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In today’s world, traffic congestion is a major problem in almost all metropolitans. There
has been much previous research developing new methods to improve accuracy of
Traffic State Prediction (TSP) which are designed according to its advantage for static
sensors such as video cameras, inductive loop detectors and other static sensors.
However, static sensors are not able to store longer traffic flow patterns and capture the
dynamics of traffic flow and their instalment is too expensive. Floating Car Data (FCD)
is a convenient and cost-effective method to gather traffic condition information. It is
regarded as GPS sensors which can probe a large scale of traffic flows in real time.
Although FCD can cover mare road segments across the road network compared to static
sensors, GPS data are prone to missing data because of urban canyons and tall buildings
that will affect the traffic prediction accuracy. Existence of missing data (known as data
sparsity) have made the traffic prediction tasks even more sophisticated. There are two
techniques used by the existing methods of TSP which are either with Traffic State
Estimation (Traffic State Estimation) or without TSE. While TSE estimates the missing
data in traffic states, such as speed and density to reduce data sparsity, TSP uses the
traffic data to forecast the traffic state within a certain time period in future. When there
are missing data in the dataset, TSP may use TSE for estimation of missing data and then
performs prediction.

The aim of this thesis is to improve accuracy of TSP with TSE as well as without TSE
by the improvement of LSTM. There are three (3) methods are proposed in this study. In
the first method, a new algorithm called LSTM-C (Long Short-Term Memory (LSTM)
with Contrast) is proposed to improve prediction of traffic speed without TSE. The
existing research in traffic speed prediction used LSTM with single variable (traffic
speed) and multi variables (traffic speed and vehicle headway). However, multivariate
LSTM does not add any significant contribution to adequately predict traffic speed
compared to single variate LSTM. This signifies that LSTM model requires
improvement in term of identification of traffic speed changes within a certain time
period. Thus, this study improved the traffic speed prediction using LSTM with Contrast
Measure which detects the decreasing and increasing patterns in traffic speed. Speed



prediction accuracy of the proposed method LSTM-C and previous work LSTM
achieved 96.67% and 94.86 respectively. Inthe second method, a new traffic estimation
method is proposed using Fuzzy C-Mean (FCM) clustering and Minimum Description
Length (MDL). MDL uses patterns to express the repeated presence in the data of
particular items or clusters. Spectral clustering and Hidden Markov Model (HMM) has
been used in detecting patterns by the existing research to estimate traffic speed. HMMs
are well-suited for capturing first-order dependencies, also known as Markov
dependencies. In an HMM, the future state (or observation) depends only on the current
state and is independent of the past states. This behaviour of HMM makes it less effective
in estimation of traffic data, because it might be necessary to consider several previous
states when estimating a missing state. This thesis uses Fuzzy C-Mean and concept of
MDL to constitute patterns and estimate the missing traffic state based on n previous
states. The implementation results demonstrate proposed Fuzzy-MDL method has
achieved accuracy of 96.46% which outperform the HMM-based model that achieved
93.14%. In the third method, a hybrid algorithm called LSTM-C-EST, which is a
combination of Fuzzy-MDL and LSTM-C is proposed. The idea to propose this method
is that estimating the value of missing traffic speed can improve the traffic prediction
results. In this model, the Fuzzy-MDL is applied as the pre-processing step to estimate
the missing traffic speeds. Then this new estimated data is used for prediction to predict
the traffic speed in the next 5 minutes. The results of this model is compared with LSTM-
C as well as the study by (shuming Sun et al., (2019) which performed traffic estimation
and traffic prediction using HMM and a single variant LSTM. The accuracy of LSTM-
C-EST, LSTM-C, LSTM are 98.05%, 96.69%, 94.90% respectively, which proves the
LSTM-C-EST outperform the other two algorithms.
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MODEL PEMBELAJARAN MESIN YANG DITINGKATKAN DARI DATA
KERETA TERAPUNG MASSIF (FCD) BERDASARKAN FUZZY-MDL DAN
LSTM-C UNTUK ANGGAARAN DAN RAMALAN KELAJUAN LALU
LINTAS

