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This thesis addresses the scarcity of research focused on deciphering the contextual 

meaning behind instances of Figurative Language (FL). Existing approaches often 

neglect the intricate contextual nuances by either relying solely on features extracted 

through deep learning architectures, abandoning the contextual essence, or resorting to 

manually extracted features through rigorous processes, with limited exploration of 

combinatory methods. 

 
 

The research identifies a critical gap in the literature concerning the application of well-

established Machine Learning classification models, such as Support Vector Machine, 

K-Nearest Neighbor, Logistic Regression, Decision Tree, and Linear Discriminant 

Analysis, in the context of FL detection tasks. This study aims to bridge this gap by 

conducting an in-depth exploration of the effectiveness of these models in discerning 

Figurative Language instances. 

 

 

Furthermore, the thesis critiques prior works employing manually crafted features for 

Figurative Language detection, noting the lack of precision in identifying the most 

crucial features. The research introduces a novel approach by combining features 
extracted from a Convolutional Neural Network (CNN) model with manually extracted 

features obtained from well-known lexicons. This integration aims to enhance the 

robustness and accuracy of Figurative Language detection by leveraging the strengths of 

both deep learning and traditional feature extraction methods. 

 

 

The experimental design involves the use of a word-embedding technique, a CNN 

model, and various well-known machine learning classification techniques. The study 

not only investigates the efficiency of the proposed methodology but also delves into the 

importance of individual features, providing precise insights and discussions on the 
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significance of lexicons used in the process. The findings of this research contribute to 

the advancement of Figurative Language detection methods, offering a more nuanced 

understanding of contextual meanings and paving the way for future research in this 

domain. 

 
 

Keywords: Machine Learning, Deep Learning, Figurative Language, Sarcasm 

Detection, Metaphor Detection, Satire Detection 
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Tesis ini membincangkan kajian yang difokuskan pada makna kontekstual di sebalik 

Figurative Language ataupun Bahasa Kiasan. Pendekatan sedia ada sering mengabaikan 

nuansa kontekstual yang rumit dengan hanya bergantung kepada ciri-ciri yang diekstrak 

melalui kaedah Deep Learning, meninggalkan nuansa kontekstual, atau menggunakan 

ciri-ciri yang diekstrak secara manual melalui proses yang rumit dan memakan masa. 

 

 
Kajian ini mengenal pasti jurang kritikal dalam literatur dan juga mengaplikasikan model 

klasifikasi Machine Learning, seperti Support Vector Machine, K-Nearest Neighbour, 

Logistic Regression, Decision Tree, dan Linear Discriminant Analysis, dalam konteks 

Bahasa Kiasan. Kajian ini bertujuan untuk menyelesaikan jurang ini dengan 

menjalankan kaedah penerokaan yang mendalam. 

 

 

Selain itu, tesis ini mengkritik kerja-kerja terdahulu yang menggunakan ciri-ciri yang 

dibentuk secara manual untuk pengesanan Bahasa Kiasan dan mencatat kekurangan 

ketepatan dalam mengenal pasti ciri-ciri yang paling penting. Kajian ini 

memperkenalkan pendekatan baru dengan menggabungkan ciri-ciri yang diekstrak dari 

model Convlutional Neural Network (CNN) dengan ciri-ciri yang diekstrak secara 
manual dari leksikon-leksikon. Integrasi ini bertujuan untuk meningkatkan kebolehtahan 

dan ketepatan pengesanan Bahasa Kiasan dengan memanfaatkan kelebihan kedua-dua 

kaedah Deep Learning dan kaedah ekstraksi ciri tradisional. 

 

 

Reka bentuk eksperimen melibatkan penggunaan teknik word-embedding, model CNN, 

dan pelbagai teknik klasifikasi pembelajaran mesin yang tradisional. Kajian ini tidak 

hanya menyelidiki kecekapan metodologi yang dicadangkan, tetapi juga merinci 

kepentingan ciri-ciri individu, menyediakan pandangan yang tepat dan perbincangan 

mengenai kepentingan leksikon yang digunakan dalam proses tersebut. Hasil kajian ini 
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menyumbang kepada kemajuan kaedah pengesanan Bahasa Kiasan, menawarkan 

pemahaman kontekstual yang lebih halus, dan membuka jalan bagi penyelidikan masa 

depan dalam domain ini. 

