POTENTIOSTATIC AND PULSE ELECTRODEPOSITION OF COPPER SELENIDE THIN FILMS

KOO CHEE SIONG
FS 2009 38
POTENTIOSTATIC AND PULSE ELECTRODEPOSITON OF COPPER SELENIDE THIN FILMS

By

KOO CHEE SIONG

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master

2009
Dedicated to my beloved parents and Shiau Hun
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

POTENTIOSTATIC AND PULSE ELECTRODEPOSITON OF COPPER SELENIDE THIN FILMS

By

KOO CHEE SIONG

October 2009

Chairman: Professor Zulkarnain Zainal, PhD

Faculty: Science

Copper selenide attracts much interest due to its potential applications in photovoltaic devices, rechargeable lithium battery, superionic conductor, ion selective microelectrode and as a precursor to prepare CuInSe$_2$. Among the synthesis methods for copper selenide, electrodeposition is relatively simple, cost-effective, and low temperature growth technique. However, previously no detailed studies on electrodeposition parameters of this metal chalcogenide have been carried out. On the other hand, pulse electrodeposition of copper selenide has never been reported. In present work, copper selenide thin films were electrodeposited onto indium tin oxide coated glass (ITO) in acidic aqueous solution containing CuSO$_4$ and Na$_2$SeO$_3$ via potentiostatic and a novel pulse technique from a three-electrode cell.

The electrode processes and potential range of copper selenide deposition were studied by cyclic voltammetry. Characterisation of the films was performed using X-ray Diffractometry (XRD), Photoelectrochemical Test (PEC) and Scanning Electron Microscopy (SEM). Optical band gap and transition type of the copper selenide were
determined using UV-vis Spectrophotometer. Electrochemical properties of CuSe and Cu$_3$Se$_2$ rich phase deposits were also investigated by solid state voltammetry technique. The samples were also annealed under nitrogen atmosphere at different temperatures and characterised.

Potentiostatic deposition was carried out at different deposition potentials, Na$_2$SeO$_3$ concentrations, deposition time, pH and bath temperatures. XRD patterns manifested the increases of deposition potential from -0.1 V to -0.6 V, Na$_2$SeO$_3$ concentrations from 0.006 M to 0.01 M, deposition duration from 1 min to 25 min and bath temperature from 0 ºC to 55 ºC favors the growth of CuSe phase relative to Cu$_3$Se$_2$. However, longer deposition time, high potential and bath temperature resulted to poor adherent films. Copper selenide was deposited at pH 1.25-2.25 to avoid the formation of Cu$_2$O. Most preparative parameters did not significantly influence the photoactivity of the as-grown deposits. The pH and annealing temperature strongly affected the photosensitivity of the samples.

Pulse electrodeposition was performed by varying cathodic pulse potentials and duty cycle. Pulse technique can access the potential up to -0.9 V to deposit good adherent films. Increasing pulse potential and duty cycle promoted the growth of CuSe phase rather than Cu$_3$Se$_2$. However, most deposits were not sensitive to light.

The films preparative parameters of both approaches were optimized based on their photosensitivity. All samples are polycrystalline in nature and exhibited p-type semiconducting character in photoelectrochemical test. Annealing at 400 ºC causes the formation of Cu$_{2.3}$Se. The sequential pulse-deposited and annealed deposit
contained Cu$_2$O impurity which decreased the direct gap of Cu$_{2-x}$Se from 1.98 eV to 1.36 eV and improved the photocurrent significantly.