Oleh
FATEMEH AHANIN

Februari 2023

Dalam dunia hari ini, kesesakan lalu lintas adalah masalah utama di hampir semua
metropolitan. Terdapat banyak penyelidikan terdahulu yang membangunkan kaedah
baharu untuk meningkatkan ketepatan Ramalan Keadaan Trafik (TSP) yang direka
bentuk mengikut kelebihannya untuk penderia statik seperti kamera video, pengesan
gelung induktif dan penderia statik lain. Walau bagaimanapun, penderia statik tidak
dapat menyimpan corak aliran trafik yang lebih panjang dan tidak dapat menangkap
aliran trafik yang dinamik serta instalasinya terlalu mahal. Floating Car Data (FCD) ialah
kaedah yang mudah dan kos efektif untuk mengumpulkan maklumat keadaan trafik. la
dianggap sebagai penderia GPS yang boleh menyiasat aliran trafik berskala besar dalam
masa nyata. Walaupun FCD boleh meliputi lebih banyak segmen jalan merentasi
rangkaian jalan berbanding dengan penderia statik, data GPS terdedah kepada
kehilangan data disebabkan lembah bandar dan bangunan tinggi yang akan menjejaskan
ketepatan ramalan trafik. Kewujudan data yang hilang (dikenali sebagai data sparsity)
telah menjadikan tugas ramalan trafik lebih canggih. Terdapat dua teknik yang
digunakan oleh kaedah TSP sedia ada iaitu sama ada dengan Anggaran Keadaan Trafik
(TSE) atau tanpa TSE. Manakala TSE menganggarkan data yang hilang bagi keadaan
trafik, seperti kelajuan dan ketumpatan untuk mengurangkan kelompongan data, TSP
pula menggunakan data trafik untuk meramalkan keadaan trafik pada masa hadapan
dalam tempoh masa tertentu. Apabila terdapat data yang hilang dalam set data, TSP
boleh menggunakan TSE untuk menganggarkan data yang hilang dan kemudian
melakukan ramalan.

Matlamat tesis ini adalah untuk meningkatkan ketepatan TSP dengan TSE dan juga tanpa
TSE dengan penambahbaikan LSTM. Terdapat tiga (3) kaedah dicadangkan dalam
kajian ini. Dalam kaedah pertama, algoritma baharu yang dipanggil LSTM-C (Long
Short-Term Memory (LSTM) with Contrast) dicadangkan untuk meningkatkan ramalan
kelajuan trafik tanpa TSE. Penyelidikan sedia ada dalam ramalan kelajuan lalu lintas
menggunakan LSTM dengan pembolehubah tunggal (kelajuan trafik) dan pembolehubah
berbilang (kelajuan lalu lintas dan hala tuju kenderaan). Walau bagaimanapun, LSTM
dengan pembolehubah berbilang tidak menambah apa-apa sumbangan penting untuk
meramalkan kelajuan trafik dengan secukupnya berbanding LSTM dengan
pembolehubah tunggal. Ini menandakan model LSTM memerlukan penambahbaikan
dari segi mengenal pasti perubahan kelajuan trafik dalam tempoh masa tertentu. Justeru,