 

 
Kata Kunci: Pembelajaran Mesin, Pembelajaran Mendalam, Bahasa Kiasan, 

Pengesanan Sindiran (Sarcasm Detection), Pengesanan Metafora (Metaphor Detection), 

Pengesanan Satira (Satire Detection) 

 

SDG: Industri, Inovasi dan Infrastruktur, Mengurangkan Ketidaksamaan Bandar dan 

Komuniti Mampan, Penggunaan dan Pengeluaran Bertanggungjawab, Kedamaian, 

Keadilan dan Institusi yang Kuat 
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CHAPTER 1  

1 INTRODUCTION 

1.1 Introduction 

The size of data shared over the Internet today is tremendous. A big part of the whole 

bulk comes from short-text posts in social networking sites such as Twitter and 
Facebook. Some of it also comes from online news sites such as Cable News Network 

(CNN) and The Onion. This type of data is very good for data analysis since they are 

very personal (Ghosh and Veale, 2017). For years, researchers in the academia and 

various industries have been analysing this type of data. The purpose includes for 

product marketing, event monitoring and trend analysis (Aquino, 2012; Liu, 2012). This 

field is called sentiment analysis (Liu, 2012). 

However, the writer of such posts has no obligation to stick to only literal language. This 

gives them freedom to also use figurative language (FL). Hence, online posts can be 

categorized into two: literal or figurative. Literal posts commonly contain traditional 

words that can be found in a dictionary with no other meaning that what it is intended 

to. On the contrary, figurative posts may contain words or phrases that carries a different 

meaning than the standard. This could flip the whole polarity of a given post. Consider 

the sentence “I am very sad to see a corrupt leader thrown to prison”. If the sentence is 

taken as literal when it is not supposed to, all the evaluations of algorithms would 

decrease. This problem would be more severe when there are many instances like this in 

the dataset. 

Due to this nature, it can jeopardize a sentiment analysis work that only focuses on 

polarity of posts. This makes the work of FL detection a non-trivial task and one of the 

biggest problems in sentiment analysis (Joshi et al., 2017b; Abulaish et al., 2020). Hence, 
detecting it would be crucial and significant. There are existing works that tried to tackle 

the problem of FL by specific types. Most of it is using rule-based, lexicon and seeding 

techniques. All of these ways are very rigorous, and did not even come close to the results 

yielded by the works using deep learning. However, deep learning is also having a big 

problem by being automated. It is that contextual meaning behind every FLs are left out. 

In the real world, FL is used a lot in everyday conversations to convey ideas which is 

difficult to visualize without it (Roberts and Kreuz, 1994). Even with this realization, 

most researchers in this field is still focusing on literal language (Chakrabarty et al., 

2022). This is because of all the reasons stated previously which also makes FL very 

implicit and nature (Shutova et al., 2010) and again the task of detecting it would be very 

important. 

There are essentially seven commonly used FL categories: sarcasm, irony, simile, 

metaphor, satire, humor and hyperbole (Abulaish et al., 2020). However, some of these 

concepts are overlapping or the distinction between one another is not very clear. 
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For example, sarcasm is sometimes considered the same as irony (Filatova, 2012; Joshi 

et al., 2015). However, there is a slight difference. Sarcasm is proven as a contrast 

between positive sentiment and negative situation (Riloff et al., 2013). In the case of 

irony, it is proposed that the speaker of the utterance would pretend to be an unwise 

person (Clark and Gerrig, 1984). This theory is then supported by another work (Kumon-

Nakamura et al., 2007). 

Simile and metaphor have the exact same structure apart from the use of words like 

“like” and “as” (Qadir et al., 2016). For example the sentence “My office is like the 

Antarctica” would mean that “My office” is very cold since Antarctica is known for 
being a cold place. A metaphoric instance of the same sentiment would be use the same 

sentence but without the word “like”. 

In the case of humor, it is fully dependent on culture and language for it to be understood 

(Driessen, 2015). For example, the sentence “Your friend is green” could be perceived 
as funny in the Malaysian culture, but not anywhere else. Hyperbole, is just a sentence 

with exaggeration (McCarthy and Carter, 2004). Consider the sentence “There is 

millions of them”. It would be agreed that this sentence does not carry the literal meaning 

for the word “millions”. Instead, the speaker is just trying to portray high volume. 

