consideration its potential
ability in detecting failures. Furthermore, the proposed techniques based on the Q-
Learning algorithm do not consider context-based actions. Thus, these techniques are
unable to detect failures that occur due to the improper use of context data, which is
becoming an increasingly common issue in mobile applications nowadays. We enhanced
the Q-Learning algorithm for action selection based on potential action abilities and
proposed a tool, namely CrashDroid, that allows the automation of testing context-aware
Android applications. We utilized the enhanced Q-Learning algorithm to compare
actions, including context-based actions, to effectively achieve higher code coverage.
An experiment was carried out, and the results collected were analyzed using a non-
parametric statistical test, the Mann-Whitney U test, which indicates the level of
significance between the distributions of data collection. The experimental results
showed that CrashDroid, which employs the technique considering the code complexity
of the action and the use of context data during the test, was more effective than the other



automated Android testing tool, AutoDroid, which did not consider the mentioned
metrics.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

ALGORITMA PEMBELAJARAN Q DIPERTINGKATKAN UNTUK
PEMILIHAN TINDAKAN BERPOTENSI DALAM PENGUJIAN ANTARA
MUKA PENGGUNA GRAFIK AUTOMATIK

Oleh
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Para penyelidik telah mencadangkan alat ujian automatik untuk mengurangkan usaha
dan sumber yang dihabiskan dalam ujian antaramuka pengguna grafik. Strategi yang
digunakan oleh alat-alat yang dicadangkan sejauh ini agak mudah iaitu pemerhatian-
pilih-laksana, di mana semua tindakan antaramuka pengguna grafik pada keadaan
semasa diambil perhatian, satu tindakan dipilih dan tindakan yang dipilih dilaksanakan
pada perisian. Fungsi utama strategi ini adalah untuk memilih tindakan yang boleh
mencapai keadaan antaramuka pengguna grafik yang baru dan diingini. Oleh kerana
kesukaran dalam membandingkan tindakan, kebanyakan penghasil ujian sedia ada
mengabaikan langkah ini dan secara rawak memilih satu tindakan. Walau bagaimanapun,
tindakan yang dipilih secara rawak mempunyai kekurangan. la tidak menguji sebahagian
besar bahagian antaramuka pengguna grafik dalam masa yang munasabah dan terdapat
kemungkinan yang tinggi bahawa tindakan yang sama dipilih semula. Ini mengurangkan
liputan kod, dengan itu mengakibatkan kegagalan yang tidak dikesan. Untuk mengatasi
kekurangan ini, algoritma Q-Learning dicadangkan oleh beberapa penyelidik untuk
mengurangkan kebarangkalian rawak. Idea adalah untuk mengubah taburan
kebarangkalian atas ruang urutan. Sebaliknya daripada membuat pilihan secara rawak,
tindakan yang jarang dilaksanakan dipilih agar antaramuka pengguna grafik dapat
dijelajahi lebih lanjut. Q-Learning meningkatkan strategi penerokaan keseluruhan, tetapi
juga mempunyai kelemahan. Fungsi ganjaran Q-Learning memberikan nilai tertinggi
kepada tindakan yang jarang dilaksanakan tanpa mengambil kira kemampuannya yang
berpotensi dalam mengesan kegagalan. Selain itu, teknik yang dicadangkan berdasarkan
algoritma Q-Learning tidak mempertimbangkan tindakan berdasarkan konteks. Oleh itu,
teknik ini tidak dapat mengesan kegagalan yang berlaku kerana penggunaan data
konteks yang tidak betul, yang menjadi isu yang semakin biasa dalam aplikasi mudah
alih pada masa kini. Kami meningkatkan algoritma Q-Learning untuk pemilihan
tindakan berdasarkan kebolehan tindakan yang berpotensi dan mencadangkan satu alat,
yang dinamakan CrashDroid, yang membolehkan automatik ujian aplikasi Android yang
peka konteks dan menggunakan algoritma Q-Learning yang diperkukuhkan untuk



membandingkan tindakan, termasuk tindakan berasaskan konteks, untuk mencapai
liputan kod yang lebih tinggi secara efektif. Satu eksperimen dijalankan, dan hasil yang
dikumpulkan dianalisis menggunakan ujian statistik bukan parametrik, ujian Mann-
Whitney U, yang menunjukkan tahap kepentingan di antara distribusi pengumpulan data.
Hasil eksperimen menunjukkan bahawa CrashDroid, yang menggunakan teknik yang
mempertimbangkan kompleksiti kod tindakan dan penggunaan data konteks semasa
ujian, lebih efektif daripada alat ujian Android automatik lain, AutoDroid, yang tidak
mempertimbangkan metrik yang disebutkan.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Smartphones have become a crucial part of our lifestyles. Mobile applications have
transformed the way we perform daily activities, whether ordering food, booking a flight,
paying bills, or chatting with friends. Considering the fact that 3.2 billion smartphones
were sold, 8.3 billion mobile subscriptions were registered, more than 3.14 million
applications were developed, and 204 billion applications were downloaded worldwide
in 2019 (Statista.com, 2021b, 2021c), the significance of testing should not be neglected
for quality assurance purposes.