The SEM micrographs of pontentiostatic and pulse plated as-grown deposits at selected potential show well covered, crack and pinhole free surface morphology. The roughness and particle sizes of copper selenide increase with increasing potentials in each case. Pulse-deposited films have comparatively smoother surface morphology and smaller particles size. The electrochemical properties of deposit with CuSe as the majority phase clearly differ from Cu$_3$Se$_2$ rich deposit in solid phase voltammetry study.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ELEKTROENAPAN POTENTIOSTATIK DAN DENYUTAN LAPISAN FILEM NIPIS KUPRUM SELENIDA

Oleh

KOO CHEE SIONG

Oktober 2009

Pengerusi: Profesor Zulkarnain Zainal, PhD

Fakulti: Sains

Kuprum selenida menarik minat disebabkan potensi kegunaannya dalam peranti fotovoltan, bateri litium yang dapat dicas semula, konduktor superionik, mikroelektrod pilihan ion dan sebagai bahan mentah untuk penyediaan CuInSe₂. Antara kaedah-kaedah sintesis bagi kuprum selenida, elektroenapan ialah teknik yang lebih mudah, kos efektif dan boleh disediakan pada suhu rendah. Walau bagaimanapun, sebelum ini tiada kajian terperinci mengenai kesan perubahan parameter elektroenapan logam kalkogenida ini yang telah dilaksanakan. Selain itu, elektroenapan denyutan kuprum selenida tidak pernah dilaporkan. Dalam kerja ini, lapisan filem nipsis kuprum selenida dielektroenapkan di atas kaca yang disaluti dengan indium timah oksida (ITO) di dalam larutan akueous berasid yang mengandungi CuSO₄ dan Na₂SeO₃ melalui elektroenapan potentiostatik dan teknik baru iaitu elektroenapan denyutan daripada sel tiga elektrod.

Proses elektrod dan julat keupayaan untuk pengenapan kuprum selenida dikaji dengan voltametri siklik. Pencirian lapisan filem telah dijalankan dengan
menggunakan Analisis Pembelauan Sinar X (XRD), Ujian Fotoelektrokimia (PEC) dan Mikroskopi Pengimbasan Elektron (SEM). Luang tenaga optik dan jenis peralihan kuprum selenida ditentukan dengan spektrofotometer ultralembayung dan nampak (UV-vis). Sifat elektrokimia bagi enapan yang kaya dengan fasa CuSe dan Cu₃Se₂ juga dikaji dengan teknik voltametri fasa pepejal. Sampel tertentu juga dipanas di bawah atmosfera nitrogen pada suhu yang berlainan dan dianalisis.

Pengenapan potentiostatik telah dijalankan pada keupayaan pengenapan, kepekatan Na₂SeO₃, masa, pH dan suhu larutan yang berlainan. XRD menunjukkan peningkatan keupayaan pengenapan dari -0.1 V ke -0.6 V, kepekatan Na₂SeO₃ dari 0.006 M ke 0.01 M, masa pengenapan dari 1 min ke 25 min dan suhu larutan dari 0 ºC ke 55 ºC menggalakkan pertumbuhan fasa CuSe relatif terhadap Cu₃Se₂. Walau bagaimanapun, masa pengenapan yang lebih panjang, keupayaan dan suhu yang tinggi menghasil filem yang mempunyai kelekatan yang kuang baik. Kebanyakan parameter penyediaan nyata tidak memberi kesan kepada fotoaktiviti enapan, kecuali pH dan suhu pemanasan menunjukkan kesan yang ketara.

Pengenapan denyutan dilakukan dengan keupayaan katodik denyutan dan kitaran tugas yang berlainan. Pengenapan teknik denyutan dengan keupayaan sehingga -0.9V didapati boleh menghasilkan filem dengan kelekatan yang baik. Peningkatan keupayaan denyutan dan kitaran tugas menggalakkan pertumbuhan fasa CuSe berbanding dengan Cu₃Se₂. Walau bagaimanapun, kebanyakan enapan tidak sensitif terhadap cahaya.
Parameter penyediaan bagi kedua-dua kaedah telah dioptimumkan berdasarkan fotosensitiviti. Semua sampel bersifat polihablur dan menunjukkan sifat semikonduksi jenis-p daripada ujian fotoelektrokimia. Pemanasan pada suhu 400 °C menyebabkan pembentukan Cu_{2-x}Se. Pengenapan denyutan dan pemanasan yang berturutan menghasil enapan yang mengandungi bendasing Cu_{2}O di mana luang tenaga peralihan terus diturunkan dari 1.98 eV ke 1.36 eV dan fotoarus mengingkat dengan ketara.

