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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

 

PARALLEL DIAGONALLY  IMPLICIT RUNGE-KUTTA METHODS FOR 

SOLVING ORDINARY DIFFERENTIAL EQUATIONS 

 

 

 

By 

 

UMMUL KHAIR SALMA BINTI DIN 

 

December 2009 

 

 

Chairman: Fudziah binti Ismail, PhD 

 

Faculty: Science 

 

 

This thesis focuses on the derivations of diagonally implicit Runge-Kutta (DIRK) 

methods with the capability to be implemented by parallel executions.  A few new 

methods are proposed by having sparsity patterns which enable the parallelization of 

methods.  In the first part of the thesis, a fifth order DIRK suitable for two processors 

parallel executions and DIRK methods of fourth and fifth orders suitable for three 

processors are proposed.  The executions of these methods are done by using fixed 

stepsizes on a set of nonstiff problems. The regions of stability are presented and 

numerical results of the methods are compared to the existing methods.  Parallel 

computations show significant time reduction when solving large systems of nonstiff  

ordinary differential equations (ODEs). 

 

The subsequent part of the thesis discusses on embedded DIRK methods suitable for 

two processors implementations. Two 4(3) and also two 5(4) embedded DIRK 

methods with adequate stability regions to solve stiff ODEs are proposed. Numerical 
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experiments on stiff test problems are done based on variable stepsize strategy.  An 

existing code for solving stiff ODEs suitable for embedded DIRK with equal 

diagonal elements is modified to accommodate the new methods with alternate 

diagonal elements.   Comparisons on numerical results to existing methods show a 

competitive efficiency when solving small systems of stiff ODEs.   

 

A parallel code is developed with the same capability of the modified sequential code 

to handle stiff ODEs, linear and nonlinear problems. All algorithms are written in C 

language and the parallel code is implemented on Sun Fire V1280 distributed 

memory system.  Three large scales of stiff ODEs are used to measure the parallel 

performances of the new embedded methods.  Results show that speedups increased 

as the dimensions of the problems gets larger which is a significant contribution in 

reducing the cost of computations. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

KAEDAH RUNGE-KUTTA PEPENJURU TERSIRAT SELARI BAGI 

MENYELESAI PERSAMAAN PEMBEZAAN BIASA 

 

Oleh 

 

UMMUL KHAIR SALMA BINTI DIN 

 

Disember 2009 

 

 

 

Pengerusi:      Fudziah binti Ismail, PhD 

 

Fakulti: Sains 

 

 
 

Tesis ini tertumpu kepada penerbitan kaedah Runge-Kutta pepenjuru tersirat (RKPT) 

yang berupaya untuk dilaksanakan secara selari.  Beberapa kaedah dicadangkan yang 

mempunyai bentuk yang bertaburan jarang bagi membolehkan kaedah itu diselarikan.  

Dalam bahagian pertama tesis ini, satu kaedah RKPT berperingkat lima sesuai 

dilaksanakan secara selari menggunakan dua pemproses dan kaedah berperingkat 

empat dan lima yang sesuai untuk tiga pemproses dicadangkan.  Pelaksanaan kaedah 

ini dilakukan dengan menggunakan saiz langkah tetap ke atas satu set masalah tak 

kaku.  Rantau kestabilan bagi kesemua kaedah dikemukakan dan keputusan berangka 

dibandingkan dengan beberapa kaedah sedia ada.  Pengiraan secara selari 

menunjukkan pengurangan masa yang signifikan ketika menyelesaikan masalah 

persamaan pembezaan biasa (PPB) tak kaku yang bersaiz besar. 

