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Copper selenide attracts much interest due to its potential applications in 

photovoltaic devices, rechargeable lithium battery, superionic conductor, ion 

selective microelectrode and as a precursor to prepare CuInSe2. Among the synthesis 

methods for copper selenide, electrodeposition is relatively simple, cost-effective, 

and low temperature growth technique. However, previously no detailed studies on 

electrodeposition parameters of this metal chalcogenide have been carried out. On 

the other hand, pulse electrodeposition of copper selenide has never been reported. In 

present work, copper selenide thin films were electrodeposited onto indium tin oxide 

coated glass (ITO) in acidic aqueous solution containing CuSO4 and Na2SeO3 via 

potentiostatic and a novel pulse technique from a three-electrode cell.  

 

 

The electrode processes and potential range of copper selenide deposition were 

studied by cyclic voltammetry. Characterisation of the films was performed using X-

ray Diffractometry (XRD), Photoelectrochemical Test (PEC) and Scanning Electron 

Microscopy (SEM). Optical band gap and transition type of the copper selenide were 
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determined using UV-vis Spectrophotometer. Electrochemical properties of CuSe 

and Cu3Se2 rich phase deposits were also investigated by solid state voltammetry 

technique. The samples were also annealed under nitrogen atmosphere at different 

temperatures and characterised. 

 

Potentiostatic deposition was carried out at different deposition potentials, Na2SeO3  

concentrations, deposition time, pH and bath temperatures. XRD patterns manifested 

the increases of deposition potential from -0.1 V to -0.6 V, Na2SeO3 concentrations 

from 0.006 M to 0.01 M, deposition duration from 1 min to 25 min and bath 

temperature from 0 ºC to 55 ºC favors the growth of CuSe phase relative to Cu3Se2. 

However, longer deposition time, high potential and bath temperature resulted to 

poor adherent films. Copper selenide was deposited at pH 1.25-2.25 to avoid the 

formation of Cu2O. Most preparative parameters did not significantly influence the 

photoactivity of the as-grown deposits. The pH and annealing temperature strongly 

affected the photosensitivity of the samples.  

 

Pulse electrodeposition was performed by varying cathodic pulse potentials and duty 

cycle. Pulse technique can access the potential up to -0.9 V to deposit good adherent 

films. Increasing pulse potential and duty cycle promoted the growth of CuSe phase 

rather than Cu3Se2. However, most deposits were not sensitive to light. 

 

The films preparative parameters of both approaches were optimized based on their 

photosensitivity. All samples are polycrystalline in nature and exhibited p-type 

semiconducting character in photoelectrochemical test. Annealing at 400 ºC causes 

the formation of Cu2-xSe. The sequential pulse-deposited and annealed deposit 
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contained Cu2O impurity which decreased the direct gap of Cu2-xSe from 1.98 eV to 

1.36 eV and improved the photocurrent significantly.  

 

The SEM micrographs of pontentiostatic and pulse plated as-grown deposits at 

selected potential show well covered, crack and pinhole free surface morphology. 

The roughness and particle sizes of copper selenide increase with increasing 

potentials in each case. Pulse-deposited films have comparatively smoother surface 

morphology and smaller particles size. The electrochemical properties of deposit 

with CuSe as the majority phase clearly differ from Cu3Se2 rich deposit in solid 

phase voltammetry study. 
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Kuprum selenida menarik minat disebabkan potensi kegunaannya dalam peranti 

fotovoltan, bateri litium yang dapat dicas semula, konduktor superionik, 

mikroelektrod pilihan ion dan sebagai bahan mentah untuk penyediaan CuInSe2. 

Antara kaedah-kaedah sintesis bagi kuprum selenida, elektroenapan ialah teknik 

yang lebih mudah, kos efektif dan boleh disediakan pada suhu rendah. Walau 

bagaimanapun, sebelum ini tiada kajian terperinci mengenai kesan perubahan 

parameter elektroenapan logam kalkogenida ini yang telah dilaksanakan. Selain itu, 

elektroenapan denyutan kuprum selenida tidak pernah dilaporkan. Dalam kerja ini, 

lapisan filem nipis kuprum selenida dielektroenapkan di atas kaca yang disaluti 

dengan indium timah oksida (ITO) di dalam larutan akueous berasid yang 

mengandungi CuSO4 dan Na2SeO3 melalui elektroenapan potentiostatik dan teknik 

baru iaitu elektroenapan denyutan daripada sel tiga elektrod. 

