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In today’s world, traffic congestion is a major problem in almost all metropolitans. There 

has been much previous research developing new methods to improve accuracy of 

Traffic State Prediction (TSP) which are designed according to its advantage for static 

sensors such as video cameras, inductive loop detectors and other static sensors. 

However, static sensors are not able to store longer traffic flow patterns and capture the 

dynamics of traffic flow and their instalment is too expensive. Floating Car Data (FCD) 

is a convenient and cost-effective method to gather traffic condition information. It is 

regarded as GPS sensors which can probe a large scale of traffic flows in real time. 

Although FCD can cover more road segments across the road network compared to static 

sensors, GPS data are prone to missing data because of urban canyons and tall buildings 

that will affect the traffic prediction accuracy. Existence of missing data (known as data 

sparsity) have made the traffic prediction tasks even more sophisticated. There are two 

techniques used by the existing methods of TSP which are either with Traffic State 

Estimation (Traffic State Estimation) or without TSE. While TSE estimates the missing 

data in traffic states, such as speed and density to reduce data sparsity, TSP uses the 

traffic data to forecast the traffic state within a certain time period in future. When there 

are missing data in the dataset, TSP may use TSE for estimation of missing data and then 

performs prediction.  

The aim of this thesis is to improve accuracy of TSP with TSE as well as without TSE 

by the improvement of LSTM. There are three (3) methods are proposed in this study. In 

the first method, a new algorithm called LSTM-C (Long Short-Term Memory (LSTM) 

with Contrast) is proposed to improve prediction of traffic speed without TSE. The 

existing research in traffic speed prediction used LSTM with single variable (traffic 

speed) and multi variables (traffic speed and vehicle headway). However, multivariate 

LSTM does not add any significant contribution to adequately predict traffic speed 

compared to single variate LSTM. This signifies that LSTM model requires 

improvement in term of identification of traffic speed changes within a certain time 

period. Thus, this study improved the traffic speed prediction using LSTM with Contrast 

Measure which detects the decreasing and increasing patterns in traffic speed. Speed 
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prediction accuracy of the proposed method LSTM-C and previous work LSTM 

achieved 96.67% and 94.86 respectively.  In the second method, a new traffic estimation 

method is proposed using Fuzzy C-Mean (FCM) clustering and Minimum Description 

Length (MDL). MDL uses patterns to express the repeated presence in the data of 

particular items or clusters. Spectral clustering and Hidden Markov Model (HMM) has 

been used in detecting patterns by the existing research to estimate traffic speed. HMMs 

are well-suited for capturing first-order dependencies, also known as Markov 

dependencies. In an HMM, the future state (or observation) depends only on the current 

state and is independent of the past states. This behaviour of HMM makes it less effective 

in estimation of traffic data, because it might be necessary to consider several previous 

states when estimating a missing state. This thesis uses Fuzzy C-Mean and concept of 

MDL to constitute patterns and estimate the missing traffic state based on n previous 

states. The implementation results demonstrate proposed Fuzzy-MDL method has 

achieved accuracy of 96.46% which outperform the HMM-based model that achieved 

93.14%. In the third method, a hybrid algorithm called LSTM-C-EST, which is a 

combination of Fuzzy-MDL and LSTM-C is proposed. The idea to propose this method 

is that estimating the value of missing traffic speed can improve the traffic prediction 

results. In this model, the Fuzzy-MDL is applied as the pre-processing step to estimate 

the missing traffic speeds. Then this new estimated data is used for prediction to predict 

the traffic speed in the next 5 minutes. The results of this model is compared with LSTM-

C as well as the study by (shuming Sun et al., (2019) which performed traffic estimation 

and traffic prediction using HMM and a single variant LSTM. The accuracy of LSTM-

C-EST, LSTM-C, LSTM are 98.05%, 96.69%, 94.90% respectively, which proves the 

LSTM-C-EST outperform the other two algorithms.  
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MODEL PEMBELAJARAN MESIN YANG DITINGKATKAN DARI DATA 

KERETA TERAPUNG MASSIF (FCD) BERDASARKAN FUZZY-MDL DAN 

LSTM-C UNTUK ANGGAARAN DAN RAMALAN KELAJUAN LALU 

LINTAS 

 

Oleh 

 

FATEMEH AHANIN 

 

Februari 2023 

 

