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ABSTRACT
This paper reports an investigation into a public key cryptosystem, which is derived
from a fourth order linear recurrence relation and is based on the Lucas function.  This
cryptosystem is also analogous to the RSA, LUC and LUC3 cryptosystems.  The explicit
formulation involves a generalisation of the Euler Totient function, which underlie the
algebra of the RSA cryptosystem.
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INTRODUCTION

The most striking development in the history of cryptography was when Diffie and
Hellman (1976) published New Directions in Cryptography. Rivest et al. (1978)
discovered the first practical public-key encryption and signature scheme, now referred
to as RSA. The RSA scheme is based on another difficult mathematical problem, which
is the intractability of factoring large integers.  This application of a difficult mathematical
problem to cryptography revitalized efforts to find more efficient methods for factoring.
Therefore, the study aimed to develop a new cryptosystem analog to the RSA, LUC and
LUC3 cryptosystems.  Apart from the advancement in knowledge, a prime motivation to
develop a new cryptosystem is the possibility that LUC4 cryptosystem is more secure
than RSA, LUC and LUC3 cryptosystems.  This is because the calculations of LUC4
cryptosystem are more complicated than those of RSA, LUC and LUC3 cryptosystems.

The RSA Cryptosystem
In the RSA cryptosystem (Rivest et al., 1978), an encryption key (e, N)is being used,
where e and N are positive integers and N is the product of two large primes p and q,
which are not revealed.   The decryption key is the pair of positive integers (d, N), where
d is determined by . Here, the Euler totient function is computered as φ(N) = (p-1)(q- 1).
For maximum security, p and q are of equal length.

To encrypt the message, the sender raises the message M to the e-th power modulo
N.  To decrypt the ciphertext, it is raised to another power d, again modulo N.  The
encryption and decryption algorithms E and D are thus:
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C  ≡ E(M) ≡  M e mod N, for a message M.
M ≡  D(C) ≡ Cd mod N, for a ciphertext C.

Note that encryption does not increase the size of a message.  Both the message and
the ciphertext are integers in the range 0 to N-1.  Each user makes the encryption key
public, and keeps the corresponding decryption key private.  Then the encryption key,
e, is randomly choosen such that e and (p-1)(q-1) are relatively prime.

LUC Cryptosystem
Suppose N and e are two chosen numbers, with N the product of two different odd
primes, p and q.  The number e must be chosen so it is relatively prime to
(p-1)(q-1)(p+1)(q+1).  Let M be a message, which is less than N, and relatively prime
to N.  This is not a real restriction on M, because p and q are large enough such that the
probability of the secret key being divisible by one of them is less than the probability
of the secret key being revealed by some unforeseen event. Then, the encryption of
LUC cryptosystem (Smith and Lennon, 1993) can be defined as:

fLUC(M) = Ve(M,1) mod N

where Ve is a Lucas function.  This is the LUC public key process, giving an encrypted
message, M'.  To define the matching decryption key process, a number d is reduced

such that de ≡ 1 mod S(N), where S(N) = lcm ((p - ⎟⎟
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are the Legendre symbols of D with respect to p and q and lcm is the least

common multiple.

The decryption is then the same as the encryption keys processes, with e replaced by
d.  The fact that M < N,

M ≡ Vd (Ve(M,1) mod N, 1) mod N,
and the decryption key process and encryption key process are inversions of each
other by the symmetry between e and d.

LUC3 Cryptosystem
As in the RSA and LUC cryptosystems, the strength of the cubic analogue to the RSA
cryptosystem (Said & Loxton, 2003) depends on the difficulty of factoring large
numbers.  Thus, it is necessary to pick two large secret primes p and q, the product N
of which is part of the encryption key.  The encryption key is (e, N) which is made
public.  Note that, e must be chosen so that it is relatively prime to the function

qpN =Φ )(  because it is necessary to solve the congruence ed ≡ 1 mod F(N) to find
the decryption key d.  The Euler Totient function is:
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and f(x)  is a cubic polynomial  3 2( )f x x Px Qx R= − + − .  In practice, since  F (N)
depends on this type of an auxiliary polynomial, we choose e prime to p-1, q-1, p+1,
q+1, p2+p+1, and q2+q+1 to cover all possible cases.