Graphic user interface also known as GUI allows users to operate the application
functions easily. The better the GUI, the easier the user interacts with the mobile
application. Hence, mobile applications GUI is one of the important factors of mobile
application success. Because of that, GUI testing often replaces system testing. Testing
GUIs involves creating sequences of GUI events that exercise GUI widgets (i.e., test
cases), executing those events (i.e., test execution) and monitoring resulting changes to
the software state (i.e., test oracle) (Memon et al., 2003; Nguyen et al., 2014). Even
though the creation of test cases is associated with GUI widgets, research has shown that
GUI testing is efficient at finding both non-GUI and GUI errors (Robinson & Brooks,
2009). This is because the test cases not only execute GUI codes but also non-GUI codes.
GUI testing can be used to identify security flaws, crashes and exceptions that occur
while using mobile applications. All of these necessitate simulating user behaviors
within the software and therefore automatic GUI testing needs to mimic human
interaction with the GUI widgets. However, GUI testing is costly and time consuming,
thus it will cause the overall development cost and development man days to increase.
Therefore, researchers have proposed automated testing tools to minimize the effort and
resources spent on testing GUIs. A lot of research had been done by the researchers
which implemented various types of techniques like random technique, model based and
capture & replay in their proposed automated testing tools. However, techniques like
model based and capture & replay still require human intervention, so there are still
many researchers who prefer random techniques (Ardito et al., 2020). Most of these
proposed automated testing tools that implement random techniques use a relatively
simple strategy which is the observe-select-execute approach. The strategy starts by
launching the application under test (AUT) and then proceeds by observing the GUI
actions on the AUT’s current state, selecting an action from those observed actions, and
executing the selected action. The strategy’s key function is to select an action that may
achieve new and desirable GUI states.

Due to difficulties in comparing actions, most existing tools ignore this strategy’s key
functions and randomly select an action. However, a randomly selected action has
limitations due to most GUIs having numerous and deeply nested actions. It does not
test most parts of a GUI within a reasonable amount of time and re-selection of the same
actions is quite likely to occur. Several researchers (Bauersfeld & Vos, 2012; Buzdalov
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& Buzdalova, 2013; Carino & Andrews, 2016; Koroglu et al., 2018; Mariani etal., 2012)
have adopted Q-Learning algorithm in their automated testing tools to overcome these
limitations. The behavior of action reward in Q-Learning further explores the GUI by
selecting the least frequently executed action instead of making purely random selections.
The prospect of discovery in such an approach is considered more “interesting” to a
tester. However, these techniques select an action based solely on its execution
frequency without considering its potential ability to detect and reveal failures. For
example, let’s compare tapping a button to submit data to a database and tapping a button
to reset data within the interface. If both these tapping actions have never been executed,
the probability of each action being selected would be equal if the selection is based
solely on the execution frequency. However, the former button executes a complex code
that might involve data transmission over the network and multiple servers. Hence, from
a tester’s point of view, the action has a more significant potential for bringing more
interesting results than the latter.

Furthermore, these techniques do not consider context-aware applications, therefore they
may not detect defects that occur due to the improper use of context data. This is ongoing
research that aims to propose a testing tool that can automatically GUI test Android
applications. The Android platform is selected as it is the most popular mobile operating
system in the world. As of July 2017, the number of available applications available on
Google Play Store is 2.95 billion (Nguyen et al., 2014). Its popularity among developers
is owing to the accessible development environment that is based on the familiar Java
programming language as well as the availability of open-source libraries implementing
diverse functionalities that accelerate the development process.

1.2 Problem Statement

Due to the fact that, the increase of the popularity of mobile application (Statista.com,
2021b, 2021c), the GUI testing of mobile application getting important to maintain the
application quality (Robinson & Brooks, 2009). However, GUI testing requires huge
resources and cost, hence building a tool to automate the testing process is becoming the
trend.

