

UNIVERSITI PUTRA MALAYSIA

PARALLEL DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR
SOLVING ORDINARY DIFFERENTIAL EQUATIONS

UMMUL KHAIR SALMA BINTI DIN
FS 2009 46

PARALLEL DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR

SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

UMMUL KHAIR SALMA BINTI DIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2009

 ii

To my late father,

Haji Din bin Haji Ahmad

…who had always believed in the importance of knowledge.

 iii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

PARALLEL DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR

SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

UMMUL KHAIR SALMA BINTI DIN

December 2009

Chairman: Fudziah binti Ismail, PhD

Faculty: Science

This thesis focuses on the derivations of diagonally implicit Runge-Kutta (DIRK)

methods with the capability to be implemented by parallel executions. A few new

methods are proposed by having sparsity patterns which enable the parallelization of

methods. In the first part of the thesis, a fifth order DIRK suitable for two processors

parallel executions and DIRK methods of fourth and fifth orders suitable for three

processors are proposed. The executions of these methods are done by using fixed

stepsizes on a set of nonstiff problems. The regions of stability are presented and

numerical results of the methods are compared to the existing methods. Parallel

computations show significant time reduction when solving large systems of nonstiff

ordinary differential equations (ODEs).

The subsequent part of the thesis discusses on embedded DIRK methods suitable for

two processors implementations. Two 4(3) and also two 5(4) embedded DIRK

methods with adequate stability regions to solve stiff ODEs are proposed. Numerical

 iv

experiments on stiff test problems are done based on variable stepsize strategy. An

existing code for solving stiff ODEs suitable for embedded DIRK with equal

diagonal elements is modified to accommodate the new methods with alternate

diagonal elements. Comparisons on numerical results to existing methods show a

competitive efficiency when solving small systems of stiff ODEs.

A parallel code is developed with the same capability of the modified sequential code

to handle stiff ODEs, linear and nonlinear problems. All algorithms are written in C

language and the parallel code is implemented on Sun Fire V1280 distributed

memory system. Three large scales of stiff ODEs are used to measure the parallel

performances of the new embedded methods. Results show that speedups increased

as the dimensions of the problems gets larger which is a significant contribution in

reducing the cost of computations.

 v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH RUNGE-KUTTA PEPENJURU TERSIRAT SELARI BAGI

MENYELESAI PERSAMAAN PEMBEZAAN BIASA

Oleh

UMMUL KHAIR SALMA BINTI DIN

Disember 2009

Pengerusi: Fudziah binti Ismail, PhD

Fakulti: Sains

Tesis ini tertumpu kepada penerbitan kaedah Runge-Kutta pepenjuru tersirat (RKPT)

yang berupaya untuk dilaksanakan secara selari. Beberapa kaedah dicadangkan yang

mempunyai bentuk yang bertaburan jarang bagi membolehkan kaedah itu diselarikan.

Dalam bahagian pertama tesis ini, satu kaedah RKPT berperingkat lima sesuai

dilaksanakan secara selari menggunakan dua pemproses dan kaedah berperingkat

empat dan lima yang sesuai untuk tiga pemproses dicadangkan. Pelaksanaan kaedah

ini dilakukan dengan menggunakan saiz langkah tetap ke atas satu set masalah tak

kaku. Rantau kestabilan bagi kesemua kaedah dikemukakan dan keputusan berangka

dibandingkan dengan beberapa kaedah sedia ada. Pengiraan secara selari

menunjukkan pengurangan masa yang signifikan ketika menyelesaikan masalah

persamaan pembezaan biasa (PPB) tak kaku yang bersaiz besar.

Bahagian selanjutnya dalam tesis ini membincangkan kaedah terbenam RKPT yang

sesuai untuk pelaksanaan menggunakan dua pemproses yang bertujuan untuk

menyelesaikan PPB kaku. Dua kaedah terbenam RKPT 4(3) dan juga dua 5(4)

 vi

dengan rantau kestabilan yang mencukupi untuk menyelesaikan PPB kaku

dicadangkan. Ujikaji berangka ke atas masalah kaku dijalankan berasaskan strategi

saiz langkah boleh ubah. Satu kod sedia ada untuk menyelesaikan PPB kaku sesuai

untuk kaedah terbenam RKPT dengan unsur pepenjuru yang sama diubahsuai agar

bersesuaian dengan kaedah baru yang mempunyai unsur pepenjuru yang berselang-

seli. Perbandingan ke atas keputusan berangka terhadap kaedah sedia ada

menunjukkan kecekapan yang kompetitif semasa menyelesaikan sistem PPB bersaiz

kecil.