With these preliminary observations, a public-key cryptosystem is set up based on
the cubic recurrence sequence Vn derived from the cubic polynomial x3-Px2+Qx-R=0 .
The encryption function is defined by E(P,Q) = (Ve(P,Q,1),Ve(Q,P,1)) ≡ (C1,C2) mod N,
where N = pq as above, Ve(P,Q,l)  is the e-th term of the cubic recurrence defined by
Vn+3 = PVn+2   QVn+1 + Vn mod N with initial values V0 = 3, V1 = P and V2 = P2 -2Q, and
(P, Q) constitutes the message.  At the same time, P and Q are coefficients for cubic
polynomial f(x) = x3- Px2 + Qx-1.  The encryption key is (e, N).

The decryption key is (d, N) where d is the inverse of e modulo F (N).  To decrypt
the message, the receiver must know or be able to compute  F(N) and then calculate

D(C1,C2) = (Vd(C1,C2,1), Vd(C2,C1,1)) ≡ (P,Q) mod N
which recovers the original message (P, Q).

HIGH ORDER LINEAR RECURRENCE
SEQUENCE OF LUCAS FUNCTION

A second order linear recurrence of Lucas function is a sequence of integers Tn defined
by T0 = a, T1 = b (a and b integers) and Tn = PTn -1 - QTn -2, where P and Q are coefficients
in Quadratic polynomial, x2-Px+Q=0.  The extensions of this result are fourth and sixth
order linear recurrence sequence.

Fourth Order Lucas Sequence
By analogy with the Lucas sequence, we consider the quartic polynomial

x4 - Px3 + Qx2 - Rx + S = 0

with integer coefficients P, Q, R, and S and roots β1,β2,β3,β4 ; where ∑
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The factorization of f(x)=x4-Px3 + Qx2  - Rx + S modulo p is unique and can be
classified into five major types as follows:

i. type t[4] -- f(x) is irreducible,
ii. type t[3,1] -- f(x) factors as an irreducible cubic times a linear factor,
iii. type t[2,1] -- f(x) factors as an irreducible quadratic times two linear factors,
iv. type t[2] -- f(x) factors as two irreducible quadratic,
v. type t[1] -- f(x) factors into four linear factors.

Corresponding to the Quartic polynomial, we define the fourth order linear recurrence
relation as below.

Proposition 1:  Let ∑
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in
SRQPV β ,with initial values V0(P,Q,R,S) = 4, V1(P,Q,R,S)

= P, V2(P,Q,R,S) = P2-2Q, and V3(P,Q,R,S) = P3-3PQ + 3R.
Then, the fourth order Lucas sequence is

Vn(P, Q, R, S) = PVn-1  - QVn-2 + RVn-3 - SVn-4, for n > 4

Proof
The Principle of Mathematical Induction is used to prove the above proposition. First, it
must be established that V4 is true.
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Given this assumption, it can be shown that
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Sixth Order Lucas Sequence
By analogy with the Lucas sequence, we consider the Sextic polynomial

x6 - b1x
5 + b2x

4  - b3x
3 + b4x

2 - b5x + b6 = 0
with integer coefficients b1, b2, b3, b4, b5 and b6, and roots  α1, α2, α3, α4, α5, α6;
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Proof
The  Principle of Mathematical Induction is used to to prove the above.  First, it must be
established that V6 is true
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Then supposing
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THE EULER TOTIENT FUNCTION

The Lehmer totient function, S(N), is the generalization of the Euler totient function for
the Lucas function.  In the case of the fourth order linear recurrence sequence, an analogue
of this function can be constructed.  In order to extend this theory, the value of the
constant coefficient of the quartic equation is restricted to 1.  Suppose that N is a positive

integer, written in its canonical form,  p bp bp bN r
r⋅⋅⋅= 21

21 , where the pi are distinct

primes and the bi are positive integers.
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integers, and let f (x) = x4- Px3 + Qx2 -Rx + S be the characteristic polynomial of the
recurrence sequence  
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Since  i
b

ipikpi
bi pPV mod11 ≡+−   for each i = 1, 2, …, r and any integer k, we have

VkF (N)+1 ≡ P mod N which implies that VkF(N)+1 = P mod N.

Theorem 2 :  Let  r
b

r
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integers, and let f(x)=x4 +  Px3 + Qx2 -  Rx + 1 be the characteristic polynomial of the
recurrence sequence Vn=Vn(P,Q,R,1).  Then VkF(N)+l ≡ Vl mod N and, in particular,

Vk F(N)+1 (P,Q,R,1) ≡  P mod N,
where F(N) is Euler totient function defined above.