Dalam dunia hari ini, kesesakan lalu lintas adalah masalah utama di hampir semua 

metropolitan. Terdapat banyak penyelidikan terdahulu yang membangunkan kaedah 

baharu untuk meningkatkan ketepatan Ramalan Keadaan Trafik (TSP) yang direka 

bentuk mengikut kelebihannya untuk penderia statik seperti kamera video, pengesan 

gelung induktif dan penderia statik lain. Walau bagaimanapun, penderia statik tidak 

dapat menyimpan corak aliran trafik yang lebih panjang dan tidak dapat menangkap 

aliran trafik yang dinamik serta instalasinya terlalu mahal. Floating Car Data (FCD) ialah 

kaedah yang mudah dan kos efektif untuk mengumpulkan maklumat keadaan trafik. Ia 

dianggap sebagai penderia GPS yang boleh menyiasat aliran trafik berskala besar dalam 

masa nyata. Walaupun FCD boleh meliputi lebih banyak segmen jalan merentasi 

rangkaian jalan berbanding dengan penderia statik, data GPS terdedah kepada 

kehilangan data disebabkan lembah bandar dan bangunan tinggi yang akan menjejaskan 

ketepatan ramalan trafik. Kewujudan data yang hilang (dikenali sebagai data sparsity) 

telah menjadikan tugas ramalan trafik lebih canggih. Terdapat dua teknik yang 

digunakan oleh kaedah TSP sedia ada iaitu sama ada dengan Anggaran Keadaan Trafik 

(TSE)  atau tanpa TSE. Manakala TSE menganggarkan data yang hilang bagi keadaan 

trafik, seperti kelajuan dan ketumpatan untuk mengurangkan kelompongan data, TSP 

pula menggunakan data trafik untuk meramalkan keadaan trafik pada masa hadapan 

dalam tempoh masa tertentu. Apabila terdapat data yang hilang dalam set data, TSP 

boleh menggunakan TSE untuk menganggarkan data yang hilang dan kemudian 

melakukan ramalan. 

Matlamat tesis ini adalah untuk meningkatkan ketepatan TSP dengan TSE dan juga tanpa 

TSE dengan penambahbaikan LSTM. Terdapat  tiga (3) kaedah dicadangkan dalam 

kajian ini. Dalam kaedah pertama, algoritma baharu yang dipanggil LSTM-C (Long 

Short-Term Memory (LSTM) with Contrast) dicadangkan untuk meningkatkan ramalan 

kelajuan trafik tanpa TSE. Penyelidikan sedia ada dalam ramalan kelajuan lalu lintas 

menggunakan LSTM dengan pembolehubah tunggal (kelajuan trafik) dan pembolehubah 

berbilang (kelajuan lalu lintas dan hala tuju kenderaan). Walau bagaimanapun, LSTM 

dengan pembolehubah berbilang tidak menambah apa-apa sumbangan penting untuk 

meramalkan kelajuan trafik dengan secukupnya berbanding LSTM dengan 

pembolehubah tunggal. Ini menandakan model LSTM memerlukan penambahbaikan 

dari segi mengenal pasti perubahan kelajuan trafik dalam tempoh masa tertentu. Justeru, 
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kajian ini menambah baik ramalan kelajuan trafik menggunakan LSTM dengan Contrast 

Measure yang mengesan corak penurunan dan peningkatan dalam kelajuan trafik. 

Ketepatan ramalan kelajuan kaedah LSTM-C yang dicadangkan berbanding LSTM sedia 

ada adalah 96.67% dan 94.86. Dalam kaedah kedua, kaedah anggaran trafik baharu 

dicadangkan menggunakan pengelompokan Fuzzy C-Mean (FCM) dan Minimum 

Description Length (MDL). MDL menggunakan corak untuk menyatakan kehadiran 

berulang dalam data item atau kelompok tertentu. Pengelompokan spektrum dan Hidden 

Markov Model (HMM) telah digunakan untuk dengan mengesan corak dalam 

penyelidikan sedia ada bagi menganggar kelajuan lalu lintas. HMM sangat sesuai untuk 

menangkap kebergantungan tertib pertama, juga dikenali sebagai kebergantungan 

Markov. Dalam HMM, keadaan masa depan (atau pemerhatian) hanya bergantung pada 

keadaan semasa dan bebas daripada keadaan masa lalu. Tingkah laku HMM ini 

menjadikannya kurang berkesan dalam menganggar data trafik, kerana ianya perlu 

mempertimbangkan beberapa keadaan sebelumnya apabila menganggarkan keadaan 

yang hilang. Tesis ini menggunakan Fuzzy C-Mean dan konsep MDL untuk membentuk 

corak dan menganggar keadaan trafik yang hilang berdasarkan n keadaan sebelumnya. 