In comparison to the other FL types mentioned previously, satire is the most unique in 

terms of data collection. This is because satire does not only happen in short sentences, 

but also throughout paragraphs or books. It is a critiquing technique used upon a 

particular scenario or situation. For example, the book Gulliver’s Travels is a critique on 

the writers of travelogues that are persistent on making their travels sound unique in their 

books (Orwell, 1967). In Gulliver’s Travels, the author writes about his encounter with 

giants and very tiny people (Swift et al., 1959). These giants and very tiny people does 

not actually exist. All of the explanations of the FL types above bring this work to its 

main focus. It is to only detect three categories of FL: sarcasm, metaphor, and satire. 

There are existing works done to detect each of the FL types. The main difference 

between the works are the methods used. Some works used rule-based techniques and 
some works used deep learning techniques. It is very seldom that a work is using the 

combination of both. All of these existing methods are thoroughly explained in the 

literature review chapter of this work. 

1.2 Research Motivation 

Today, a large amount of data is accessible by basically anyone anywhere. This 

information covered various topics and sentiments. They could be very valuable to 

decision makers in the industry or the academia. They could even solve existing 

problems in these organizations. However, the data themselves can pose multiple 
problems. One of the biggest problems is when the data is using FL or having different 

meanings then what they are supposed to mean. For example, in the case of sentences or 

words used to convey sarcasm, metaphor or satire to the receiver, a machine could hardly 

detect the sender’s real intention. The task to analyze and come up with solid verdict 

would be more challenging. This research aims to detect the three biggest categories of 

FL in text: sar- casm, metaphor, and satire. The reason being is that when they are 
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detectable, they can be analyzed correctly. The information gathered from the analysis 

done on a well understood data would be much more valuable. Another inter- esting 

motivation is to investigate whether the contexts of all these FL categories would bring 

any points to the sheer detection of them. 

1.3 Problem Statement 

One of the biggest problems in sentiment analysis is FL detection, due to its ability to 

flip the polarity of instances. This would jeopardize the evaluations for each algorithms 

used in experiments. There are many categories of FL and differentiating one to another 

is not a trivial task. This is due to each of them being contextually unique. 

Hence, several research in the domain of FL detection have been reviewed and 

summarized as below: 

 

1. Sarcasm detection: It is found that most of recent works use supervised learning 

approach to tackle the issues in sarcasm (Poria et al., 2016; Misra and Arora, 

2019; Yin et al., 2021). Although some of them uses semi- supervised (Davidov 

et al., 2010; Tsur et al., 2010; Lukin and Walker, 2017; Riloff et al., 2013; 

Ghosh and Veale, 2016; Bharti et al., 2015; Bouazizi and Ohtsuki, 2016) or 
rule-based approaches (Veale, 2012; May- nard and Greenwood, 2014; 

Bamman and Smith, 2015; Ghosh et al., 2015; Rajadesingan et al., 2015; 

Schifanella et al., 2016), the performance of these works are not as good as the 

ones using supervised learning works mentioned earlier. This makes the two 

latter approaches almost outdated. However, the context of sarcasm in each of 

the sentences in the dataset is abandoned in a given supervised learning setting. 

2. Metaphor detection: Even though this domain has been studied a lot from the 

perspective of psychology, linguistics, sociology, anthropology, and 

computational linguistics (Mohler et al., 2013), metaphor detection remains one 

of the most challenging tasks. Metaphor is deemed by most researchers as very 

challenging to understand (Shutova et al., 2010). There have been works done 
on building a metaphor dataset with seeding tech- nique (Shutova et al., 2010; 

Mason, 2004). They collected metaphoric instances manually and used these 

seeds to create a larger corpus while preserving the same sentence structure. 

However, the seeding technique is very rigorous. No work has been done to 

fully automate the detection or collection of metaphor instances. This is partly 

because there is not much work done on building models to understand the 

contextual meaning behind metaphorical instances. 

3. Satire detection: Satire in computational perspective are rare (Abulaish et al., 

2019). Apart from being used as an indicator in the works of fake news 

detection (Barbieri et al., 2015b; Rubin et al., 2016; Guibon et al., 2019), there 

are hardly credible works on satire detection. It is mentioned that the acceptance 

of satire among the writers and the readers is based on commonality, a lot like 
sarcasm (Frye, 1944). The main issue faced in satire is also the same as sarcasm, 

which is the detection of context and intent for each of the instances in the 

datasets. However, the contexts of sarcasm and satire remain different. Even 

though the same framework can be used to detect these categories, different 
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datasets have to be used to train the models to find the contexts. 