Mikrograf SEM bagi enapan yang disedaikan secara potentiostatik dan denyutan pada keupayaan yang terpilih menunjukkan morfologi permukaan dengan liputan yang baik, bebas daripada retakan dan liang seni. Kekasaran dan saiz zarah kuprum selenida meningkat dengan peningkatan keupayaan pada setiap kaedah. Filem pengenapan denyutan mempunyai morfologi permukaan yang lebih licin dan saiz zarah yang lebih kecil. Sifat elektrokimia enapan mengandungi CuSe sebagai fasa utama jelas berbeza daripada enapan yang kaya dengan Cu_{3}Se_{2} daripada kajian voltametri fasa pepejal.
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and gratitude to my supervisor, Professor Dr. Zulkarnain Zainal and co-supervisor Associate Professor Dr. Tan Wee Tee for their invaluable advice, guidance and assistance throughout the duration of this project.

The assistance from the staffs in Chemistry Department and Institute of Bioscience was also gratefully acknowledged. I also would like to extend special thank to my friends in laboratory 2 for their assistance and guidance in operating the instruments which are essential in this study.

The financial support for this research and the fellowship scholarship are also acknowledged.
I certify that an Examination Committee has met on 12 October 2009 to conduct the final examination of Koo Chee Siong on his degree of Master of Science thesis entitled “Potentiostatic and Pulse Electrodeposition of Copper Selenide Thin Films” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Zobir Hussein, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Nor Azah Yusuf, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Anuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Madzlan Aziz, PhD
Professor
Faculty of Science
Universiti Teknologi Malaysia
(External Examiner)

__

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduates Studies
Universiti Putra Malaysia

Date: 15 January 2010
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zulkarnain Zainal, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Tan Wee Tee, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduates Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

KOO CHEE SIONG

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 History background of photoelectrochemistry 1
1.2 Basic principles of Photoelectrochemical cell 2
1.3 Copper selenide 4
1.4 Semiconductor theory 4
 1.4.1 Band structure of semiconductor 5
1.5 Electrodeposition 6
 1.5.1 Potentiostatic and pulse electrodeposition 7
1.6 Electrochemical studies of solid compounds 9
1.7 Literature review 10
 1.7.1 Previous works on preparation of copper selenide films 10
 1.7.2 Previous works on potentiostatic deposited chalcogenide semiconductor 11
 1.7.3 Previous works on pulse deposited chalcogenide semiconductor 16
 1.7.4 Previous works on solid phase voltammetry of chalcogenide semiconductor 17
1.8 Problem statement 18
1.9 Objectives 19

2 MATERIALS AND METHODS

2.1 Electrolytes preparation 20
2.2 Electrodes 20
2.3 Cyclic voltammetric study 21
2.4 Potentiostatic deposition of copper selenide 22
 2.4.1 Deposition potential 22
 2.4.2 Na₂SeO₃ concentration 22
 2.4.3 Deposition time 23
 2.4.4 pH 23
 2.4.5 Bath temperature 23
 2.4.6 Complexing agent 23
 2.4.7 Annealing temperature 24
2.5 Pulse electrodeposition of copper selenide 24
2.5.1 Cathodic pulse potential, E_{ON} 24
2.5.2 Duty cycles 25
2.5.3 Annealing temperature 25

2.6 Characterisations 25
2.6.1 X-ray diffraction analysis (XRD) 25
2.6.2 Photoelectrochemical test (PEC) 25
2.6.3 Morphological 26
2.6.4 Optical absorption 26
2.6.5 Solid phase voltammetry 26

3 RESULTS AND DISCUSSION
3.1 Voltammetric studies 28
3.2 Potentiostatic electrodeposition of copper selenide 33
 3.2.1 Effect of deposition potential 33
 3.2.2 Effect of Na$_2$SeO$_3$ concentration 41
 3.2.3 Effect of deposition time 46
 3.2.4 Effect of pH 50
 3.2.5 Effect of bath temperature 55
 3.2.6 Effect of EDTA 59
 3.2.7 Effect of annealing temperature 63
3.3 Pulse electrodeposition of copper selenide 67
 3.3.1 Effect of pulse potential, E_{ON} 67
 3.3.2 Effect of duty cycle 71
 3.3.3 Effect of annealing temperature 74
3.4 Characterisations 77
 3.4.1 Surface morphology 77
 3.4.2 Optical properties 84
 3.4.3 Solid phase voltammetry 88