Satu kod selari dibina dengan keupayaan yang sama dengan kod jujukan yang telah

diubahsuai bagi menangani masalah PPB kaku, linear dan tak linear. Semua

algoritma ditulis dalam bahasa C dan kod selari dilaksanakan di sistem memori

bertaburan Sun Fire V1280. Tiga PPB kaku berskala besar digunakan untuk

mengukur prestasi selari kaedah terbenam yang baru tersebut. Hasil menunjukkan

kecepatan meningkat apabila dimensi masalah bertambah besar yang memberikan

sumbangan yang signifikan dalam mengurangkan kos pengiraan.

 vii

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful.

Thank you Ya Allah for the good health, patience and inspiration during the

completion of this work.

First and foremost I would like to express my heartfelt gratitude to the chairman of

the supervisory committee, Associate Professor Dr. Fudziah binti Ismail for her wise

guidance, invaluable advice and patience. This work would not have been completed

without her constant encouragement. I would also like to extend my appreciation to

the supervisory committee members, Y.Bhg. Professor Dato’ Dr. Mohamed bin

Suleiman, Dr. Zanariah binti Abdul Majid and Y.Bhg. Professor Dr. Mohamed bin

Othman for their kind support and suggestions. A special thanks to Professor J.C.

Butcher from The University of Auckland and Dr. Rokiah @ Rozita Ahmad from

UKM for sharing their invaluable knowledge in this field of study.

The financial support and study leave from the Ministry of Higher Education and

Universiti Kebangsaan Malaysia is gratefully acknowledged. Many thanks also go to

all my research colleagues and friends for their friendship and generous help

throughout my few years in UPM.

I would like to thank both mother and mother-in-law, Hajjah Che Wa and Hajjah

Zahrah, and also my brothers and sisters for their support and do’a. Finally, my

deepest appreciation goes to my beloved husband Zafarin Abdul Ghaffar who has

been very supportive and has inspires me to excel in life. I would also like to extend

this gratitude to all my everloving strengths of my life, Iqbal, Nu’man, Tasnim and

Dina who never fail to support me as their mother in any way they can. May Allah

bless all of you.

 viii

I certify that a Thesis Examination Committee has met on 7 December 2009 to
conduct the final examination of Ummul Khair Salma binti Din on her thesis entitled

“Parallel Diagonally Implicit Runge-Kutta Methods for Solving Ordinary
Differential Equations” in accordance with the Universities and University Colleges

Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March

1998. The Committee recommends that the student be awarded the Doctor of

Philosophy.

Members of the Thesis Examination Committee were as follows:

Malik bin Hj. Abu Hassan, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Chairman)

Azmi bin Jaafar, PhD

Associate Professor

Faculty of Science Computer and Information Technology

Universiti Putra Malaysia

(Internal Examiner)

Zarina Bibi binti Ibrahim, PhD

Senior Lecturer
Faculty of Science

Universiti Putra Malaysia
(Internal Examiner)

Abdul Razak bin Yaakub, PhD

Professor

College of Art and Sciences

Universiti Utara Malaysia

(External Examiner)

────────────────

BUJANG KIM HUAT, PhD

Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

 ix

This thesis submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Fudziah binti Ismail, PhD

Associate Professor

Faculty of Science

Universiti Putra Malaysia

(Chairperson)

Zanariah binti Abdul Majid, PhD

Lecturer

Faculty of Science

Universiti Putra Malaysia

(Member)

Mohamed bin Othman, PhD

Professor
Faculty of Science Computer and Information Technology

Universiti Putra Malaysia
(Member)

Dato’ Mohamed bin Suleiman, PhD

Professor
Faculty of Science

Universiti Putra Malaysia

(Member)