Keputusan pelaksanaan menunjukkan kaedah Fuzzy-MDL yang dicadangkan telah 

mencapai ketepatan 96.46% yang mengatasi prestasi model berasaskan HMM yang 

mencapai 93.14%. Dalam kaedah ketiga, algoritma hibrid yang dipanggil LSTM-C-EST, 

yang merupakan gabungan Fuzzy-MDL dan LSTM-C dicadangkan. Idea untuk 

mencadangkan kaedah ini adalah penganggaran nilai kelajuan trafik yang hilang boleh 

meningkatkan hasil ramalan trafik. Dalam model ini, Fuzzy-MDL digunakan sebagai 

langkah pra-pemprosesan untuk menganggarkan kelajuan trafik yang hilang. Kemudian 

data anggaran baharu ini digunakan untuk ramalan bagi meramalkan kelajuan trafik 

dalam 5 minit seterusnya. Keputusan model ini dibandingkan dengan LSTM-C serta 

kajian sebelum yang melakukan anggaran trafik dan ramalan trafik menggunakan HMM 

dan LSTM varian tunggal. Ketepatan LSTM-C-EST , LSTM-C, LSTM masing-masing 

adalah 98.05%, 96.69%, 94.90%, yang membuktikan LSTM-C-EST mengatasi dua 

algoritma yang lain. 
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CHAPTER 1 

1. INTRODUCTION 

 

1.1 Background 

In today’s world, traffic congestion is a major problem in almost all metropolitans. This 

phenomenon has affected several aspects from people’s daily life to economy. Mobility 

of people, travel time duration, quality of life, transportation planning systems and traffic 

management are examples which bear the effects of traffic congestion. This problem is 

even becoming more crucial due to increasing numbers of vehicles especially in arterial 

roads. Governments, universities and Research and Development (R&D) sectors have 

tackled this problem and tries to reduce traffic congestion using traffic monitoring and 

management technologies. These technologies require sufficient and accurate traffic 

data.  

Due to pervasive technologies in telecommunication and transportation systems, there 

are massive amount of traffic data available. In order to determine traffic state (e.g., flow 

velocity and traffic density), video cameras, inductive loop detectors, and other static 

sensors can be deployed at fixed positions on roads. While data collected from these 

devices are accurate and sufficient in order to be used for traffic management, these 

traditional approaches cannot cover all roads because they need considerable 

infrastructure development and high maintenance costs (Akhtar & Moridpour, 2021).  

On the other hand, Floating Car Data (FCD) is a convenient and cost-effective method 

to gather traffic condition information. It is regarded as GPS sensors and does not need 

any specific device and offers good coverage across road networks with defined 

penetration rate. However, FCD are prone to have missing data because of urban canyons 

and tall buildings which affected the traffic estimation and prediction results (Newson 

and Krumm, 2009). Existence of these errors has made the estimation and prediction 

tasks even more sophisticated. Traffic management applications, trip recommendations 

and any other applications require accurate data to have precise. There are methods to 

remove the noises, however the amount of data is very scare, it is not suitable for the 

aforementioned applications. Moreover, in some cases the GPS devices might update 

their locations once in few minutes which exact speed and location remains unknown, 

and the vehicle might pass several road segments having diverse speed without updating 

its traveling data. The latter issue is known as data sparsity or missing data. Furthermore, 

in these data only some of the vehicles in the roads report their location which the real 

traffic characteristics of traffic such as flow and density remain unknown. Consequently, 
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there will be a difference between the actual numbers of vehicles travelling on a road 

segment with the reported vehicles.  

Machine Learning offers various methods and models which aid to discover knowledge, 

recognize hidden pattern, estimate and predict traffic states. These methods and models 

aid to overcome data sparseness to provide more accurate and sufficient traffic data. 

Traffic State Estimation (TSE) and prediction technologies have a challenging task to 

control and monitor traffic and aiming to improve traffic management and monitoring. 