 

 

As a result of the thorough reviews done on existing works, the problem statements for 

this thesis are found and finalized as below: 
 

1. The existing works either only use features that are extracted by deep learning 

architectures that abandon the contextual meanings of instances or use 

manually extracted features through rigorous processes. Combina- tory works 

are largely lacking. 

2. Exploratory work on using well-known Machine Learning classification 

models such as Support vector machine K-Nearest Neighbor, Logistic Re- 

gression, Decision Tree, and Linear Discriminant Analysis in relation to FL 

detection tasks is predominantly absent. 

3. Current approaches that used manually hand-crafted features for Figura- tive 

Language detection did not focus on on which features are the most important 

and which features are not, with preciseness and discussions on lexicons used. 
 

 

1.4 Research Objectives 

FL detection is an actively studied domain where several approaches and tech- niques 

have been used to support the task. However, it is done on each category respectively 

i.e. sarcasm detection, metaphor detection and satire detection. In this work, the general 

objective is to devise the detection approach for three categories of FL. To achieve this 

general objective, four objectives have been outlined: 

 

1. To propose the most essential and justified contextual-based feature sets for 

each of the FL category detection tasks (sarcasm detection, metaphor detection, 

satire detection). 

2. To design effective combinations of features extracted by a deep learning 

architecture and manually extracted features. 

3. To prove that there are contextually important features of each FL type, even 

while combining with features extracted from a deep learning archi- tecture. 

 

 

1.5 Research Scope 

The research scope is as the following: 

 

1. Only text modality is covered in this work. 

2. Only three FL is chosen for this work: Sarcasm, Metaphor, Satire. This is due 

to the fact that Sarcasm and Irony are very similar, apart from that Sarcasm is 

more clearly defined in literature. Metaphor and Simile is also very similar, 

apart from that Simile is only adding the words “like” and “as” to instances of 

Metaphor. Hyperbole only mean sentences that uses exaggeration such as 
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multiple exclamation marks and Humor is very dependent on the culture it is 

used in. For these reasons this work is not experimenting on Irony, Simile, 

Hyperbole and Humor. 

3. Only data that is available online is used. This is to ease the process of 

comparing the performance of this work with the existing works in the same 

domain. 

4. There are over 7000 languages that exists in the world today. Each of the 

languages has their own way of conveying messages from speakers to listeners 

or writers to readers. Since English is the most spoken language with 1132 

million speakers, it is the only language chosen for this work. 

 

 

1.6 Research Contributions 

This thesis has made the following contributions: 

 

1. Feature extraction methods that are based on the contextual justifications of 

each FLs. 

2. A proof that using the combination of a deep learning architecture with 

carefully crafted contextual features can optimize the performance of nat- ural 

language processing (NLP) tasks. 

3. A thorough comparison of the performances of machine learning classifiers 

post-experimentation on each FL detection tasks. 

4. A thorough findings of the most to the least important feature sets for every FL 

category. 

 

 

1.7 Thesis Organization 

This thesis contains seven chapters. Chapter two will describe in detail the literature 

review. The background of existing research in FL detection: i. sar- casm detection, ii. 

metaphor detection, iii. satire detection and techniques that have been used will be 

identified and described in detail. This chapter will also highlight important criteria that 

an FL detection work should possess. Finally, this chapter also discuss the issues posed 

by the relevant literature. 

Next, chapter three will describe the research methodology that has been used throughout 

the work. Generally, this chapter will explain all the activities involved in defining the 

significant components, classification, and evaluation of the framework. 

The fourth chapter will discuss a new framework for FL detection using deep learning 

with contextual features. In this chapter, the focus is on sarcasm detection. The fifth 

chapter focuses on metaphor detection. The sixth chapter focuses on satire detection. 
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Finally, the seventh chapter will present the conclusion of this research and future works 

recommended. 

1.8 Summary 

This research is an integration of figurative language detection with its contex- tual 

features as well as machine learning. It highly contributes to identify the useful methods 

for the specific task of the detection. This chapter presents the essence of the thesis; 

issues faced, the motivation for this work and the main contributions. In the next 

chapters, more details will be given to the techniques, models and the experimental 

analysis. 
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