──────────────────────

HASANAH MOHD GHAZALI, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 11 February 2010

 xi

TABLE OF CONTENTS

 Page

DEDICATION ii

ABSTRACT iii

ABSTRAK v

ACKNOWLEDGEMENTS vii

APPROVAL viii

DECLARATION x

LIST OF TABLES xiv

LIST OF FIGURES xvii

LIST OF ABREVIATIONS xxi

CHAPTER

1

 INTRODUCTION

1.1 General Introduction
 1.1.1 Objectives of the Thesis

 1.1.2 Outline of the Thesis
 1.1.3 Scope and Limitation

1.2 The Initial Value Problem
1.3 The Runge-Kutta Method

 1.3.1 The Diagonally Implicit Runge-Kutta Method
 1.3.2 Stability of Runge-Kutta Method

 1.3.3 A-stablity, A(α)-stability and L-stability

1.4 Order Conditions

1.5 Error Considerations
1.6 Stiff Systems of ODEs

1
3

3
6

7
8

10
11

14

15

16

18

2 DERIVATION OF FIFTH ORDER DIRK METHOD

SUITABLE FOR PARALLEL USING TWO

PROCESSORS
2.1 Introduction

2.2 Parallel Runge-Kutta Methods
2.3 The Type II Methods

2.4 Derivation of Fifth Order Parallel Runge-Kutta
Method

 2.4.1 Stability of the Method

 2.4.2 Numerical Experiments

 2.4.3 Tested Problems

 2.4.4 Numerical Results

2.5 Discussion

22

22
24

28

35

36

37

40

43

3 PARALLELIZATION OF FIFTH ORDER DIRK

METHOD ON TWO PROCESSORS

3.1 Introduction

3.2 An Overview on Parallel Computing

 3.2.1 High Performance Computing

44

45

48

 xii

 3.2.2 Message Passing Interface
3.3 The Workload and the Needs for Parallel Computing

 in Runge-Kutta Methods
3.4 The Performance of Parallel Processing

3.5 The Architecture of the Parallel Algorithm for
 P2DIRK5

3.6 Numerical Experiments

 3.6.1 Tested Problems

 3.6.2 Numerical Results

3.7 Discussion

48

49
50

51

52

53

54

61

4 PARALLEL FOURTH AND FIFTH ORDER DIRK

METHODS USING THREE PROCESSORS

4.1 Introduction

4.2 The Type IV Methods

4.3 The Fourth Order Methods

4.4 The Fifth Order Methods

4.5 Derivation of Fifth Order Methods

4.6 The Parallel Architecture of the Type IV Method
4.7 Numerical Experiments

 4.7.1 The Accuracy
 4.7.2 The Execution Time

4.8 Discussion
 4.8.1 The Accuracy

 4.8.2 The Execution Time

62

62

64

68

69

76
77

77
77

89
89

89

5 EMBEDDED DIRK 4(3) METHODS SUITABLE FOR

PARALLEL USING TWO PROCESSORS

5.1 Introduction

5.2 Embedded Runge-Kutta Methods

5.3 The 4(3) Pairs

5.4 Solving Stiff Problems

5.5 The Program - Billington’s Code

5.6 The Architecture for Parallel Implementation of

 P2DIRK4(3)a

5.7 From Single to Dual

5.8 Numerical Experiments

5.8.1 Stiff Test Problems

5.8.2 The Comparison Method
5.8.3 Results

5.9 Discussion

91

91

93

98

99

104

106

110

110

114
114

131

6 EMBEDDED DIRK 5(4) METHODS SUITABLE FOR

PARALLEL USING TWO PROCESSORS

6.1 Introduction
6.2 The Derivation of 5(4) Pairs

6.3 Numerical Experiments

6.4 Results

6.5 Discussion

132
132

142

142

158

 xiii

7 THE IMPLEMENTATION OF PARALLEL

EMBEDDED DIRK METHODS

7.1 Introduction
7.2. The Parallel Algorithm

7.3 The Large Scale Systems of Stiff ODEs
7.4 Segmentation of the Computing Time

7.5 The Numerical Experiments

 7.5.1 P2DIRK4(3)a

 7.5.2 P2DIRK5(4)b

7.6 Discussion

 7.6.1 P2DIRK4(3)a

 7.6.2 P2DIRK5(4)b

159
160

166
169

171

171

176

181

181

182

8 CONCLUSION

8.1 Summary

8.2 Future Work

184

187

REFERENCES 189

APPENDICES 194

BIODATA OF STUDENT 212

LIST OF PUBLICATIONS 212

 xiv

LIST OF TABLES

Table Page

1.1 Number of order conditions

15

2.1 Runge-Kutta matrices and digraph

23

2.2 Equations of order conditions for Runge-Kutta methods of

order 5

28

2.3 Numerical results for test problems 2.1-2.4 using IN4a, R5,

CS5 and P2DIRK5

41

2.4 Numerical results for test problems 2.5-2.8 using IN4a, R5,