4 4.0 CONCLUSION 98
4.1 RECOMMENDATION 100

REFERENCES 102
APPENDICES 114
LIST OF CONFERENCES ATTENDED 117
BIODATA OF STUDENT 118
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Duty cycle, (t_{\text{ON}}), (t_{\text{OFF}}) and cycles number of double pulse chronoamperometry</td>
</tr>
<tr>
<td>2</td>
<td>Voltammetric data obtained from cyclic voltammograms in Figure 8</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Illustration of Edmond experiment in 1839</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Formation of bands in solids by assembly the isolated atoms into a lattice</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Variation of energy with the crystal momentum for the direct and indirect semiconductors. The light and bold lines show the conduction band for direct and indirect semiconductors, respectively</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Cathodic potential or cathodic current densities wave form of (a) Potentiostatic electrodeposition (b) Pulse electrodeposition</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Variation of film thickness with time and bath temperature (bath composition: 2 mM SeO₂, 1 mM HgCl₂ pH 3.5, deposition potential, -0.7 V vs SCE, temperature 60 °C)</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>PEC measurement for three In₂S₃ samples deposited at pH 2, 2.4 and 3.5</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Schematic three-electrode cell setup for cyclic voltammetry, potentiostatic and pulse electrodeposition</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>Figure 8: Cyclic voltammograms of ITO in: (a) 0.01 M Na₂SO₄ (b) 0.01 M Na₂SeO₃ (c) 0.01 M CuSO₄ (d) 0.01 M Na₂SeO₃ + 0.01 M CuSO₄. All electrolytes were added with 5 mL of 0.1 M H₂SO₄, except (a). The potential scan rate was 10 mV s⁻¹</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Chronoamperometric transients for copper selenide deposition at different potentials. (a) -0.1 V (b) -0.2 V (c) -0.3 V (d) -0.4 V (e) -0.5 V (f) -0.6 V</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>X-ray diffraction patterns of blank ITO and potentiostatically deposited copper selenide thin films in a sulphate solution at different deposition potentials</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>Linear sweep photovoltammogram of bare ITO, copper coated ITO, selenium coated ITO and copper selenide deposited potentiostatically at different deposition potentials</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>X-ray diffraction patterns of copper selenide thin films deposited at different Na₂SeO₃ concentrations. The concentration of CuSO₄ was maintained at 0.01 M</td>
<td>42</td>
</tr>
<tr>
<td>13</td>
<td>Linear sweep photovoltammograms of copper selenide deposited at different Na₂SeO₃ concentrations. The concentration of CuSO₄ was fixed at 0.01 M</td>
<td>44</td>
</tr>
</tbody>
</table>
14 Percentage of Cu and Se content of the samples deposited at varying Na$_2$SeO$_3$ concentrations

15 X-ray diffraction patterns of copper selenide deposited at different deposition time

16 Linear sweep photovoltammograms of copper selenide thin films deposited at different deposition time.

17 X-ray diffraction patterns of the films deposited at different pH

18 Linear sweep photovoltammograms of the samples deposited at different pH

19 X-ray diffraction patterns of copper selenide deposited at different bath temperatures.

20 Linear sweep photovoltammograms of the samples deposited at different bath temperatures. Inset shows the magnified image of photocurrent-potential curves for the samples deposited at 45 ºC and 50 ºC

21 Cyclic voltammograms of ITO in 0.01 M Na$_2$SeO$_3$, 0.01 M CuSO$_4$ without EDTA (slim line) and with EDTA (bold line). The potential scan rate was 10 mV s$^{-1}$

22 Cyclic voltammograms of ITO in 0.01 M CuSO$_4$ + 0.01 M Na$_2$SeO$_3$ without EDTA (slim line) and with EDTA (bold line). The potential scan rate was 10 mVs$^{-1}$