 

 

Proses elektrod dan julat keupayaan untuk pengenapan kuprum selenida dikaji 

dengan voltametri siklik. Pencirian lapisan filem telah dijalankan dengan 
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menggunakan Analisis Pembelauan Sinar X (XRD), Ujian Fotoelektrokimia (PEC) 

dan Mikroskopi Pengimbasan Elektron (SEM). Luang tenaga optik dan jenis 

peralihan kuprum selenida ditentukan dengan spektrofotometer ultralembayung dan 

nampak (UV-vis). Sifat elektrokimia bagi enapan yang kaya dengan fasa CuSe dan 

Cu3Se2 juga dikaji dengan teknik voltametri fasa pepejal. Sampel tertentu juga 

dipanas di bawah atmosfera nitrogen pada suhu yang berlainan dan dianalisis. 

 

Pengenapan potentiostatik telah dijalankan pada keupayaan pengenapan,  kepekatan 

Na2SeO3, masa, pH dan suhu larutan yang berlainan. XRD menunjukkan 

peningkatan keupayaan pengenapan dari -0.1 V ke -0.6 V, kepekatan Na2SeO3 dari 

0.006 M ke 0.01 M, masa pengenapan dari 1 min ke 25 min dan suhu larutan dari  

0 ºC ke 55 ºC menggalakkan pertumbuhan fasa CuSe relatif terhadap Cu3Se2. Walau 

bagaimanapun, masa pengenapan yang lebih panjang, keupayaan dan suhu yang 

tinggi menghasil filem yang mempunyai kelekatan yang kuang baik. Kebanyakan 

parameter penyediaan nyata tidak memberi kesan kepada fotoaktiviti enapan, kecuali 

pH dan suhu pemanasan menunjukkan kesan yang ketara. 

 

Pengenapan denyutan dilakukan dengan keupayaan katodik denyutan dan kitaran 

tugas yang berlainan. Pengenapan teknik denyutan dengan keupayaan sehingga 

-0.9V didapati boleh menghasilkan filem dengan kelekatan yang baik. Peningkatan 

keupayaan denyutan dan kitaran tugas menggalakkan pertumbuhan fasa CuSe 

berbanding dengan Cu3Se2. Walau bagaimanapun, kebanyakan enapan tidak sensitif 

terhadap cahaya. 
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Parameter penyediaan bagi kedua-dua kaedah telah dioptimumkan berdasarkan 

fotosensitiviti. Semua sampel bersifat polihablur dan menunjukkan sifat 

semikonduksi jenis-p daripada ujian fotoelektrokimia. Pemanasan pada suhu 400 ºC 

menyebabkan pembentukan Cu2-xSe. Pengenapan denyutan dan pemanasan yang 

berturutan menghasil enapan yang mengandungi bendasing Cu2O di mana luang 

tenaga peralihan terus diturunkan dari 1.98 eV ke 1.36 eV dan fotoarus mengingkat 

dengan ketara. 

 

Mikrograf SEM bagi enapan yang disedaikan secara potentiostatik dan denyutan 

pada keupayaan yang terpilih menunjukkan morfologi permukaan dengan liputan 

yang baik, bebas daripada retakan dan liang seni. Kekasaran dan saiz zarah kuprum 

selenida meningkat dengan peningkatan keupayaan pada setiap kaedah. Filem 

pengenapan denyutan mempunyai morfologi permukaan yang lebih licin dan saiz 

zarah yang lebih kecil. Sifat elektrokimia enapan mengandungi CuSe sebagai fasa 

utama jelas berbeza daripada enapan yang kaya dengan Cu3Se2 daripada kajian 

voltametri fasa pepejal.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 History background of photoelectrochemistry 

 

The growing interest in photoelectrochemistry has been stimulated by concern over 

the depletion of global fossil fuel. Solar energy conversion to electricity and 

chemical fuels can be achieved via photoelectrochemical cell (Wrighton, 1979). 

Photoelectrochemistry is nothing new. Nearly two centuries ago, a French physicist, 

Edmond Becquerel discovered the illuminated silver halide electrode immersed in 

acid, neutral and basic electrolyte generated small electric current through external 

circuit (Honda, 2004; Gerischer, 1975). The counter electrodes used were Pt, Au, 

Ag and Brass. Edmond Becquerel‟s experiment is illustrated in Figure 1.  

 

 

 

 

 

 

 

 

Figure 1: Illustration of Edmond experiment in 1839. Reproduced from Honda           

(2004).             

 

This was the first observation of semiconductor photoelectrochemical energy 

conversion. However, research in this field received considerable attention only after 

1970s.  



