

UNIVERSITI PUTRA MALAYSIA

PREPARATION, CHARACTERIZATION AND APPLICATION OF POLYPYRROLE-CHITOSAN CONDUCTING POLYMER COMPOSITE

> MAHNAZ M.ABDI FS 2009 45

PREPARATION, CHARACTERIZATION AND APPLICATION OF POLYPYRROLE-CHITOSAN CONDUCTING POLYMER COMPOSITE

By

Mahnaz M.Abdi

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2009

Special dedication to my beloved family

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PREPARATION, CHARACTERIZATION AND APPLICATION OF POLYPYRROLE-CHITOSAN CONDUCTING POLYMER COMPOSITE

By

Mahnaz M.Abdi

December 2009

Chairman: Professor Anuar Kassim, PhD

Faculty: Science

Polypyrrole-chitosan (PPy-CHI) conducting polymer composite films were prepared by electropolymerization of pyrrole (Py) in the presence of chitosan (CHI) and *p*toluenesulfonic acid sodium salt (*P*-TS) at room temperature. The PPy-CHI composite films were synthesized by electrochemical method on the ITO glass surface from different concentrations of pyrrole, CHI, and *P*-TS at different applied voltages. For comparison purposes, film formed from chitosan in acetic acid (CA) by casting method and PPy film without chitosan were prepared.

The electrical conductivity measurements revealed that the composite film prepared from the solution containing 0.3 M pyrrole, 0.1 M *p*-TS and 0.7% (w/v) of CHI at 1.2 volt (against SCE) in 2 hrs, had the highest conductivity of 69.1 Scm⁻¹ measured at room temperature. The electrical conductivity measurement and the DMA results showed the enhanced conductivity and mechanical properties of the prepared conducting polymer composite films were due to the presence of CHI in the composite

films. The enhancement of storage modulus of PPy-CHI composite film compared to PPy indicates that the composite is much stiffer than PPy without CHI. The coexistence of vibrational bands attributable to both benzoic (1546 cm⁻¹) and quinoid forms (1634 cm⁻¹) of PPy in the FT-IR absorption spectra of PPy-CHI film confirmed the presence of two different structures in this composite film. TGA results showed that thermal stability of the PPy increased in the presence of chitosan.

With the increase in CHI content, the band gaps between the valance and conduction bands decreased and subsequently the conductivity of the composite films increased. The band gaps, E_g , estimated from optical absorption data, was between 1.60–2.32 eV, depending on the CHI content. There was a good correlation between the thermal diffusivity and electrical conductivity of composite film. The results indicated that the thermal diffusivity of the PPy-CHI composite films, relates to the electron migration in the conjugation chain length. The surface morphology of PPy showed almost all globular morphology. The agglomeration became more evident when the concentration of CHI increased from 0.5% to 0.9% (w/v).

The potential applications of composite films were found as an electromagnetic shielding material in the microwave frequency range from 8 to 12 GHz and also as an optical sensor characterized by surface plasmon resonance (SPR) technique.

The shielding effectiveness (SE) of the composite films had a strong dependence on chitosan content. The composite films provided shielding efficiencies of 33.9 dB which could be used successfully in some applications which need shielding properties less than 40 dB.

Optical sensor of PPy-CHI was fabricated for detecting trace amount of Hg^{2+} and Pb^{2+} . This optical sensor was used for monitoring of toxic metal ion with and without sensitivity enhancement by chitosan. The refractive indexes of the conducting films were successfully measured by surface plasmon resonance (SPR) technique.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYEDIAAN, PENCIRIAN DAN PENGAPLIKASIAN POLIMER KONDUKTOR KOMPOSIT POLIPIROL-KITOSAN

Oleh

Mahnaz M.Abdi

December 2009

Pengerusi: Professor Anuar Kassim, PhD

Fakulti: Sains

Polimer pengkonduksian filem komposit polipirol-kitosan (PPy-CHI) telah disediakan melalui kaedah elektropolimeran pirol (Py) dengan kehadiran kitosan (CHI) dan garam sodium asid *p*-toluensulfonik (*P*-TS) pada suhu bilik. Filem komposit PPy-CHI disintesis melalui kaedah elektrokimia pada permukaan kaca ITO dengan pelbagai kepekatan pirol, CHI, *P*-TS pada voltan yang berlainan. Bagi tujuan perbandingan, filem yang dihasilkan menggunakan kitosan dalam asid asetik (CA) menerusi kaedah penyalutan dan filem PPy tanpa kitosan disediakan.