CS5 and P2DIRK5

42

3.1 Stepsize and its total steps

52

3.2 The speedup and efficiency for solving Problem 3.1

55

3.3 The speedup and efficiency for solving Problem 3.2

56

3.4 The speedup and efficiency for solving Problem 3.3

57

4.1 Numerical results for Problems 2.1-2.4 using JN4, IN4b,

P3DIRK4a and P3DIRK4b

79

4.2 Numerical results for Problems 2.5-2.4 using JN4, IN4b,

P3DIRK4a and P3DIRK4b

80

4.3 Numerical results for Problems 2.1-2.4 using R5, P3DIRK5a

and P3DIRK5b

81

4.4 Numerical results for Problems 2.5-2.8 using R5, P3DIRK5a

and P3DIRK5b

82

4.5 The speedup and efficiency of P3DIRK4a in solving
Problem 3.1

83

4.6 The speedup and efficiency of P3DIRK4a in solving

Problem 3.2

84

4.7 The speedup and efficiency of P3DIRK5a in solving

Problem 3.1

85

 xv

5.1 The 4(3) pairs

114

5.2 Performance comparison between HW4(3), P2DIRK4(3)a
and P2DIRK4(3)b for solving Problem 5.1

116

5.3 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.2

117

5.4 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.3

118

5.5 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.4

119

5.6 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.5

120

5.7 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.6

121

5.8 Performance comparison between HW4(3), P2DIRK4(3)a
and P2DIRK4(3)b for solving Problem 5.7

122

5.9 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.8

123

5.10 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.9

124

5.11 Performance comparison between HW4(3), P2DIRK4(3)a

and P2DIRK4(3)b for solving Problem 5.10

125

6.1 The 5(4) pairs

142

6.2 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.1

143

6.3 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.2

144

6.4 Performance comparison between K5(4), F5(4),
P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.3

145

6.5 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.4

146

6.6 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.5

147

 xvi

6.7 Performance comparison between K5(4), F5(4),
P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.6

148

6.8 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.7

149

6.9 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.8

150

6.10 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.9

151

6.11 Performance comparison between K5(4), F5(4),

P2DIRK5(4)a and P2DIRK5(4)b for solving Problem 5.10

152

7.1 Case 1: diff1>TOL/10 and diff2>TOL/10

163

7.2 Case 2: diff1<TOL/10 and diff2>TOL/10

163

7.3 Case 3: diff2<TOL/10 and diff1>TOL/10 164

7.4 The speedup and efficiency of P2DIRK4(3)a in solving

Problem 7.1

172

7.5 The speedup and efficiency P2DIRK4(3)a in solving
Problem 7.2

173

7.6 The speedup and efficiency P2DIRK4(3)a in solving

Problem 7.3

174

7.7 The speedup and efficiency of P2DIRK5(4)b in solving

Problem 7.1

177

7.8 The speedup and efficiency P2DIRK5(4)b in solving

Problem 7.2

178

7.9 The speedup and efficiency P2DIRK5(4)b in solving

Problem 7.3

179

 xvii

LIST OF FIGURES

Figure

Page

1.1 Butcher’s Array

9

1.2 A Simplified Butcher’s Array

9

1.3 The Chronology of Work on DIRK

11

2.1 Fourth Order - Type II Method

25

2.2 Method by Jackson & Norsett (JN4)

26

2.3 Method by Iserles and Norsett (IN4a)

26

2.4 Method by Iserles and Norsett (IN4b)

27

2.5 Sparsity Structure and Digraph for a Fifth Order Runge-Kutta

Method with Six Stages

27

2.6 The stability region of P2DIRK5

36

3.1 A Dependence Graph Exhibiting Data Parallelism (Quinn, 2004)

47

3.2 A Dependence Graph Exhibiting Functional Parallelism (Quinn,

2004)