23 X-ray diffraction patterns of copper selenide deposited (a) without (b) with the presence of Ethylenediamine tetraacetic acid, EDTA

24 Linear sweep photovoltammograms of the copper selenide deposited (a) without (b) with the presence of ethylenediamine tetraacetic acid, EDTA

25 X-ray diffraction patterns for deposits prepared using potentiostatic electrodeposition technique. (a) as-deposited and (b) annealed samples at different temperatures

26 Linear sweep photovoltammograms of as-deposited and annealed samples at different temperatures

27 X-ray diffraction patterns of copper selenide thin films deposited at different cathodic pulse potentials, E_{ON}. The E_{OFF} was fixed at 0.18 V
Linear sweep photovoltammograms of pulse-deposited copper selenide thin films at different pulse potential, E_{ON}. The E_{OFF} was fixed at 0.18 V

X-ray diffraction patterns of copper selenide films pulse electrodeposited at different duty cycles. $E_{ON} = -0.8$ V, deposition duration was 10 min

Linear sweep photovoltammograms of pulse-deposited copper selenide thin films at different duty cycles

X-ray diffraction patterns for deposits prepared using pulse electrodeposition technique. (a) as-deposited and (b) annealed samples at different temperatures

Linear sweep photovoltammograms of as-deposited and annealed samples at different temperatures

SEM micrographs of copper selenide thin films electrodeposited using potentiostatic [(a), (c), (e), (g)] and pulse techniques [(b), (d), (f), (h)] at -0.1 V for 10 min. Magnifications: (a) and (b) 2,000 X, (c) and (d) 5,000 X, (e) and (f) 10,000 X, (g) and (h) 15,000 X

SEM micrographs of copper selenide thin films electrodeposited using potentiostatic [(a), (c), (e), (g)] and pulse techniques [(b), (d), (f), (h)] at -0.4 V for 10 min. Magnifications: (a) and (b) 2,000 X, (c) and (d) 5,000 X, (e) and (f) 10,000 X, (g) and (h) 15,000 X.

SEM micrographs of copper selenide thin films electrodeposited using potentiostatic [(a), (c), (e), (g)] and pulse techniques [(b), (d), (f), (h)] at -0.7 V for 10 min. Magnifications: (a) and (b) 2,000 X, (c) and (d) 5,000 X, (e) and (f) 10,000 X, (g) and (h) 15,000 X.

SEM micrographs of copper selenide thin film electrodeposited using pulse technique at -0.8 V for 10 min. Magnification: (a) 2,000 X, (b) 5,000 X, (c) 10,000 X and (d) 15,000 X

Absorption spectrum of Cu$_{2-x}$Se film coated onto ITO

Plot of $(A h\nu)^{2}$ versus $h\nu$ for Cu$_{2-x}$Se film coated onto ITO

Absorption spectrum of mixed phase of Cu$_{2-x}$Se and Cu$_2$O film coated onto ITO

Plot of $(A h\nu)^{2}$ versus $h\nu$ for mixed phase of Cu$_{2-x}$Se and Cu$_2$O film coated onto ITO

Cyclic voltammogram of CuSO$_4$ powder mechanically attached to a glassy carbon electrode and immersed in 0.1 M KNO$_3$. Potential scan rate was 20 mV s$^{-1}$. The number of scan cycle was 10
Cyclic voltammograms of copper selenide mechanically attached to a 3 mm diameter glassy carbon electrode and immersed in 0.1 M KNO₃. Potential scan rate was 20 mV s⁻¹. The number of scan cycle was 10. (a) CuSe rich phase (b) Cu₃Se₂ rich phase

Cyclic voltammograms of CuSe rich phase sample mechanically attached to a 3 mm diameter glassy carbon electrode and immersed in 0.1 M KNO₃. Potential scan rate was 20 mV s⁻¹. The number of scan cycle was 10

