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Researchers have proposed automated testing tools to minimise the effort and resources 

spent on testing GUIs. A relatively simple strategy employed by the proposed tools thus 

far is the observe-select-execute approach, where all of a GUI’s actions on its current 

state are observed, one action is selected, and the selected action is executed on the 

software. The strategy’s key function is to select an action that may achieve new and 

desirable GUI states. Due to difficulties in comparing actions, most existing test 

generators ignore this step and randomly select an action. However, a randomly selected 

action has limitations. It does not test most parts of a GUI within a reasonable amount 
of time and there is a high probability that the same actions are re-selected. This reduces 

code coverage, thereby resulting in undetected failures. To overcome this limitation, the 

Q-Learning algorithm was proposed by several researchers to minimise randomness.

The idea was to change the probability distribution over the sequence space. Instead of

making purely random selections, the least frequently executed action is selected so that

the GUI can be further explored. Q-Learning improve the overall exploration strategy,

but it also presented a weakness. Q-Learning’s reward function assigns the highest value

to the least frequently executed action without taking into consideration its potential

ability in detecting failures. Furthermore, the proposed techniques based on the Q-

Learning algorithm do not consider context-based actions. Thus, these techniques are

unable to detect failures that occur due to the improper use of context data, which is

becoming an increasingly common issue in mobile applications nowadays. We enhanced
the Q-Learning algorithm for action selection based on potential action abilities and

proposed a tool, namely CrashDroid, that allows the automation of testing context-aware

Android applications. We utilized the enhanced Q-Learning algorithm to compare

actions, including context-based actions, to effectively achieve higher code coverage.

An experiment was carried out, and the results collected were analyzed using a non-

parametric statistical test, the Mann-Whitney U test, which indicates the level of

significance between the distributions of data collection. The experimental results

showed that CrashDroid, which employs the technique considering the code complexity

of the action and the use of context data during the test, was more effective than the other
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automated Android testing tool, AutoDroid, which did not consider the mentioned 

metrics. 
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Para penyelidik telah mencadangkan alat ujian automatik untuk mengurangkan usaha 

dan sumber yang dihabiskan dalam ujian antaramuka pengguna grafik. Strategi yang 

digunakan oleh alat-alat yang dicadangkan sejauh ini agak mudah iaitu pemerhatian-

pilih-laksana, di mana semua tindakan antaramuka pengguna grafik pada keadaan 

semasa diambil perhatian, satu tindakan dipilih dan tindakan yang dipilih dilaksanakan 

pada perisian. Fungsi utama strategi ini adalah untuk memilih tindakan yang boleh 

mencapai keadaan antaramuka pengguna grafik yang baru dan diingini. Oleh kerana 
kesukaran dalam membandingkan tindakan, kebanyakan penghasil ujian sedia ada 

mengabaikan langkah ini dan secara rawak memilih satu tindakan. Walau bagaimanapun, 

tindakan yang dipilih secara rawak mempunyai kekurangan. Ia tidak menguji sebahagian 

besar bahagian antaramuka pengguna grafik dalam masa yang munasabah dan terdapat 

kemungkinan yang tinggi bahawa tindakan yang sama dipilih semula. Ini mengurangkan 

liputan kod, dengan itu mengakibatkan kegagalan yang tidak dikesan. Untuk mengatasi 

kekurangan ini, algoritma Q-Learning dicadangkan oleh beberapa penyelidik untuk 

mengurangkan kebarangkalian rawak. Idea adalah untuk mengubah taburan 

kebarangkalian atas ruang urutan. Sebaliknya daripada membuat pilihan secara rawak, 

tindakan yang jarang dilaksanakan dipilih agar antaramuka pengguna grafik dapat 

dijelajahi lebih lanjut. Q-Learning meningkatkan strategi penerokaan keseluruhan, tetapi 

juga mempunyai kelemahan. Fungsi ganjaran Q-Learning memberikan nilai tertinggi 
kepada tindakan yang jarang dilaksanakan tanpa mengambil kira kemampuannya yang 

berpotensi dalam mengesan kegagalan. Selain itu, teknik yang dicadangkan berdasarkan 

algoritma Q-Learning tidak mempertimbangkan tindakan berdasarkan konteks. Oleh itu, 

teknik ini tidak dapat mengesan kegagalan yang berlaku kerana penggunaan data 

konteks yang tidak betul, yang menjadi isu yang semakin biasa dalam aplikasi mudah 

alih pada masa kini. Kami meningkatkan algoritma Q-Learning untuk pemilihan 

tindakan berdasarkan kebolehan tindakan yang berpotensi dan mencadangkan satu alat, 

yang dinamakan CrashDroid, yang membolehkan automatik ujian aplikasi Android yang 

peka konteks dan menggunakan algoritma Q-Learning yang diperkukuhkan untuk 
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membandingkan tindakan, termasuk tindakan berasaskan konteks, untuk mencapai 

liputan kod yang lebih tinggi secara efektif. Satu eksperimen dijalankan, dan hasil yang 

dikumpulkan dianalisis menggunakan ujian statistik bukan parametrik, ujian Mann-

Whitney U, yang menunjukkan tahap kepentingan di antara distribusi pengumpulan data. 