Penentukuran kekonduksian elektrik menunjukkan bahawa filem komposit yang disediakan daripada larutan yang mengandungi 0.3 M pirol, 0.1 M *p*-TS dan 0.7% (w/v) CHI pada voltan 1.2 (terhadap SCE) dalam masa 2 jam mempunyai konduktiviti tertinggi, iaitu 69.1 Scm⁻¹, pada suhu bilik. Pengukuran konduktiviti elektrik dan hasil DMA menunjukkan bahawa konduktiviti yang diperkuatkan dan ciri-ciri mekanikal filem komposit polimer kekonduksian yang disediakan adalah disebabkan oleh

kehadiran CHI di dalam filem komposit. Peningkatan modulus simpanan filem komposit PPy-CHI benbanding dengan PPy menunjukkan komposit tersebut lebih keras berbanding tanpa CHI. Kehadiran bersama jalur-jalur getaran hasil daripada kedua-dua bentuk benzoik (1546 cm⁻¹) dan kuinoid (1634 cm⁻¹) PPy dalam spektrum penyerapan FT-IR untuk filem PPy-CHI mengesahkan kehadiran dua struktur yang berbeza di dalam filem komposit ini. Keputusan TGA telah menunjukkan peningkatan kestabilan haba PPy dengan kehadiran kitosan.

Dengan penambahan kandungan CHI, jurang jalur antara jalur valensi dan konduksian menurun dan seterusnya konduktiviti filem komposit meningkat. Jurang jalur, E_g, ditentukan daripada data penyerapan optikal, ialah di antara 1.60-2.32 eV, bergantung kepada kandungan CHI. Terdapat korelasi yang baik antara penyerapan haba dan konduktiviti eletrik filem komposit. Hasil ini menunjukkan bahawa penyerapan haba filem komposit PPy-CHI adalah berkaitan dengan pemindahan elektron dalam rantai panjang konjugasi.

Morfologi permukaan PPy menunjukkan morfologi yang hampir globular. Pengaglomerasian menjadi semakin jelas apabila kepekatan CHI meningkat daripada 0.5% kepada 0.9% (w/v). Ini mungkin diakibatkan oleh peningkatan elektrostatik atau hubungan penyerapan antara CHI dan PPy and oleh itu, pengaglomerasian menjadi lebih ketara.

Applikasi untuk filem komposit PPy-CHI adalah sebagai pengadang gelombang eletromagnetik dalam julat frekuensi mikrogelombang daripada 8 sehingga 12 GHz dan sebagai sensor optikal sensitif yang dicirikan oleh teknik resonans plasmon permukaan (SPR). Keberkesanan pengadangan (SE) filem komposit sangat bergantung kepada kepekatan kitosan. Filem komposit menghasilkan SE sebanyak 33.9dB yang boleh digunakan secara berkesan dalam aplikasi yang memerlukan ciri pengadangan kurang daripada 40dB.

Sensor optikal PPy-CHI dihasilkan untuk mengesan jumlah surih Hg^{2+} dan Pb^{2+} . Sensor optikal tersebut digunakan untuk mengesan ion logam beracun dengan dan tanpa penguatan sensitiviti oleh kitosan. Indeks refraksi untuk filem konduksian telah berjaya diukur menerusi teknik resonans plasmon permukaan (SPR).

ACKNOWLEDGMENTS

First of all, I would like to express my sincerest appreciation to my research supervisor, Professor Anuar Kassim, PhD for giving me the opportunity to work in his lab and for his advice and encouragement throughout this entire project. Without his support and confidence over the years this dissertation would not have been possible.

I wish to give special thanks to my committee members Professor Wan Mahmood Mat Yunus, PhD, Associate Professor Zainal Abidin Talib, PhD and Dr. H.N.M. Ekramul Mahmud for their valuable suggestions, comments and help during the past few years. However, much appreciation is extended to Dr. H.N.M. Ekramul Mahmud for his research instructions and discussions which initiated my interests and enthusiasms in conducting polymer areas.