Cyclic voltammograms of Cu₃Se₂ rich phase sample mechanically attached to a 3 mm diameter glassy carbon electrode and immersed in 0.1 M KNO₃. Potential scan rate was 20 mV s⁻¹. The number of scan cycle was 10

Anodic differential pulse voltammograms of (a) CuSe (b) Cu₃Se₂ rich phase in 0.1 M KNO₃. Potential scan rate was 10.5 mV s⁻¹, step potential = 0.00105 V. Interval time = 0.1 s. Modulation time = 0.05 s

Cathodic differential pulse voltammograms of (a) CuSe (b) Cu₃Se₂ rich phase in 0.1 M KNO₃. Potential scan rate was 10.5 mV s⁻¹, step potential = 0.00105 V. Interval time = 0.1 s. Modulation time = 0.05 s

SEM images of copper selenide deposited at -0.1 V using (a) potentiostatic and (b) pulse techniques

SEM images of copper selenide deposited at -0.4 V using (a) potentiostatic and (b) pulse techniques

SEM images of copper selenide deposited at (a) -0.7 V and (b) -0.8 V using pulse technique
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag/AgCl</td>
<td>Silver/ Silver chloride</td>
</tr>
<tr>
<td>DPV</td>
<td>Differential Pulse Voltammogrametry</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine Tetraacetic Acid</td>
</tr>
<tr>
<td>E_g</td>
<td>Band Gap Energy</td>
</tr>
<tr>
<td>E_{OFF}</td>
<td>Zero Current Potential</td>
</tr>
<tr>
<td>E_{ON}</td>
<td>Cathodic Pulse Potential</td>
</tr>
<tr>
<td>Eq.</td>
<td>Equation</td>
</tr>
<tr>
<td>FTO</td>
<td>Fluoride Tin Oxide</td>
</tr>
<tr>
<td>ICP-AES</td>
<td>Inductively Coupled Plasma Atomic Emission Spectrometer</td>
</tr>
<tr>
<td>ITO</td>
<td>Indium Tin Oxide</td>
</tr>
<tr>
<td>$i-V$</td>
<td>Current-Potential</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Committee of Powder Diffraction Standard</td>
</tr>
<tr>
<td>J_{oc}</td>
<td>Short Circuit Current Densities</td>
</tr>
<tr>
<td>MOCVD</td>
<td>Metal Organic Chemical Vapor Veposition</td>
</tr>
<tr>
<td>PEC</td>
<td>Photoelectrochemical Test</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>t_{ON}</td>
<td>Duration of Cathodic Pulse Potential</td>
</tr>
<tr>
<td>t_{OFF}</td>
<td>Duration of Zero Current Potential</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>Open Circuit Potential</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>
1.1 History background of photoelectrochemistry

The growing interest in photoelectrochemistry has been stimulated by concern over the depletion of global fossil fuel. Solar energy conversion to electricity and chemical fuels can be achieved via photoelectrochemical cell (Wrighton, 1979). Photoelectrochemistry is nothing new. Nearly two centuries ago, a French physicist, Edmond Becquerel discovered the illuminated silver halide electrode immersed in acid, neutral and basic electrolyte generated small electric current through external circuit (Honda, 2004; Gerischer, 1975). The counter electrodes used were Pt, Au, Ag and Brass. Edmond Becquerel’s experiment is illustrated in Figure 1.

Figure 1: Illustration of Edmond experiment in 1839. Reproduced from Honda (2004).

This was the first observation of semiconductor photoelectrochemical energy conversion. However, research in this field received considerable attention only after 1970s.
Fujishima and Honda (1972) decomposed water into hydrogen and oxygen using \(n \)-type \(\text{TiO}_2 \). Their finding prompted scientists around the world to involve in the field. Although \(\text{TiO}_2 \) is stable against photocorrosion, but its band gap is 3.2 eV means only UV light is absorbed.