Hasil eksperimen menunjukkan bahawa CrashDroid, yang menggunakan teknik yang 

mempertimbangkan kompleksiti kod tindakan dan penggunaan data konteks semasa 
ujian, lebih efektif daripada alat ujian Android automatik lain, AutoDroid, yang tidak 

mempertimbangkan metrik yang disebutkan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Smartphones have become a crucial part of our lifestyles. Mobile applications have 

transformed the way we perform daily activities, whether ordering food, booking a flight, 

paying bills, or chatting with friends. Considering the fact that 3.2 billion smartphones 
were sold, 8.3 billion mobile subscriptions were registered, more than 3.14 million 

applications were developed, and 204 billion applications were downloaded worldwide 

in 2019 (Statista.com, 2021b, 2021c), the significance of testing should not be neglected 

for quality assurance purposes.  

Graphic user interface also known as GUI allows users to operate the application 

functions easily. The better the GUI, the easier the user interacts with the mobile 

application. Hence, mobile applications GUI is one of the important factors of mobile 

application success. Because of that, GUI testing often replaces system testing. Testing 

GUIs involves creating sequences of GUI events that exercise GUI widgets (i.e., test 

cases), executing those events (i.e., test execution) and monitoring resulting changes to 

the software state (i.e., test oracle) (Memon et al., 2003; Nguyen et al., 2014). Even 

though the creation of test cases is associated with GUI widgets, research has shown that 

GUI testing is efficient at finding both non-GUI and GUI errors (Robinson & Brooks, 

2009). This is because the test cases not only execute GUI codes but also non-GUI codes. 

GUI testing can be used to identify security flaws, crashes and exceptions that occur 
while using mobile applications. All of these necessitate simulating user behaviors 

within the software and therefore automatic GUI testing needs to mimic human 

interaction with the GUI widgets. However, GUI testing is costly and time consuming, 

thus it will cause the overall development cost and development man days to increase. 

Therefore, researchers have proposed automated testing tools to minimize the effort and 

resources spent on testing GUIs. A lot of research had been done by the researchers 

which implemented various types of techniques like random technique, model based and 

capture & replay in their proposed automated testing tools. However, techniques like 

model based and capture & replay still require human intervention, so there are still 

many researchers who prefer random techniques (Ardito et al., 2020). Most of these 

proposed automated testing tools that implement random techniques use a relatively 

simple strategy which is the observe-select-execute approach. The strategy starts by 
launching the application under test (AUT) and then proceeds by observing the GUI 

actions on the AUT’s current state, selecting an action from those observed actions, and 

executing the selected action. The strategy’s key function is to select an action that may 

achieve new and desirable GUI states. 

Due to difficulties in comparing actions, most existing tools ignore this strategy’s key 

functions and randomly select an action. However, a randomly selected action has 

limitations due to most GUIs having numerous and deeply nested actions. It does not 

test most parts of a GUI within a reasonable amount of time and re-selection of the same 

actions is quite likely to occur. Several researchers (Bauersfeld & Vos, 2012; Buzdalov 
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& Buzdalova, 2013; Carino & Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) 

have adopted Q-Learning algorithm in their automated testing tools to overcome these 

limitations. The behavior of action reward in Q-Learning further explores the GUI by 

selecting the least frequently executed action instead of making purely random selections. 

The prospect of discovery in such an approach is considered more “interesting” to a 

tester. However, these techniques select an action based solely on its execution 
frequency without considering its potential ability to detect and reveal failures. For 

example, let’s compare tapping a button to submit data to a database and tapping a button 

to reset data within the interface. If both these tapping actions have never been executed, 

the probability of each action being selected would be equal if the selection is based 

solely on the execution frequency. However, the former button executes a complex code 

that might involve data transmission over the network and multiple servers. Hence, from 

a tester’s point of view, the action has a more significant potential for bringing more 

interesting results than the latter.  

Furthermore, these techniques do not consider context-aware applications, therefore they 

may not detect defects that occur due to the improper use of context data. This is ongoing 

research that aims to propose a testing tool that can automatically GUI test Android 

applications. The Android platform is selected as it is the most popular mobile operating 

system in the world. As of July 2017, the number of available applications available on 

Google Play Store is 2.95 billion (Nguyen et al., 2014). Its popularity among developers 

is owing to the accessible development environment that is based on the familiar Java 
programming language as well as the availability of open-source libraries implementing 

diverse functionalities that accelerate the development process.  

1.2 Problem Statement 

Due to the fact that, the increase of the popularity of mobile application (Statista.com, 

2021b, 2021c), the GUI testing of mobile application getting important to maintain the 

application quality (Robinson & Brooks, 2009). However, GUI testing requires huge 

resources and cost, hence building a tool to automate the testing process is becoming the 

trend.  