Proof
If the quartic f(x) is of type t[4] modulo pi and α is one of its roots in its splitting field
over Fpi , then for any positive integer k,
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Similar for a quartic of type t[3,1], t[2,1], t[2] and t[1]  modulo pi.

pi
3 + pi

2 + pi + 1  if f(x) is of type t[4] modulo pi 

         pi
3 – 1    if f(x) is of type t[3,1] modulo pi 

pi  =         pi
2 – 1    if f(x) is of type t[2,1] modulo pi 

         pi + 1   if f(x) is of type t[2] modulo pi 

         pi – 1    if f(x) is of type t[1] modulo pi 

where
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COMPOSITION AND INVERSE OF RECURRENCE

In this section, some properties of the sequence Vn, which are a direct consequence of
the definition, are investigated.  The rules of the composition of power and the inverse
for the fourth order function are of particular importance in the process of decryption.

Composition of Recurrences

If the Quartic polynomial, 4 3 2 0n n n nx P x Q x R x S− + − + =  has root   has roots β1
n,β2

n
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n , then we have
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Therefore, albeit is possible to get the formula Pn, Qn, Rn, and Sn in Lucas Sequence
format, where P, Q, R, and S are coefficients for the Quartic polynomial x4-Px3+Qx2-
Rx+S=0.

Proposition 3:
Let the quartic polynomial, x4-Pnx

3+Qnx
2-Rnx+Sn=0 . Then,

1. Pn = Vn (P, Q, R, S), for k ≥ 4;

2. ;6for),,,,2,,( 32222 ≥−−+−= nSQSSPRSQSRSPSPRQVQ
nn

3. ;4for ),,,,( 32 ≥= nSPSQSRVR
nn

4. Sn = Sn

where P, Q, R, and S are coefficients for the quartic polynomial
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Proof
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It can be shown that
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The Principle of Mathematical Induction is used to prove the above.  First, it must be
established that R4 is true.
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 Proposition 4
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Proof
Let  β1,β2, β3 and β4 be the roots of the polynomial x4 -  Px3 + Qx2 - Rx + S = 0 and β1
d   β2,

d β3
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d be the roots of the polynomial x4 -  Pd x
3 + Qd x

2 - Rd x + Sd = 0.

( )
),,,(

),,,(
4

1

4

1

SRQPV

SRQPV

ed

i

ed

i
i

ed

idddde

=

== ∑∑
==

ββ

( ) ( )
),,,2,,(

),,,2,,(

32222

3

1

4

;2

3

1

4

;2

32222

SQSSPRSQSRSPSPRQV

SSQSSRPSQRSPSRPQV

ed

i jij

ed

ji
i jij

ed

j

d

i

dddddddddddddddde

−−+−=

==

−−+−

∑ ∑∑ ∑
= <== <=

ββββ

( ) ( )
),,,(

),,,(

32

2

1

3

;2

4

,;3

2

1

3

;2

4

,;3

32

SPSQSRV

SSPSQRV

ed

i kjij kjik

ed

kji
i kjij kjik

ed

k

d

j

d

idddddde

=

== ∑ ∑ ∑∑ ∑ ∑
= <<= <== <<= <=

ββββββ



Wong Tze Jin, Mohamad Rushdan Md. Said & et al.

74 Malaysian Journal of Mathematical Sciences

Inverse of Recurrences
From the composition of recurrences, an inverse operation can be formulated. Consider
the sequence  Vn(P,Q,R,S) and suppose 1mod ( )ed N≡ Φ , that is ed ≡ 1 mod kF (N) +
1 for some integer k.  Then, by proposition 4 and theorem 2,
Vd(Ve(P,Q,R,1), Ve(Q,, PR -1, P2+R 2 -2Q, PR -1, Q ,1), Ve(R, Q, P, 1), 1)
= Ved(P, Q, R, 1)
= VkF (N)+1 (P, Q,R,1)
≡ P mod N

NQ

QPRQRPPRQV

QPRQRPPRQV

QRPQRPRPQV

Nk

ed

eeeeeeeeed

mod

)1,,1,2,1,(

)1,,1,2,1,(

)1,,1,2,1,(

22

1)(

22

22

≡

−−+−=

−−+−=

−−+−

+Φ

where,

;)1,,,( RQPVP
ee

=

;)1,,1,2,1,( 22 QPRQRPPRQVQ
ee

−−+−=

.)1,,,( PQRVR
ee

=

Vd(Ve(R,Q,P,1), Ve(Q, PR -1, P2+R2- 2Q,, PR -1, Q,, 1), Ve(P, Q, R, 1), 1)
= Ved(R, Q, P, 1)
= VkF (N)+1 (R, Q, P, 1)
≡ R mod N

There is an obvious difference between Euler's function,  φ(n), and its extension,  F(n).
The function,  φ(n), depends only on the prime factors of n, whereas the function,  F(n),

also depends on the type of the characteristic polynomial f(x).  If each pi  is respectively

replaced in the definition of  F(n) by )1,1,1,1,1(lcm 2323 −+−−+++
iiiiiii

ppppppp .