I am grateful to all staff of faculty of science for helping me feel home here at UPM. Special thanks go to Mrs Rusnani Amirudin and Mrs Yusmawati Wan Yusof, Mr Shah Ibrahim, Ms Norhaslinda Noruddin and other scientific officers whose names are not mentioned in this section for their assistance in analyzing the samples and valuable effort and time.

I wish to express my profound gratitude to my friends Naz, Mr. Alireza Pendashteh and Dr. Rosa who have been always graciously willing to encourage me and treat me with true friendship. I would like to thank my housemates, Ninie and Sue for their emotional support and patience during my study. I am very grateful to Mr Mohammad

Yeganeh Ghotbi who encouraged and helped me to come to UPM and Malaysia. Thanks to all my friends in the lab 121 from chemistry department and in the lab 151 and 152 from physic department. In particularly, special thanks to Mei Yee and Josephin for their help and support in every aspect of my project. Acknowledgment is also extended to Mr Amir R. Sadrolhosseini for helping me do the SPR experiments.

Financial support from Ministry of Higher Education (FRGS 5523138), GRF, is gratefully acknowledged.

Last but not least, without the love, support, guidance, and encouragement of my family, this moment would never have been realized. I would like to express my deepest gratitude to all my family members. I love you and thank you so much.

I certify that an Examination Committee has met on 28 December 2009 to conduct the final examination of Mahnaz M.Abdi on her Doctor of Philosophy thesis entitled "Preparation, Characterization, and Application of Polypyrrole-Chitosan Conducting Polymer Composite" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanain Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Zobir bin Hussein, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Taufiq Yap Yun Hin, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Mohd Zaki Abd. Rahman, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Madzlan Aziz, PhD

Professor Faculty of Science Universiti Teknology Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malysia

xi

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Anuar Kassim, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Wan Mahmood Mat Yunus, PhD

Professor Faculty of Sciences Universiti Putra Malaysia (Member)

Zainal Abidin Talib, PhD

Associate Professor Faculty of Science University Putra Malaysia (Member)

H.N.M. Ekramul Mahmud, PhD

Doctor Faculty of Chemical Engineering Universiti Teknologi MARA (UiTM) (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malysia

Date: 11 February 2010

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Mahnaz M.Abdi

Date: 11 January 2010

xiii

TABLE OF CONTENTS

Page

ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGMENTS	ix
APPROVAL	xi
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxiv

CHAPTER

1 INTRODUCTION

1.1	Background of this research	6
1.2	Research problem	6
1.3	Research objectives	7

2 LITERATURE REVIEW

2.1	Conducting polymers	9
2.2	History of conducting polymer	9
2.3	Conductive electroactive polymers: intelligent	
	materials systems	11
2.4	Conjugated polymer: one dimensional metal	12
2.5	Polypyrrole as conducting polymer	13
2.6	Conducting polymer composites	15
2.7	Conduction mechanism	18
2.8	Polymerization methods	25
2.9	Mechanisms of polymerization of pyrrole	26
2.10	Potential application of conducting polymers	35
	2.10.1 Electromagnetic shielding	38
	2.10.2 Surface Plasmon Resonance	42

MATERIALS AND METHODS 3

3.1 3.2	Chem Metho	icals ods	44 44
3.3	Cnara	cterization Methods	40
	3.3.1	Electrical conductivity measurements	46
	3.3.2	Fourier transform infrared spectroscopy (FT-IR)	50
	3.3.3	UV-Vis spectroscopy	51
	3.3.4	Thermal diffusivity measurements	52
	3.3.5	X-ray diffraction(XRD)	55
	3.3.6	Dynamic mechanical analysis (DMA)	55

3.3.7	Scanning Electron Microscopy (SEM)	58
3.3.8	Atomic Force Microscopy (AFM)	59
3.3.9	Thermogravimetric Analysis (TGA)	59
3.3.10	Electromagnetic interference shielding	60
3.3.11	Surface Plasmon Resonance	61