TSE refers to the procedure of inferring traffic state (i.e., flow, density, speed, and other 

similar variables) from partially observed traffic data on road segments (Seo et al., 2017). 

In this manner, TSE can estimate the missing traffic states caused by removal of GPS 

errors or low sampling rates. Traffic State Prediction task is to forecast the traffic state 

variable within a certain time period. The accuracy of the short-term traffic speed 

prediction model significantly influences the performance of real-time traffic control and 

management in Intelligent Transportation Systems (ITS). 

1.2 Problem Statement  

Traffic State Estimation (TSE) and Traffic State Prediction (TSP) both aim to help traffic 

management using different methods. While TSE is more on the preprocessing step, TSP 

is a more prominent stage in traffic management which predicts traffic states such as 

speed. Here are two techniques used by the existing methods of TSP which is either with 

TSE or without TSE. While TSE estimates the missing data in traffic states, such as speed 

and density to reduce data sparsity, TSP uses the traffic data to forecast the traffic state 

within a certain time period in future. When there are missing data in the dataset, TSP 

may use TSE for estimation of missing data and then performs prediction.  

In TSP, Speed is an important traffic states which can reveal the severity of congestion 

in a road segment. Therefore, the accuracy of traffic speed prediction is essential to 

identify traffic congestion earlier. In this reason simple and traditional ML algorithms 

such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Regression 

Model, and Decision Trees (DT) (Tseng and Hsueh, 2018; Nadeem and fowdur, 2018; 

Feng et al., 2019; Xu et al., 2019; X. Yang et al., 2019; Navarro-Espinoza et al., 2022a) 

were used but some problems still remain.  Failing to deliver effective results and 

accuracy drop when the amount of missing data increases are common issues in Shallow 

Machine Learning (SLM) methods. Another group which has powerful methods for 

traffic prediction is Deep Learning (DL). One of the advantages of DL over ANN is that 

it does not require prior knowledge for extracting features from the input data. 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and LSTM 

are DL algorithms which are utilized in traffic prediction (Ma et al., 2017; M. Chen et 

al., 2018). RNN and its branch LSTM are also well-known Deep learning algorithms that 

performed good on traffic state prediction (Ma et al., 2015; Zhang et al., 2019; Shuming 

Sun et al., 2019; Majumdar et al., 2021). One of the advantages of RNN algorithms is 

their short-term memory which allows them to model data nonlinearity in time series. 

Besides its short-term memory advantage, might interface difficulty in the training phase. 

This issue is smoothened in the LSTM but for LSTM-based models, the prediction 
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always depends on the data. The existing research in traffic speed prediction used LSTM 

with single variable (traffic speed) and multi variables (traffic speed and vehicle 

headway) (Majumdar et al., 2021). However, they concluded multivariate LSTM does 

not add any significant contribution to adequately predict traffic speed compared to 

single variate LSTM. This signifies that the model's ability to learn meaningful patterns 

(increasing and decreasing speed changes) from the data requires improvement. Accurate 

identification of changes in speed data at road segments is still a challenge which needs 

to be addressed.  

Moreover, many studies have used loop detectors data and other static sensors data (M. 

Chen et al., 2018; Zhang et al., 2019; Majumdar et al., 2021). However, loop detectors 

data are not able to store longer traffic flow patterns and capture the dynamics of traffic 

flow and their instalment is too expensive. FCD has more coverage of the road segments 

across the road network (compare to loop detector data) and can capture the dynamic 

nature of traffic trends. However, FCD data may suffer from data sparsity (missing data), 

which affects the accuracy of the LSTM. Hence, dealing with this problem of missing 

data is crucial for such models (Selim Reza et al.,2022). To deal with data sparsity, TSE 

methods play an important role. When the amount of available data is too sparse, the 

TSE algorithms face difficulty to identify traffic characteristics in the road segments and 

the accuracy of estimation would drop drastically. Some researchers have used tensor 

decomposition-based model to perform traffic state estimation (Chen et al., 2019; Xu et 

al., 2020). It is important to note that spatiotemporal correlations are the main component 

in many estimation algorithms. Hence, it is essential for TSE methods to incorporate 

spatiotemporal features properly, in a way that reflects their reliance in accurate 

estimation. X. Wang et al., (2015) proposed a method to estimate traffic speed by 

detecting patterns using spectral clustering and HMM. HMMs are well-suited for 

capturing first-order dependencies, also known as Markov dependencies. In an HMM, 

the future state (or observation) depends only on the current state and is independent of 

the past states. This behaviour of HMM makes it less effective in estimation of traffic 

data, because it might be necessary to consider several previous states when estimating 

a missing state.  