There are a lot of past research which implemented automated testing tools with various 

types of techniques such as random, model based and capture & replay. Among these 

three techniques, many researchers prefer random technique, because random technique 

requires lower user intervention compared to the other two techniques (Muangsiri & 
Takada, 2017). Other than that, the biasness of the tester when creating the model or 

recording the test script, which resulting in low significant defect-finding power (Ardito 

et al., 2020) is one of the reasons that researchers prefer random technique. But, due to 

the nature of random technique and most GUIs have numerous and deeply nested actions, 

automated testing tools that implement random technique do not test most parts of a GUI 

within a reasonable amount of time. Besides that, there is a high probability for re-

selection of same actions to be occured with the automated testing tools which 

implement random technique.  
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Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino & 

Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning 

algorithm in their automated testing tools and it show better results to improve the 

random exploration strategy. The core of using Q-Learning is to intelligently guide the 

action selection with the purpose to favor exploration of the GUI which reduces the 

redundant execution of events and increases coverage.  

However, a common limitation to these techniques is that the reward function assigns 

the highest reward when the action is executed for the first time to maximize coverage 

or locate crashes. The selection of action is only based on the least executed action 

without taking into consideration that some actions are more potential than others with 
respect to testing (Adamo et al., 2018). For example, once completed a form to add a 

new event in a personal agenda, the application usually displays the entire calendar, 

producing a major change in terms of displayed widgets, and enabling many new actions 

to be tested. On the contrary, actions like filling text areas or clicking on combo boxes 

cause small changes of the GUI state and are thus less potential to be tested. Other than 

that, the existing implementations also do not take context aware applications into 

consideration. Therefore, there is a need to further investigate the adoption of Q-

Learning in GUI testing to improve coverage and crash detection by selecting potential 

actions and consider context of the actions.  

1.3 Research Objective 

This research objectives that are addressed in this thesis are as follows: 

1. To propose an action selection algorithm based on actions potentials abilities.

2. To implement the proposed action selection algorithm into an automated GUI

testing tool.

3. To evaluate the effectiveness of the proposed action selection algorithm.

1.4 Research Scope 

Several researchers (Bauersfeld & Vos, 2012; Buzdalov & Buzdalova, 2013; Carino & 

Andrews, 2016; Koroglu et al., 2018; Mariani et al., 2012) have adopted Q-Learning 

algorithm in their automated testing tools to overcome the limitation of the random 

algorithm. However, their techniques select an action based solely on its execution 
frequency without considering the code complexity. Besides that, these techniques also 

do not consider context-aware action, therefore they may not detect defects that occur 

due to the improper use of context data. Our research focuses on: 

1. Improving the exploration strategy of the Q-Learning algorithm by proposing

a technique to calculate the action weight based on the code complexity.

2. Propose a technique to consider context data when calculating the action

weight, but only focus on WIFI and GPS.
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3. Development an automated testing tool for android application. 

4. Determine which code complexity metric to use to measure the action weight. 

5. Include Jaccard Distance in the enhancement of algorithm. 

 

 

1.5 Research Contributions 

This research aimed to improve the exploration strategy of the Q-Learning algorithm 

based on the gaps left by previous work in this field. Based on the limitations and gaps, 

this research has made the following contributions: 

 

● It provides an algorithm for selecting potential actions (Adamo et al., 2018).  

● It implemented automated Android testing tools which consider the code 

complexity of the action and the use of context data. 

● It provides empirical evidence based on the comparisons made between 
previous study by Adamo et al. (Adamo et al., 2018) and our implemented 

automated Android testing tools. The measurement uses the same AUTs and 

same action selection algorithm which is Q-Learning, but different 

approaches in selecting an action.  

● The proposed action selection algorithm, implemented in an automated GUI 

testing tool, offers substantial benefits to software developers, quality 

assurance teams, and stakeholders involved in the mobile application 

development lifecycle. By enhancing testing efficiency and effectiveness, the 

contribution ensures that developers can release more robust and reliable 
mobile applications, QA teams can streamline their testing processes, and 

stakeholders can have increased confidence in the overall quality of the 

deployed applications, ultimately fostering a more successful and user-

friendly mobile app ecosystem. 

 

 

1.6 Thesis Organization 

The thesis comprises seven chapters. The first chapter consists of the introduction of this 

research. Hence, the research problem, the objective and scope, as well as the 

contributions of this research are also described in the first chapter. 

The second chapter presents the detailed study of the existing automated testing 

technique. The research background, which consisted of the issues that have been left 

out by the existing works, are discussed in detail in this chapter. The knowledge gaps 

left by previous works are also highlighted in this chapter.  

The third chapter presents the methodology involved in this research. The research 

methods, materials or resources, and the deliverables obtained throughout the phases are 

explained in this chapter. Generally, this chapter highlights the three phases that have 

been previously defined, namely, the definition of the analysis and problems, the design 
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and development of the tool to support the proposed approach, and finally, the evaluation 

phase involved in producing the empirical result.  

The fourth chapter describes the implementation of the testing tool, which involves the 

four criteria in calculating the action weight. This chapter discusses in detail how each 

criterion was processed during the tool execution phase.  

The fifth chapter presents the experimental procedure and the results of the experiments. 

It provides statistical analysis using the Mann-Whitney U test.  

The final chapter is Chapter Six, which consists of the conclusion and future works for 

this research. Some suggestions for future work that can be investigated by future 

researchers are explained in this chapter. 
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