The result is a uniform 'Totient' function, R(N), which works in each case and allows the
doing away with determining the type of the polynomial. The drawback is that the
function is generally larger and, in the interests of computational efficiency, it is desirable
to avoid moduli which are larger than necessary.

For quadratics f(x) = x2  -  Px + 1, the additional information needed to compute

S(N) is the set of Legendre symbols ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
D

, where D = P2 - 4 is the discriminant of the

quadratic and p runs through the prime factors of N.  In discussing LUC, the inverse
relation involves the quantity Vd(Ve(P, 1), 1) which comes from the recurrence associated
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with the quadratic g(x) = x2 - Ve(P, 1)x + 1 with discriminant Ve(P, 1)2-4.  However,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎠

⎞
⎜
⎝

⎛ −
p

V
p

P e 44 22

 , so the type of the polynomial g(x) is the same as the type of f(x) and

it can be found directly from the cipher Ve(P, 1) without decryption.
The extension of this phenomenon to the cubic polynomial f(x) = x3 -Px2 + Qx -1, and
the argument C1 = Ve(P, Q, 1) and C2 = Ve(Q, P, 1).  So, the type of the polynomial g(x)
= x3-C1x

2 + C2x -1 is in any way related to the type of the polynomial f(x) = x3 - Px2 + Qx
-1.

In investigating the extension of the quartic polynomial, 1)( 234 +−+−= RxQxPxxxf ;
that is, given P, Q, R and the argument

),1,,,(
1

RQPVC
e

=

)1,,1,2,1,( 22

2
QPRQRPPRQVC

e
−−+−=  and

),1,,,(
3

PQRVC
e

= a major objective is to determine whether  polynomials
of the type

1)(
3

2

2

3

1

4 +−+−= xCxCxCxxg are in any way related to polynomials of the type

f(x) = x4-Px3 + Qx2-Rx + 1.

AN ALGORITHM TO COMPUTE THE TYPE
OF QUARTIC POLYNOMIAL

It is already known that the quartic polynomial can be factorized to five major types,
which are t[4], t[3,1], t[2,1], t[2] and t[1].  An investigation into the algorithm for
computing the type of quartic polynomial in Fp[x] follows with p a prime number.

An algorithm is sketched in the form of a decision tree to compute the type of a

quartic polynomial SRxQxPxxxf +−+−= 234)(   in Fp[x], where p is any prime
number.

Step 1

From Quartic Equation [Weisstein,1999], the polynomial 0234 =+−+− SRxQxPxx
can be modified to

.0)4(
2
1)44(

2
1 2

111

22 =−++−±+ SzzyzRPPy μ

It is known that the resolvent cubic polynomial

0)4()4( 2223 =−−+−+− SPRQSzSPRQzz

can help in solving the quartic polynomial.
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Then,

( ) ( )
( ) ( ) )4(844)44(64256

)4()44()44(

)4()44(

2

11

2

1

2
2

1

2

2
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2
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1

2
4
1
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112
1

1

2
2
12

SzzzRPPzRPPy

SzzzRPPzRPPy

SzzyzRPPy

−±++−±=+−±+

−±++−±=+−±+

−±=+−±+

For this case, the roots are integers modulo p.  So, this equation modulo p can be used.
Thus,

( )
( ) pSzzzRPP

zRPPy

mod)4(844

)44(64256

2

11

2

1

2

2

1

2

−±++−±≡

+−±+

Step 2A

f is of type t[4], if and only if pSzzRP mod4or    44 2

11

2 −+−  are not perfect squares;

or there is no real root in the resolvent cubic polynomial.
It is already known that no having a real root in the resolvent cubic polynomial

results in the inability to solve the quartic polynomial. And, if 
1

2 44 zRP +−  or

pSz mod42

1
− is not a perfect square, the problem cannot be solved also.