4 **RESULTS AND DISCUSSION**

Characterization methods

4.1	Electr polym	ical conductivity of PPy-CHI conducting her composite films	64
	4.1.1	Effect of CHI concentration on the conductivity of composite films	66
	4.1.2	Effect of monomer concentration on the	00
		conductivity composite films	71
	4.1.3	Effect of dopant concentration on the conductivity of composite films	73
	4.1.4	Effect of applied voltage on the conductivity of	
		composite films	76
4.2	Moleo	cular structure of PPy-CHI Composite Films	80
4.3	UV-V	is spectroscopy of PPy-CHI composite films	91
	4.3.1	Effect of CHI concentration	91
	4.3.2	Effect of pyrrole concentration	98
	4.3.3	Effect of p-TS concentration	101
	4.3.4	Effect of applied voltage	105
4.4	Thern	nal diffusivity (α) measurments	108
	4.4.1	Effect of CHI concentration on the thermal	
		diffusivity of the composite films	110
	4.4.2	Effect of pyrrrole concentration on the thermal	
		diffusivity of the composite films	111
	4.4.3	Effect of p -TS concentration on the thermal	
		diffusivity of the composite films	113
	4.4.4	Effect of applied voltage on the thermal	114
		diffusivity of the composite films	114
4.5	Moleo	cular order of PPy-CHI composite films (XRD)	116
	4.5.1	Effect of CHI concentration on the molecular	
		order of composite films	118
	4.5.2	Effect of pyrrole concentration on the molecular	
		order of composite films	121
	4.5.3	Effect of <i>p</i> -TS concentration on the molecular	
		order of composite films	123

	4.5.4	Effect of applied voltage on the molecular order of composite films	124
4.6	Dynar PPy-C	nic mechanical analysis (DMA) of CHI composite films	127
	4.6.1	General features of dynamic mechanical	127
	4.6.2 4.6.3	Mechanical properties of PPy-CHI composite films Comparision of mechanical properties of	129
	4.6.4	PPy and PPy-CHI films Effect of CHI concentration on the dynamic	131
	4.6.5	mechanical properties of the composite films Effect of pyrrole concentration on the dynamic	132
	4.6.6	mechanical properties of the composite films Effect of <i>p</i> -TS concentration on the dynamic	134
	4.6.7	Effect of applied potential on the dynamic mechanical properties of the composite films	135
17	Morpl	pological study of PPy-CHI composite films	140
4.7	worp	lological study of 11 y-CIII composite finits	140
	4.7.1 4.7.2	Atomic Force Microscopy (AFM) Scanning Electron Microscopy (SEM)	140 142
4.8	Thern films	nal stability study of PPy-CHI composite by TGA	145
Poter	ntial app	plications	148
4.9	Electr effect	romagnetic interference shielding tiveness (EMI SE)	148
	4.9.1	Effect of CHI concentration on the shielding effectiveness of the composite films	150
	4.7.2	effectiveness of the composite films	156
	4.9.3	Effect of <i>p</i> -TS concentration on the shielding effectiveness of the composite films	160
	4.7.4	effectiveness of the composite films	163
4.10	Surfac PPy-C	ce Plasmon Resonance study of PPy and CHI films	168
	4.10.1 4.10.2 4.10.3 4.10.4	 Pyrrole electropolymerization Binding of Hg²⁺ and Pb²⁺ with PPy and PPy-CHI Sensitive optical sensor for Hg²⁺ detection Sensitive optical sensor for Pb²⁺ detection 	168 171 172 175

5	CON	CLUSION	179
	5.1	Future studies	181
REFE BIOD	ERENC DATA (ES)F STUDENT	183 195

LIST OF TABLES

Table		Page
4.1	The FT-IR band ratio $(I_{C=C}/I_{C-N})$ of the composite films prepared from various concentration of CHI	70
4.2	The FT-IR band ratio $(I_{C=C}/I_{C-N})$ of the composite films prepared from various concentration of pyrrole	73
4.3	The FT-IR band ratio ($I_{C=C}/I_{C-N}$) of the composite films prepared from various concentration of <i>p</i> -TS	76
4.4	The FT-IR band ratio $(I_{C=C}/I_{C-N})$ of the composite films prepared at various anodic potential	78
4.5	Assignments of FT-IR absorption bands of PPy, CHI and PPy-CHI composite film	88
4.6	Optical band gaps and conductivity of PPy and PPy-CHI films prepared from various concentration of CHI	97
4.7	Optical band gaps and conductivity of PPy-CHI composite films prepared from various concentration of pyrrole	101
4.8	Optical band gaps and conductivity of PPy-CHI composite films prepared from various concentration of <i>p</i> -TS	104
4.9	Optical band gaps and conductivity of PPy-CHI composite films prepared at various applied voltages	107
4.10	d-spacing and 20 values of the PPy-CHI composite films prepared from different concentration of chitosan	120
4.11	d-spacing and 20 values of the PPy-CHI composite films prepared from various concentration of pyrrole	122
4.12	d-spacing and 2θ values of the PPy-CHI composite films prepared from various concentration of <i>p</i> -TS	124
4.13	d-spacing and 20 values of the PPy-CHI composite films prepared at various applied voltage	126
4.14	The result of thermogravimetric analysis	147
4.15	Conductivity, T_r , A_b , R_e and SE of PPy and PPy-CHI composite films with various concentrations of CHI	150