kajian ini menambah baik ramalan kelajuan trafik menggunakan LSTM dengan Contrast
Measure yang mengesan corak penurunan dan peningkatan dalam kelajuan trafik.
Ketepatan ramalan kelajuan kaedah LSTM-C yang dicadangkan berbanding LSTM sedia
ada adalah 96.67% dan 94.86. Dalam kaedah kedua, kaedah anggaran trafik baharu
dicadangkan menggunakan pengelompokan Fuzzy C-Mean (FCM) dan Minimum
Description Length (MDL). MDL menggunakan corak untuk menyatakan kehadiran
berulang dalam data item atau kelompok tertentu. Pengelompokan spektrum dan Hidden
Markov Model (HMM) telah digunakan untuk dengan mengesan corak dalam
penyelidikan sedia ada bagi menganggar kelajuan lalu lintas. HMM sangat sesuai untuk
menangkap kebergantungan tertib pertama, juga dikenali sebagai kebergantungan
Markov. Dalam HMM, keadaan masa depan (atau pemerhatian) hanya bergantung pada
keadaan semasa dan bebas daripada keadaan masa lalu. Tingkah laku HMM ini
menjadikannya kurang berkesan dalam menganggar data trafik, kerana ianya perlu
mempertimbangkan beberapa keadaan sebelumnya apabila menganggarkan keadaan
yang hilang. Tesis ini menggunakan Fuzzy C-Mean dan konsep MDL untuk membentuk
corak dan menganggar keadaan trafik yang hilang berdasarkan n keadaan sebelumnya.
Keputusan pelaksanaan menunjukkan kaedah Fuzzy-MDL yang dicadangkan telah
mencapai ketepatan 96.46% yang mengatasi prestasi model berasaskan HMM yang
mencapai 93.14%. Dalam kaedah ketiga, algoritma hibrid yang dipanggil LSTM-C-EST,
yang merupakan gabungan Fuzzy-MDL dan LSTM-C dicadangkan. Idea untuk
mencadangkan kaedah ini adalah penganggaran nilai kelajuan trafik yang hilang boleh
meningkatkan hasil ramalan trafik. Dalam model ini, Fuzzy-MDL digunakan sebagai
langkah pra-pemprosesan untuk menganggarkan kelajuan trafik yang hilang. Kemudian
data anggaran baharu ini digunakan untuk ramalan bagi meramalkan kelajuan trafik
dalam 5 minit seterusnya. Keputusan model ini dibandingkan dengan LSTM-C serta
kajian sebelum yang melakukan anggaran trafik dan ramalan trafik menggunakan HMM
dan LSTM varian tunggal. Ketepatan LSTM-C-EST , LSTM-C, LSTM masing-masing
adalah 98.05%, 96.69%, 94.90%, yang membuktikan LSTM-C-EST mengatasi dua
algoritma yang lain.
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CHAPTER 1

INTRODUCTION

1.1 Background

In today’s world, traffic congestion is a major problem in almost all metropolitans. This
phenomenon has affected several aspects from people’s daily life to economy. Mobility
of people, travel time duration, quality of life, transportation planning systems and traffic
management are examples which bear the effects of traffic congestion. This problem is
even becoming more crucial due to increasing numbers of vehicles especially in arterial
roads. Governments, universities and Research and Development (R&D) sectors have
tackled this problem and tries to reduce traffic congestion using traffic monitoring and
management technologies. These technologies require sufficient and accurate traffic
data.

Due to pervasive technologies in telecommunication and transportation systems, there
are massive amount of traffic data available. In order to determine traffic state (e.g., flow
velocity and traffic density), video cameras, inductive loop detectors, and other static
sensors can be deployed at fixed positions on roads. While data collected from these
devices are accurate and sufficient in order to be used for traffic management, these
traditional approaches cannot cover all roads because they need considerable
infrastructure development and high maintenance costs (Akhtar & Moridpour, 2021).

On the other hand, Floating Car Data (FCD) is a convenient and cost-effective method
to gather traffic condition information. It is regarded as GPS sensors and does not need
any specific device and offers good coverage across road networks with defined
penetration rate. However, FCD are prone to have missing data because of urban canyons
and tall buildings which affected the traffic estimation and prediction results (Newson
and Krumm, 2009). Existence of these errors has made the estimation and prediction
tasks even more sophisticated. Traffic management applications, trip recommendations
and any other applications require accurate data to have precise. There are methods to
remove the noises, however the amount of data is very scare, it is not suitable for the
aforementioned applications. Moreover, in some cases the GPS devices might update
their locations once in few minutes which exact speed and location remains unknown,
and the vehicle might pass several road segments having diverse speed without updating
its traveling data. The latter issue is known as data sparsity or missing data. Furthermore,
in these data only some of the vehicles in the roads report their location which the real
traffic characteristics of traffic such as flow and density remain unknown. Consequently,
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there will be a difference between the actual numbers of vehicles travelling on a road
segment with the reported vehicles.