There are a lot of past research which implemented automated testing tools with various
types of techniques such as random, model based and capture & replay. Among these
three techniques, many researchers prefer random technique, because random technique
requires lower user intervention compared to the other two techniques (Muangsiri &
Takada, 2017). Other than that, the biasness of the tester when creating the model or
recording the test script, which resulting in low significant defect-finding power (Ardito
et al., 2020) is one of the reasons that researchers prefer random technique. But, due to
the nature of random technique and most GUIs have numerous and deeply nested actions,
automated testing tools that implement random technique do not test most parts of a GUI
within a reasonable amount of time. Besides that, there is a high probability for re-
selection of same actions to be occured with the automated testing tools which
implement random technique.



Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino &
Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning
algorithm in their automated testing tools and it show better results to improve the
random exploration strategy. The core of using Q-Learning is to intelligently guide the
action selection with the purpose to favor exploration of the GUI which reduces the
redundant execution of events and increases coverage.

However, a common limitation to these techniques is that the reward function assigns
the highest reward when the action is executed for the first time to maximize coverage
or locate crashes. The selection of action is only based on the least executed action
without taking into consideration that some actions are more potential than others with
respect to testing (Adamo et al., 2018). For example, once completed a form to add a
new event in a personal agenda, the application usually displays the entire calendar,
producing a major change in terms of displayed widgets, and enabling many new actions
to be tested. On the contrary, actions like filling text areas or clicking on combo boxes
cause small changes of the GUI state and are thus less potential to be tested. Other than
that, the existing implementations also do not take context aware applications into
consideration. Therefore, there is a need to further investigate the adoption of Q-
Learning in GUI testing to improve coverage and crash detection by selecting potential
actions and consider context of the actions.

1.3 Research Objective

This research objectives that are addressed in this thesis are as follows:

1.  Topropose an action selection algorithm based on actions potentials abilities.

2. Toimplement the proposed action selection algorithm into an automated GUI
testing tool.

3. Toevaluate the effectiveness of the proposed action selection algorithm.

14 Research Scope

Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino &
Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning
algorithm in their automated testing tools to overcome the limitation of the random
algorithm. However, their techniques select an action based solely on its execution
frequency without considering the code complexity. Besides that, these techniques also
do not consider context-aware action, therefore they may not detect defects that occur
due to the improper use of context data. Our research focuses on:

1. Improving the exploration strategy of the Q-Learning algorithm by proposing
a technique to calculate the action weight based on the code complexity.

2. Propose a technique to consider context data when calculating the action
weight, but only focus on WIFI and GPS.



3. Development an automated testing tool for android application.
4. Determine which code complexity metric to use to measure the action weight.

5. Include Jaccard Distance in the enhancement of algorithm.

15 Research Contributions

This research aimed to improve the exploration strategy of the Q-Learning algorithm
based on the gaps left by previous work in this field. Based on the limitations and gaps,
this research has made the following contributions:

° It provides an algorithm for selecting potential actions (Adamo et al., 2018).

) It implemented automated Android testing tools which consider the code
complexity of the action and the use of context data.

) It provides empirical evidence based on the comparisons made between
previous study by Adamo et al. (Adamo et al., 2018) and our implemented
automated Android testing tools. The measurement uses the same AUTSs and
same action selection algorithm which is Q-Learning, but different
approaches in selecting an action.

° The proposed action selection algorithm, implemented in an automated GUI
testing tool, offers substantial benefits to software developers, quality
assurance teams, and stakeholders involved in the mobile application
development lifecycle. By enhancing testing efficiency and effectiveness, the
contribution ensures that developers can release more robust and reliable
mobile applications, QA teams can streamline their testing processes, and
stakeholders can have increased confidence in the overall quality of the
deployed applications, ultimately fostering a more successful and user-
friendly mobile app ecosystem.

1.6 Thesis Organization

The thesis comprises seven chapters. The first chapter consists of the introduction of this
research. Hence, the research problem, the objective and scope, as well as the
contributions of this research are also described in the first chapter.

The second chapter presents the detailed study of the existing automated testing
technique. The research background, which consisted of the issues that have been left
out by the existing works, are discussed in detail in this chapter. The knowledge gaps
left by previous works are also highlighted in this chapter.

The third chapter presents the methodology involved in this research. The research
methods, materials or resources, and the deliverables obtained throughout the phases are
explained in this chapter. Generally, this chapter highlights the three phases that have
been previously defined, namely, the definition of the analysis and problems, the design
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and development of the tool to support the proposed approach, and finally, the evaluation
phase involved in producing the empirical result.

The fourth chapter describes the implementation of the testing tool, which involves the
four criteria in calculating the action weight. This chapter discusses in detail how each
criterion was processed during the tool execution phase.

The fifth chapter presents the experimental procedure and the results of the experiments.
It provides statistical analysis using the Mann-Whitney U test.

The final chapter is Chapter Six, which consists of the conclusion and future works for
this research. Some suggestions for future work that can be investigated by future
researchers are explained in this chapter.
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