Hodes \textit{et al.} (1976) reported the use of electrolytic deposited CdSe as liquid junction solar cell. At the same year, Miller and Heller from the Bell Laboratories also independently studied the CdS and Bi\(_2\)S\(_3\) photoelectrochemical solar cell. Liquid junction solar cell provides easier ways to form rectifying junctions comparatively to costly and sophisticated solid state processing techniques (Bard, 1980). The junction is produced by immersing the semiconductor in solution. Moreover, semiconductors with \(n \)-type or \(p \)-type character is suitable used for photoelectrochemical electrode, provided their band gap energy matches the solar spectrum (Finklea, 1983; Bard, 1980). This exciting idea continues to drive research in this area.

1.2 Basic principles of photoelectrochemical cell

The basic principles of such liquid junction semiconductor device involve:

(a) Photon captures by semiconductor and cause the transition of electron from valance band to conduction band. The wavelength of light should equal to or greater than the band gap energy \(E_g \) to cause such a transition. The wavelength \(\lambda \) can be calculated according to Eq. (1) (Finklea, 1983).

\[
\lambda (\text{nm}) \geq \frac{1240}{E_g} \quad \text{Eq. (1)}
\]
(b) The result of photon absorption is an electron-hole pair \((e^+h^-)\) formation. If \(e^+h^-\) pair can be separated so that the \(e^-\) flows to a suitable acceptor species, \(A\),

\[
e^+ + A \rightarrow A^- \quad \text{Eq. (2)}
\]

or an electron from a suitable donor, \(D\), fills \(h^+\) in the solution.

\[
h^+ + D \rightarrow D^+ \quad \text{Eq. (3)}
\]

The light energy has been stored, at least for a short time, as redox chemical energy.

(c) If \(e^-\) is pumped through a wire, it has been converted to an electrical current. However, \(e^-h^+\) pairs frequently recombine very quickly with the captured light degraded to heat or sometimes with the emission of a photon, as in phosphorescence (Bard, 1980).

Therefore, to utilize the light in electricity generation other than heat, the \(e^-h^+\) pairs separation must achieve to minimize the recombination. This separation can be promoted by applying the bias potential across the semiconductor electrode (Bard, 1980). Some excellent reviews on the theory of semiconductor photoelectrochemistry are available and therefore will not be discussed in detail here (Honda, 2004; Bard, 1980; Wrighton, 1979; Gerischer, 1957). In this area of research, new methods and new materials are being explored, to prepare the semiconductor electrode in a simple and cost effective way. Solar energy can be effectively harvested using an electrode in the form of thin film. Furthermore, thin film electrode only requires small amount of solid to be deposited and hence the production cost is reduced.
1.3 Copper selenide

Copper selenide is an interesting p-type semiconductor which has wide variety of stoichiometric composition due to existing two oxidation states of copper ion. They exist in numerous phases and structural forms as stoichiometric CuSe, CuSe₂, Cu₂Se, Cu₃Se₂ and as well as non-stoichiometric Cu₂₋ₓSe (Heyding and Murray, 1976; Murray and Heyding, 1975; Heyding 1966).

Various promising applications of copper selenide in photovoltaic devices (Cao et al., 2007; Ambade et al., 2006; Chen et al., 1985; Okimura and Matsume, 1980; Tell and Wiegand, 1977), superionic conductor (Kourzhuer, 1998; Kashida and Akai; 1988), rechargeable lithium battery (Xue et al., 2006), ion selective microelectrode (Papeschi et al., 2000; Papeschi et al., 1992) and Shottky diodes (Brien and Santhanam, 1989) attract the interest of researchers towards this material. The compound is also an interesting precursor to synthesis CuInSe₂ (Oliveira et al., 2002; Brien and Santhanam, 1992; Baumerzoug and Dao, 1990). Since indium has poor surface affinity to indium tin oxide coated glass (ITO) surface (Baumerzoug and Dao, 1990; Battacharya and Rajeshwar, 1986). Hence, two steps electrodeposition is required to obtain nearly stoichiometric CuInSe₂/ITO film (Baumerzoug and Dao, 1990).

1.4 Semiconductor theory

Photoelectrochemistry is based principally on the semiconductor electrode. To understand the subject, some simple concepts of solid state physics must be discussed. The band model is usually used to describe the electronic properties of solids. The isolated atoms are characterized by filled and vacant orbitals. When these