4.16	The comparison of experimental and empirical results of SE for the composite films prepared from different concentrations of chitosan	154
4.17	The comparison of experimental and empirical results of SE for the composite films prepared from different concentrations of pyrrole	158
4.18	The comparison of experimental and empirical results of SE for the composite films prepared from different concentrations of <i>p</i> -TS	161
4.19	The comparison of experimental and empirical results of SE for the composite films prepared at different applied voltages	166

LIST OF FIGURES

Figure		Page
1.1	Conductivity of conjugated polymers compared with insulators and metals	2
1.2	Scientific papers published on conducting polymers	5
2.1	Molecular structure of <i>p</i> -toluenesulfonate anion	14
2.2	Molecular structure of chitosan	17
2.3	Energy band diagrams of metal, semiconductor and insulator	19
2.4	Some conjugation defects for polyacetylene	21
2.5	Intersoliton hopping in polyacetylene chains	21
2.6	Structure of neutral polypyrrole, polaron and bipolaron	22
2.7	Band structure of polypyrrole: Undoped (Neutral), low level of doping (polaron), bipolaron and high level of doping	24
2.8	The reaction mechanism of polymerization of pyrrole	28
3.1	The experimental set-up for the electrodeposition of the films	45
3.2	Schematic view of Four-Point Probe	47
3.3	Jandel Resistivity Test Unit	48
3.4	Experimental set up of the two electrode and I-V characterization technique	50
3.5	Experimental setup for OPC detection technique	53
3.6	Stress-strain curves relate force to the deformation	56
3.7	Tension mode is used for evaluation of the films	57
3.8	Network analyzer used for EMI SE measurments	60
3.9	Set up configuration for SPR measurements	63
4.1	Electrical conductivity of conducting polymer composite films versus CHI concentration	67

4.2	Schematic view of partially formed chains at the surface of electrode: without chitosan and with suitable concentration of chitosan	69
4.3	Electrical conductivity of conducting polymer composite films versus pyrrole concentration	71
4.4	Electrical conductivity of PPy-CHI composite films versus <i>p</i> -TS concentration	74
4.5	Electrical conductivity of PPy-CHI composite films prepared at various anodic potential	77
4.6	Proposed mechanism for anodic overoxidation of polypyrrole	79
4.7	Molecular structure of pyrrole, benzoic, and quinoid forms of PPy	81
4.8	The FT-IR spectrum of <i>p</i> -toluene sulfonate	82
4.9	The FT-IR spectrum of chitosan and chitosan acetate	83
4.10	The FT-IR spectrum of polypyrrole	84
4.11	The FT-IR spectrum of PPy-CHI composite film	85
4.12	FT-IR spectra of CHI, (p-TS), PPy, and PPy-CHI	86
4.13	Schematic figures of the suggested molecular structures for the PPy-CHI composite film	89
4.14	Absorption spetra for PPy and PPy-CHI films with various concentrations of CHI	92
4.15	I-V characteristic graph for the PPy-CHI thin film	94
4.16	Determination of the band gap from the plot of $(Ah\nu)^2$ vs hv for PPy and composite films with various concentrations of CHI	96
4.17	Absorption spectra for PPy-CHI composite films prepared from different concentrations of pyrrole	98
4.18	Determination of the band gap from the plot of $(Ah\nu)^2$ vs h ν for composite films with various concentrations of pyrrole	100
4.19	Absorption spetra for PPy-CHI composite films prepared from different concentrations <i>p</i> -TS	102