47

3.3 The Parallel Processes of P2DIRK5

51

3.4 Results for Problem 3.1

58

3.5 Results for Problem 3.2

59

3.6 Results for Problem 3.3

60

4.1 Sparsity Structure and Digraph for Runge-Kutta Methods with

Six Stages for Three Processors

63

4.2 Butcher’s Array for 2-parallel 3-processors Runge-Kutta

Method

63

4.3 The P3DIRK4a 65

 xviii

4.4 The Stability Region for P3DIRK4a

66

4.5 The P3DIRK4b

67

4.6 The Stability Region for P3DIRK4b

67

4.7 The Modified Sparsity Structure and Digraph for Runge-Kutta

Methods for Three Processors

68

4.8 The P3DIRK5a

72

4.9 The Stability Region of P3DIRK5a

73

4.10 The P3DIRK5b

74

4.11 The Stability Region of P3DIRK5b

75

4.12 The Parallel Process for Type IV Methods

76

4.13 Results of P3DIRK4a in Solving Problem 3.1

86

4.14 Results of P3DIRK4a in Solving Problem 3.2

87

4.15 Results of P3DIRK5a in Solving Problem 3.1

88

5.1 The P2DIRK4(3)a

95

5.2 The P2DIRK4(3)b

96

5.3 The Stability Region of P2DIRK4(3)a

97

5.4 The Stability Region of P2DIRK4(3)b

98

5.5 Flowchart for Phases in BiCODE

103

5.6 The Basis for Parallelization of BiCODE

105

5.7 The Source Code in C Language for Phase II of BiCODE

107

5.8 The Pseudocode for the “Detour” Process

109

5.9 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and

P2DIRK4(3)b in Solving Problem 5.1

126

5.10 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and
P2DIRK4(3)b in Solving Problem 5.2

126

5.11 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and

P2DIRK4(3)b in Solving Problem 5.3

127

 xix

5.12 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and
P2DIRK4(3)b in Solving Problem 5.4

127

5.13 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and
P2DIRK4(3)b in Solving Problem 5.5

128

5.14 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and

P2DIRK4(3)b in Solving Problem 5.6

128

5.15 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and

P2DIRK4(3)b in Solving Problem 5.7

129

5.16 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and

P2DIRK4(3)b in Solving Problem 5.8

129

5.17 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and

P2DIRK4(3)b in Solving Problem 5.9

130

5.18 Log MAXE versus TIME for HW4(3), P2DIRK4(3)a and

P2DIRK4(3)b in Solving Problem 5.10

130

6.1 The Modified Sparsity Structure for 5(4) Pair

133

6.2 The Stability Region of P2DIRK5(4)

136

6.3 The Stability Region of P2DIRK5(4)a

140

6.4 The Stability Region of P2DIRK5(4)b

141

6.5 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.1

153

6.6 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.2

153

6.7 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.3

154

6.8 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.4

154

6.9 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and
P2DIRK5(4)b in Solving Problem 5.5

155

6.10 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.6

155

6.11 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.7

156

 xx

6.12 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and
P2DIRK5(4)b in Solving Problem 5.8