Machine Learning offers various methods and models which aid to discover knowledge,
recognize hidden pattern, estimate and predict traffic states. These methods and models
aid to overcome data sparseness to provide more accurate and sufficient traffic data.
Traffic State Estimation (TSE) and prediction technologies have a challenging task to
control and monitor traffic and aiming to improve traffic management and monitoring.
TSE refers to the procedure of inferring traffic state (i.e., flow, density, speed, and other
similar variables) from partially observed traffic data on road segments (Seo et al., 2017).
In this manner, TSE can estimate the missing traffic states caused by removal of GPS
errors or low sampling rates. Traffic State Prediction task is to forecast the traffic state
variable within a certain time period. The accuracy of the short-term traffic speed
prediction model significantly influences the performance of real-time traffic control and
management in Intelligent Transportation Systems (ITS).

1.2 Problem Statement

Traffic State Estimation (TSE) and Traffic State Prediction (TSP) both aim to help traffic
management using different methods. While TSE is more on the preprocessing step, TSP
is a more prominent stage in traffic management which predicts traffic states such as
speed. Here are two techniques used by the existing methods of TSP which is either with
TSE or without TSE. While TSE estimates the missing data in traffic states, such as speed
and density to reduce data sparsity, TSP uses the traffic data to forecast the traffic state
within a certain time period in future. When there are missing data in the dataset, TSP
may use TSE for estimation of missing data and then performs prediction.

In TSP, Speed is an important traffic states which can reveal the severity of congestion
in a road segment. Therefore, the accuracy of traffic speed prediction is essential to
identify traffic congestion earlier. In this reason simple and traditional ML algorithms
such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Regression
Model, and Decision Trees (DT) (Tseng and Hsueh, 2018; Nadeem and fowdur, 2018;
Feng et al., 2019; Xu et al., 2019; X. Yang et al., 2019; Navarro-Espinoza et al., 2022a)
were used but some problems still remain. Failing to deliver effective results and
accuracy drop when the amount of missing data increases are common issues in Shallow
Machine Learning (SLM) methods. Another group which has powerful methods for
traffic prediction is Deep Learning (DL). One of the advantages of DL over ANN is that
it does not require prior knowledge for extracting features from the input data.
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and LSTM
are DL algorithms which are utilized in traffic prediction (Ma et al., 2017; M. Chen et
al., 2018). RNN and its branch LSTM are also well-known Deep learning algorithms that
performed good on traffic state prediction (Ma et al., 2015; Zhang et al., 2019; Shuming
Sun et al., 2019; Majumdar et al., 2021). One of the advantages of RNN algorithms is
their short-term memory which allows them to model data nonlinearity in time series.
Besides its short-term memory advantage, might interface difficulty in the training phase.
This issue is smoothened in the LSTM but for LSTM-based models, the prediction
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always depends on the data. The existing research in traffic speed prediction used LSTM
with single variable (traffic speed) and multi variables (traffic speed and vehicle
headway) (Majumdar et al., 2021). However, they concluded multivariate LSTM does
not add any significant contribution to adequately predict traffic speed compared to
single variate LSTM. This signifies that the model's ability to learn meaningful patterns
(increasing and decreasing speed changes) from the data requires improvement. Accurate
identification of changes in speed data at road segments is still a challenge which needs
to be addressed.

Moreover, many studies have used loop detectors data and other static sensors data (M.
Chen et al., 2018; Zhang et al., 2019; Majumdar et al., 2021). However, loop detectors
data are not able to store longer traffic flow patterns and capture the dynamics of traffic
flow and their instalment is too expensive. FCD has more coverage of the road segments
across the road network (compare to loop detector data) and can capture the dynamic
nature of traffic trends. However, FCD data may suffer from data sparsity (missing data),
which affects the accuracy of the LSTM. Hence, dealing with this problem of missing
data is crucial for such models (Selim Reza et al.,2022). To deal with data sparsity, TSE
methods play an important role. When the amount of available data is too sparse, the
TSE algorithms face difficulty to identify traffic characteristics in the road segments and
the accuracy of estimation would drop drastically. Some researchers have used tensor
decomposition-based model to perform traffic state estimation (Chen et al., 2019; Xu et
al., 2020). It is important to note that spatiotemporal correlations are the main component
in many estimation algorithms. Hence, it is essential for TSE methods to incorporate
spatiotemporal features properly, in a way that reflects their reliance in accurate
estimation. X. Wang et al., (2015) proposed a method to estimate traffic speed by
detecting patterns using spectral clustering and HMM. HMMs are well-suited for
capturing first-order dependencies, also known as Markov dependencies. In an HMM,
the future state (or observation) depends only on the current state and is independent of
the past states. This behaviour of HMM makes it less effective in estimation of traffic
data, because it might be necessary to consider several previous states when estimating
a missing state.