4.20	Determination of the band gap from the plot of $(Ahv)^2$ vs hv for PPy-CHI composite films with various concentrations of <i>p</i> -TS	103
4.21	Absorption spectra for PPy-CHI composite films prepared at different voltages	105
4.22	Determination of the band gap from the plot of $(Ahv)^2$ vs hv for PPy-CHI composite films prepared at different voltages	106
4.23	Acoustic signal and their theoretical fitting vs modulation frequency for the PPy-CHI film	108
4.24	Thermal diffusivity of the PPy-CHI vs thickness of the films	109
4.25	Electrical conductivity and thermal diffusivity of the composite films vs CHI concentration	110
4.26	Electrical conductivity and thermal diffusivity of the composite films vs pyrrole concentration	112
4.27	Electrical conductivity and thermal diffusivity of the composite films vs <i>p</i> -TS concentration	113
4.28	Electrical conductivity and thermal diffusivity of the composite films vs applied voltage	115
4.29	XRD diffractograms of chitosan, PPy and PPy-CHI composite films	117
4.30	XRD diffractograms of the PPy-CHI composite films prepared from different concentrations of chitosan	119
4.31	XRD diffractograms of the PPy-CHI composite films prepared from different concentrations of pyrrole	121
4.32	XRD diffractograms of the PPy-CHI composite films prepared from different concentrations of <i>p</i> -TS	123
4.33	XRD diffractograms of the PPy-CHI composite films prepared at various potential	125
4.34	Temperature dependence of E', E'' and tan δ for PPy film without CHI	128
4.35	Temperature dependence of E', E'' and tan δ for PPy-CHI composite film	130
4.36	Comparision of storage modulus (E') of PPy and	

	PPy-CHI films versus temperature	131
4.37	Storage modulus vs temperature for PPy and PPy-CHI films prepared from different concentrations of CHI	132
4.38	Temperature dependence of tan δ for PPy and PPy-CHI films prepared from different concentrations of CHI	133
4.39	Storage modulus vs temperature for PPy-CHI films prepared from different concentrations of pyrrole	134
4.40	Temperature dependence of tan δ for PPy-CHI films prepared from different concentrations of pyrrole	135
4.41	Storage modulus vs temperature for PPy-CHI films prepared from different concentrations of <i>p</i> -TS	136
4.42	Temperature dependence of tan δ for PPy-CHI films prepared from different concentration of <i>p</i> -TS	137
4.43	Storage modulus vs temperature for PPy-CHI films prepared at various potential	138
4.44	Temperature dependence of tan δ for PPy-CHI films prepared at various potential	139
4.45	AFM images from the surface of PPy-CHI composite films	141
4.46	SEM images of PPy and PPy-CHI composite films	143
4.47	TG curves of CHI, PPy, and PPy-CHI composite film	146
4.48	Reflectance and Transmittance of PPy-CHI composite film in the frequency range of 8-12 GHz	149
4.49	Shielding effectiveness and Transmittance of PPy-CHI composite film in the frequency range of 8-12 GHz	150
4.50	The SE, A_b , and R_e of PPy-CHI composite films prepared from different concentrations of chitosan	152
4.51	Estimated SE by the Simon formalism for composite films prepared from different concentrations of chitosan	153
4.52	The SE, A_b , and R_e of PPy-CHI composite films prepared from different concentrations of pyrrole	157
4.53	Estimated SE by the Simon formalism for composite films prepared from different concentrations of pyrrole	158

4.54	The SE, A_b , and R_e of PPy-CHI composite films prepared from different concentrations of <i>p</i> -TS	160
4.55	Estimated SE by the Simon formalism for composite films prepared from different concentrations of <i>p</i> -TS	161
4.56	The SE, A_b , and R_e of PPy-CHI composite films prepared at different voltages	164
4.57	Estimated SE by the Simon formalism for composite films prepared at different voltages	165
4.58	SPR angular profiles for DDW on the Au, Au-PPy and Au- PPy-CHI surfaces	170
4.59	The sensograms for Hg ²⁺ binding on PPy surface	172
4.60	The sensograms for Hg ²⁺ binding on PPy-CHI surface	173
4.61	Standard calibration curves of ΔRU versus Hg ²⁺ concentration for PPy and PPy-CHI films	174
4.62	The sensograms for Pb ²⁺ binding on PPy surface	176
4.63	The sensograms for Pb ²⁺ binding on fresh PPy-CHI surface	177
4.64	Standard calibration curves of ΔRU versus Pb ²⁺ concentration for PPy and PPy-CHI films	178

xxiv