 2 

Fujishima and Honda (1972) decomposed water into hydrogen and oxygen using  

n-type TiO2. Their finding prompted scientists around the world to involve in the 

field. Although TiO2 is stable against photocorrosion, but its band gap is 3.2 eV 

means only UV light is absorbed. 

 

Hodes et al. (1976) reported the use of electrolytic deposited CdSe as liquid 

junction solar cell. At the same year, Miller and Heller from the Bell Laboratories 

also independently studied the CdS and Bi2S3 photoelectrochemical solar cell. 

Liquid junction solar cell provides easier ways to form rectifying junctions 

comparatively to costly and sophisticated solid state processing techniques (Bard, 

1980). The junction is produced by immersing the semiconductor in solution. 

Moreover, semiconductors with n-type or p-type character is suitable used for 

photoelectrochemical electrode, provided their band gap energy matches the solar 

spectrum (Finklea, 1983; Bard, 1980). This exciting idea continues to drive 

research in this area.  

     

  1.2 Basic principles of photoelectrochemical cell 

  The basic principles of such liquid junction semiconductor device involve: 

(a) Photon captures by semiconductor and cause the transition of electron from 

valance band to conduction band. The wavelength of light should equal to or 

greater than the band gap energy Eg to cause such a transition. The wavelength 

 can be calculated according to Eq. (1) (Finklea, 1983). 

 

        (nm) 
gE

1240
                                                                                             Eq. (1) 
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(b) The result of photon absorption is an electron-hole pair (e
-
h

+
) formation. If e

-
h

+
 

pair can be separated so that the e
-
 flows to a suitable acceptor species, A  

        e
-
+A             A

-
                                                                                            Eq. (2)                                           

     or an electron from a suitable donor, D, fills h
+ 

in the solution.  

     h
+
 + D          D

+                                                                                                                                            
Eq. (3) 

The light energy has been stored, at least for a short time, as redox chemical           

energy. 

(c) If e
-
 is pumped through a wire, it has been converted to an electrical current. 

However, e
-
h

+
 pairs frequently recombine very quickly with the captured light 

degraded to heat or sometimes with the emission of a photon, as in 

phosphorescence (Bard, 1980). 

 

Therefore, to utilize the light in electricity generation other than heat, the e
-
h

+
 pairs 

separation must achieve to minimize the recombination. This separation can be 

promoted by applying the bias potential across the semiconductor electrode (Bard, 

1980). Some excellent reviews on the theory of semiconductor 

photoelectrochemistry are available and therefore will not be discussed in detail 

here (Honda, 2004; Bard, 1980; Wrighton, 1979; Gerischer, 1957). In this area of 

research, new methods and new materials are being explored, to prepare the 

semiconductor electrode in a simple and cost effective way. Solar energy can be 

effectively harvested using an electrode in the form of thin film. Furthermore, thin 

film electrode only requires small amount of solid to be deposited and hence the 

production cost is reduced. 
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1.3 Copper selenide 

Copper selenide is an interesting p-type semiconductor which has wide variety of    

stoichiometric composition due to existing two oxidation states of copper ion. They 

exist in numerous phases and structural forms as stoichiometric CuSe, CuSe2, Cu2Se, 

Cu3Se2 and as well as non-stoichiometric Cu2-xSe (Heyding and Murray, 1976; 

Murray and Heyding, 1975; Heyding 1966).  

 

Various promising applications of copper selenide in photovoltaic devices (Cao et al., 

2007; Ambade et al., 2006; Chen et al., 1985; Okimura and Matsume, 1980; Tell and 

Wiegand, 1977), superionic conductor (Kourzhuer, 1998; Kashida and Akai; 1988), 

rechargeable lithium battery (Xue et al., 2006), ion selective microelectrode 

(Papeschi et al., 2000; Papeschi et al., 1992) and Shottky diodes (Brien and 

Santhanam, 1989) attract the interest of researchers towards this material. The 

compound is also an interesting precursor to synthesis CuInSe2 (Oliveira et al., 2002; 

Brien and Santhanam, 1992; Baumerzoug and Dao, 1990). Since indium has poor 

surface affinity to indium tin oxide coated glass (ITO) surface (Baumerzoug and Dao, 

1990; Battacharya and Rajeshwar, 1986). Hence, two steps electrodeposition is 

required to obtain nearly stoichiometric CuInSe2/ITO film (Baumerzoug and Dao, 

1990).  

 

1.4 Semiconductor theory 

Photoelectrochemistry is based principally on the semiconductor electrode. To 

understand the subject, some simple concepts of solid state physics must be 

discussed. The band model is usually used to describe the electronic properties of 

solids. The isolated atoms are characterized by filled and vacant orbitals. When these 