This study addresses the following issues based on the above limitations:

1. Most of the existing research on traffic speed prediction lack effective
identification in changes in traffic trends.

2. The accuracy of estimating missing traffic state must be improved.

3. While Deep Learning methods are the most recent technologies for TSP, they
still require improving accuracy when there is missing data in the dataset.



1.3 Research Objective

The main purpose of the study is to propose a novel traffic state estimation and prediction
model using FCD. The objectives of this research are as follows:

1. To propose Contrast Measure and combine with LSTM (LSTM-C) to identify
changes in traffic speed within a time period to improve traffic speed prediction
using FCD.

2. To propose a novel traffic state estimation method using Fuzzy C-Mean
algorithm and Minimum Description Length (MDL) concept called Fuzzy-
MDL, to estimate the missing traffic speed with diverse missing rate
percentages and improve the accuracy of speed estimation.

3. To combine the proposed speed estimation (Fuzzy-MDL) and speed prediction
(LSTM-C) methods called LSTM-C-EST to solve data sparsity in FCD dataset
and enhance data in order to improve accuracy of speed prediction.

In the first objective, the proposed LSTM-C is evaluated using FCD. It is important to
note that FCD includes missing data due to the aforementioned issues and the actual
value of this missing data is unknown.

In the second objective, random data values form FCD are removed, and the proposed
Fuzzy-MDL estimated the removed data values. Fuzzy-MDL is evaluated by comparing
the estimated data values with the removed data values.

The third objective aims to combine the first and second proposed methods (objective
one and two) as one method called LSTM-C-EST to estimate the actual missing data
exists in the FCD dataset and fed it to the prediction layer and improve the accuracy, in
comparison with the first method (objective one, LSTM-C). The purpose of the
combination is to prove that effectiveness of the proposed estimation method (Fuzzy-
MDL) and its capability in increasing prediction accuracy.

1.4 Research Scope

Traffic management and controlling is a huge research scope. There are many research
paths in the area. Some of these studies have been carried out by traffic engineering and
civil engineering departments which require certain kind of data or equipment from
government or private sectors (e.g., accident detection, traffic light management).



The focus of the research is on traffic state estimation and prediction through ML (Fuzzy
and LSTM) techniques using FCD. This study aims to estimate missing traffic speed and
performs short-term traffic speed prediction using data in arterial roads. The goal is to
discover patterns and trends in traffic data and improve speed prediction accuracy.
Traffic theory and other fundamental concepts are not in this research scope and can be
found in traffic engineering and civil engineering studies. The main FCD dataset used in
this research is from Beijing. Another FCD dataset from Xuancheng is applied in Chapter
4. The benchmarks used in this study have similar background and are using Machine
Learning and data-driven techniques only rather than employing physical traffic models
and Traffic Theory. The performance measures used by benchmarks are MAE, MSE,
and RMSE.

1.5 Thesis Organization

The thesis is organized as follows:

Chapter 1 explains the background of research, motivation, problem statement, research
objectives and the scope of the research.

Chapter 2 provides in-depth research and examines relevant literature of the subject
matter including traffic state estimation and prediction using traffic data. Moreover, this
chapter includes a summary of ML techniques and its significance in improving traffic
state estimation and prediction.

Chapter 3 discusses the research methodologies which have been used in this study. The
research methodology provides a detailed guidance to the reader to understand this
thesis.

Chapter 4 provides the design and evaluation of the proposed prediction method using
the proposed LSTM-C.

Chapter 5 provides the design and evaluation of the proposed state estimation method
using Fuzzy-MDL.

Chapter 6 describes the design and evaluation of the combined method using Fuzzy-
MDL and LSTM-C called LSTM-C-EST.

Chapter 7 conclude the research and recommended some promising direction for future
research.
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