This study addresses the following issues based on the above limitations: 

1. Most of the existing research on traffic speed prediction lack effective 

identification in changes in traffic trends.   

2. The accuracy of estimating missing traffic state must be improved. 

3. While Deep Learning methods are the most recent technologies for TSP, they 

still require improving accuracy when there is missing data in the dataset.    
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1.3 Research Objective 

The main purpose of the study is to propose a novel traffic state estimation and prediction 

model using FCD. The objectives of this research are as follows: 

1. To propose Contrast Measure and combine with LSTM (LSTM-C) to identify 

changes in traffic speed within a time period to improve traffic speed prediction 

using FCD. 

2. To propose a novel traffic state estimation method using Fuzzy C-Mean 

algorithm and Minimum Description Length (MDL) concept called Fuzzy-

MDL, to estimate the missing traffic speed with diverse missing rate 

percentages and improve the accuracy of speed estimation.  

3. To combine the proposed speed estimation (Fuzzy-MDL) and speed prediction 

(LSTM-C) methods called LSTM-C-EST to solve data sparsity in FCD dataset 

and enhance data in order to improve accuracy of speed prediction.  

In the first objective, the proposed LSTM-C is evaluated using FCD. It is important to 

note that FCD includes missing data due to the aforementioned issues and the actual 

value of this missing data is unknown.  

In the second objective, random data values form FCD are removed, and the proposed 

Fuzzy-MDL estimated the removed data values. Fuzzy-MDL is evaluated by comparing 

the estimated data values with the removed data values.  

The third objective aims to combine the first and second proposed methods (objective 

one and two) as one method called LSTM-C-EST to estimate the actual missing data 

exists in the FCD dataset and fed it to the prediction layer and improve the accuracy, in 

comparison with the first method (objective one, LSTM-C). The purpose of the 

combination is to prove that effectiveness of the proposed estimation method (Fuzzy-

MDL) and its capability in increasing prediction accuracy.  

1.4 Research Scope 

Traffic management and controlling is a huge research scope. There are many research 

paths in the area. Some of these studies have been carried out by traffic engineering and 

civil engineering departments which require certain kind of data or equipment from 

government or private sectors (e.g., accident detection, traffic light management). 
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The focus of the research is on traffic state estimation and prediction through ML (Fuzzy 

and LSTM) techniques using FCD. This study aims to estimate missing traffic speed and 

performs short-term traffic speed prediction using data in arterial roads. The goal is to 

discover patterns and trends in traffic data and improve speed prediction accuracy. 

Traffic theory and other fundamental concepts are not in this research scope and can be 

found in traffic engineering and civil engineering studies. The main FCD dataset used in 

this research is from Beijing. Another FCD dataset from Xuancheng is applied in Chapter 

4. The benchmarks used in this study have similar background and are using Machine 

Learning and data-driven techniques only rather than employing physical traffic models 

and Traffic Theory. The performance measures used by benchmarks are MAE, MSE, 

and RMSE.  

1.5 Thesis Organization  

The thesis is organized as follows: 

Chapter 1 explains the background of research, motivation, problem statement, research 

objectives and the scope of the research. 

Chapter 2 provides in-depth research and examines relevant literature of the subject 

matter including traffic state estimation and prediction using traffic data. Moreover, this 

chapter includes a summary of ML techniques and its significance in improving traffic 

state estimation and prediction.  

Chapter 3 discusses the research methodologies which have been used in this study. The 

research methodology provides a detailed guidance to the reader to understand this 

thesis.  

Chapter 4 provides the design and evaluation of the proposed prediction method using 

the proposed LSTM-C. 

Chapter 5 provides the design and evaluation of the proposed state estimation method 

using Fuzzy-MDL. 

Chapter 6 describes the design and evaluation of the combined method using Fuzzy-

MDL and LSTM-C called LSTM-C-EST. 

Chapter 7 conclude the research and recommended some promising direction for future 

research. 
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