 

Bahagian selanjutnya dalam tesis ini membincangkan kaedah terbenam RKPT yang 

sesuai untuk pelaksanaan menggunakan dua pemproses yang bertujuan untuk 

menyelesaikan PPB kaku.  Dua kaedah terbenam RKPT 4(3) dan juga dua 5(4)  
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dengan rantau kestabilan yang mencukupi untuk menyelesaikan PPB kaku 

dicadangkan.  Ujikaji berangka ke atas masalah kaku dijalankan berasaskan strategi 

saiz langkah boleh ubah.  Satu kod sedia ada untuk menyelesaikan PPB kaku sesuai 

untuk kaedah terbenam RKPT dengan unsur pepenjuru yang sama diubahsuai agar 

bersesuaian dengan kaedah baru  yang mempunyai unsur pepenjuru yang berselang-

seli.  Perbandingan ke atas keputusan berangka terhadap kaedah sedia ada 

menunjukkan kecekapan yang kompetitif semasa menyelesaikan sistem PPB bersaiz 

kecil. 

 

Satu kod selari dibina dengan keupayaan yang sama dengan kod jujukan yang telah 

diubahsuai bagi menangani masalah PPB kaku, linear dan tak linear.  Semua 

algoritma ditulis dalam bahasa C dan kod selari dilaksanakan di sistem memori 

bertaburan Sun Fire V1280.  Tiga PPB kaku berskala besar digunakan untuk 

mengukur prestasi selari kaedah terbenam yang baru tersebut.  Hasil menunjukkan 

kecepatan meningkat apabila dimensi masalah bertambah besar yang memberikan 

sumbangan yang signifikan dalam mengurangkan kos pengiraan.     
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CHAPTER 1 

 

INTRODUCTION   

 

1.1 General Introduction 

 

Numerical analysis is the area of mathematics and computer science that has a great 

importance in solving many physical problems represented by mathematical models.  

It creates, analyzes, and implements algorithms to give the best numerical 

approximation to the problems of continuous mathematics which originate generally 

from real-world applications of algebra, geometry, and calculus. These problems 

occur throughout the natural sciences, social sciences, medicine, engineering, and 

business which then are classified as linear or nonlinear and stiff or non-stiff 

problems.  When simulating the behaviour of those systems, mathematical models 

often include one or more ordinary differential equations (ODEs).  Almost always 

numerical techniques must be used to obtain approximate solutions to the ODEs 

since analytical techniques available are not powerful enough to solve any ODEs 

except the simplest (Gupta et al., 1985).  

 

The early work on numerical ordinary differential equations has been built since the 

19
th

 century where the 1883 paper of Bashforth and Adams and the 1895 paper of 

Runge have presented the initial ideas in developing modern softwares of numerical 

methods (Butcher, 2000).  Since then, further ideas were suggested with few being 
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the main choice of techniques when solving ODEs.  There are two main approaches 

for numerical methods which are linear multistep methods and the one-step methods. 

As how they are named, the approximation of the solution value for a given x  is 

based on a number of previously computed points for linear multistep methods while 

the approach for the one-step methods is restricted to only on the most recent point 

already computed in a previous step.  Both classes of methods have their own 

strengths and it is up to users to consider which is more convenience and suitable to 

use.  Adams methods are widely known for the linear multistep users while Runge-

Kutta methods have been used extensively in a one-step algorithm.  Even though the 

classical methods for Adams and Runge-Kutta methods have proved to be useful for 

many problems, research in these methods are still actively conducted where many 

arising issues are tackled and more new methods are proposed. 

 

The growth in power and availability of digital computers has led to an increasing 

use of realistic mathematical models.  Numerical analysis of increasing 

sophistication has been needed to solve these more complex models of many 

physical problems. The wide variety of new computer architectures has created more 

option to improve the implementation of numerical algorithms. One of the intensive 

researches that have been conducted is the parallel implementation of numerical 

methods.  According to Jackson (1991), the desire for parallel solvers, in particular 

for solving initial value problems (IVPs) for ODEs, arises from the need to solve 

many important problems more rapidly than is currently possible.  The reduction in 

cost particularly time, is undeniably give great motivation in developing this idea.  A 

few ideas of parallelism have been suggested with all having the same purpose as to 

have methods with better performance.  