156

6.13 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.9

157

6.14 Log MAXE versus TIME for K5(4), F5(4), P2DIRK5(4)a and

P2DIRK5(4)b in Solving Problem 5.10

157

7.1 The Convergence Test

162

7.2 The Program Fragment of the Convergence Test for Processor 1

164

7.3 The Program Fragment of the Convergence Test for Processor 2

165

7.4 Segmentation of Computing Time in Solving Problem 7.1

170

7.5 Segmentation of Computing Time in Solving Problem 7.2

170

7.6 Segmentation of Computing Time in Solving Problem 7.3

171

7.7 The Speedup of P2DIRK4(3)a when Solving Problem 7.1

175

7.8 The Speedup of P2DIRK4(3)a when Solving Problem 7.2

175

7.9 The Speedup of P2DIRK4(3)a when Solving Problem 7.3

176

7.10 The Speedup of P2DIRK5(4)b when Solving Problem 7.1

180

7.11 The Speedup of P2DIRK5(4)b when Solving Problem 7.2

180

7.12 The Speedup of P2DIRK5(4)b when Solving Problem 7.3

181

8.1 Proposed Hierarchical Tree for Future Work

187

 xxi

LIST OF ABBREVIATIONS

ODEs Ordinary differential equations

IVPs Initial value problems

DIRK Diagonally implicit Runge-Kutta

MPI Message Passing Interface

SDIRK Singly diagonally implicit Runge-Kutta

LTE Local truncation error

FSAL First Same As Last

JN4 Method by Jackson and Nørsett

IN4a Method by Iserles and Nørsett with L-stability

IN4b Method by Iserles and Nørsett with A-stability

P2DIRK5 Fifth order DIRK suitable for two processors

R5 Fifth order DIRK by Al-Rabeh

CS5 Fifth order DIRK by Cooper and Sayfy

HPC High Performance Computing

SISD Single Instruction Single Data

MISD Multiple Instruction Single Data

SIMD Single Instruction Multiple Data

MIMD Multiple Instruction Multiple Data

P3DIRK4a Fourth order DIRK suitable for three processors with A-

stability

P3DIRK4b Fourth order DIRK suitable for three processors with stability

region [-51.44,0]

 xxii

P3DIRK5a Fifth order DIRK suitable for three processors with stability

region [-16.18,0]
P3DIRK5b Fifth order DIRK suitable for three processors with stability

region [-9.86,0]

P2DIRK4(3)a Embedded 4(3) DIRK suitable for two processors with four

stages error estimator

P2DIRK4(3)b Embedded 4(3) DIRK suitable for two processors with five

stages error estimator

BiCODE Billington’s code for DIRK with equal diagonal elements

BiCODE-2 Modified Billington’s code for DIRK with alternate diagonal

elements

HW4(3) Embedded 4(3) DIRK by Hairer and Wanner

P2DIRK5(4) Embedded 5(4) DIRK suitable for two processors with

stability region [-13.33,0]

P2DIRK5(4)a Embedded 5(4) DIRK suitable for two processors with
stability region [-159.2,0]

P2DIRK5(4)b Embedded 5(4) DIRK suitable for two processors with

*A ()α -stability

K5(4) Embedded 5(4) DIRK by Kværnø

F5(4) Embedded 5(4) DIRK by Ismail

Equation Chapter 1 Section 1

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Numerical analysis is the area of mathematics and computer science that has a great

importance in solving many physical problems represented by mathematical models.

It creates, analyzes, and implements algorithms to give the best numerical

approximation to the problems of continuous mathematics which originate generally

from real-world applications of algebra, geometry, and calculus. These problems

occur throughout the natural sciences, social sciences, medicine, engineering, and

business which then are classified as linear or nonlinear and stiff or non-stiff

problems. When simulating the behaviour of those systems, mathematical models

often include one or more ordinary differential equations (ODEs). Almost always

numerical techniques must be used to obtain approximate solutions to the ODEs

since analytical techniques available are not powerful enough to solve any ODEs

except the simplest (Gupta et al., 1985).

The early work on numerical ordinary differential equations has been built since the

19
th

 century where the 1883 paper of Bashforth and Adams and the 1895 paper of

Runge have presented the initial ideas in developing modern softwares of numerical

methods (Butcher, 2000). Since then, further ideas were suggested with few being

 2

the main choice of techniques when solving ODEs. There are two main approaches

for numerical methods which are linear multistep methods and the one-step methods.

As how they are named, the approximation of the solution value for a given x is

based on a number of previously computed points for linear multistep methods while

the approach for the one-step methods is restricted to only on the most recent point

already computed in a previous step. Both classes of methods have their own

strengths and it is up to users to consider which is more convenience and suitable to

use. Adams methods are widely known for the linear multistep users while Runge-

Kutta methods have been used extensively in a one-step algorithm. Even though the

classical methods for Adams and Runge-Kutta methods have proved to be useful for

many problems, research in these methods are still actively conducted where many

arising issues are tackled and more new methods are proposed.

The growth in power and availability of digital computers has led to an increasing

use of realistic mathematical models. Numerical analysis of increasing

sophistication has been needed to solve these more complex models of many

physical problems. The wide variety of new computer architectures has created more

option to improve the implementation of numerical algorithms. One of the intensive

researches that have been conducted is the parallel implementation of numerical

methods. According to Jackson (1991), the desire for parallel solvers, in particular

for solving initial value problems (IVPs) for ODEs, arises from the need to solve

many important problems more rapidly than is currently possible. The reduction in

cost particularly time, is undeniably give great motivation in developing this idea. A

few ideas of parallelism have been suggested with all having the same purpose as to

have methods with better performance.