Step 2B
If there is at least a real roots in the resolvent cubic polynomial; and

pSzzRP mod4  and  ,44 2

11

2 −+−   are perfect squares, there will exist three types

for quartic polynomials.

f is of type t[2], if and only if  
( ) 1)4(844 2

11

2

1
2

≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −±++−±

p
SzzzRPP

f is of type t[2,1], if and only if  
( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≠⎟⎟

⎠
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⎝

⎛ −−++−−−+++−+

pp
SzzzRPPSzzzRPP )4(844)4(844 2
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1
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f is of type t[1], if and only if  
( ) 1)4(844 2

11

2

1
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −±++−±
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SzzzRPP
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Step 2C
If there is a real root in the resolvent Cubic polynomial, then it is of case t[2], t[2,1] or
t[1].  If there is no real root in the Resolvent Cubic polynomial, then it is of case t[4].
Thus, there is no condition for type t[3,1].  However, Stickelberger's theorem [5] is used
here to compute the Quartic polynomial of type t[3,1].  At the same time, there is a need
for another condition to compute it.

Theorem 3 (Stickelberger's Theorem)
Let p an odd prime f(x)  be a monic polynomial of degree d with coefficients in Fp[x]
without multiple factors.  Let r be the number of irreducible factors of f(x) in Fp[x].

Then  r≡d mod 2 and only if  1=⎟
⎠
⎞

⎜
⎝
⎛

p
D .

From theorem 3, it is known that if the Quartic polynomial is of type t[3,1], 1−=⎟
⎠
⎞

⎜
⎝
⎛

p
D   .

But, this condition also fulfills for another type, like t[1].  Therefore, it must be ensured
that there is at least a condition for type t[1] that is not fulfilled.

THE QUARTIC CRYPTOSYSTEM
As in the RSA, LUC and LUC3 cryptosystems, the strength of the system to be constructed
depends on the difficulty of factoring large numbers.  Thus, it is necessary to pick two
large secret primes p and q, the product of N which is part of the encryption key.  The
encryption key is (e, N) which is made public.  Note that, e must be chosen so that it is

relatively prime to the function pqN =Φ )(   because it is necessary to solve the

congruence  )(mod1 Ned Φ≡  to find the decoding key d.  In practice, since  )(NΦ
depends on the type of an auxiliary polynomial, we choose e prime to  p-1, q-1 ,p+1,
q+1, p2-1, q2-1, p3-1, q3+1, p3+p2+p+1,q3+q2+q+1  to cover all possible cases.

With these preliminary observations, a public-key cryptosystem will be set out based
on the quartic recurrence sequence Vn derived from the quartic polynomial,

4 3 2 0.x Px Qx Rx S− + − + =

The encryption function is defined by

NCCC

PQRVQPRQRPPRQVRQPVRQPE
eee

mod),,(

))1,,,(),1,,1,2,1,(),1,,,((),,(

321

22

≡

−−+−=

 where  N=pq as above, (P,Q,R) constitutes the message and the encryption key,  (e,N).
Ve(P,Q,R, 1) and Ve(R, Q,P, 1)   are the e-th term of the quartic recurrence and Ve(Q,PR-
1,P2+R2-2Q,PR-1,Q,1) is e-th term of the Sextic recurrence defined earlier.



Wong Tze Jin, Mohamad Rushdan Md. Said & et al.

78 Malaysian Journal of Mathematical Sciences

The decryption key is  (d, N)  where d is the inverse of e modulo F(N).  To decipher the
message, the receiver must know or be able to compute  F(N)  and then calculate

NRQP

CCCVCCCCCCCCCVCCCV

CCCD

ddd

mod),,(

))1,,,(),1,,1,2,1,(),1,,,((

),,(

1232312

2

3

2

1312321

321

≡

−−+−=

which recovers the original message  (P,Q,R) .
In decryption, 4 3 2

1 2 3( ) 1,g x x C x C x C x= − + − + is given but not 4 3 2( ) 1f x x Px Qx Rx= − + − +

and so we have to deduce the type of f in order to apply the algorithm correctly.

Example
The following example is an illustration that describes the details required in the
computations to show how the system works.

Let   p=23 and q=29 be two primes and thus N=667.  Assume that the plain text messages

are P=17, Q=7, R=21. The function f is given by  .121717)( 234 +−+−= xxxxxf     If
the encryption key is  e=41, then the sender calculates

667mod108

)1,21,7,17()1,,,(
411

≡

== VRQPVC
e

667mod558

)1,7,356,716,356,7()1,,1,2,1,(
41

22

2

≡

=−−+−= VQPRQRPPRQVC
e

667mod249

)1,17,7,21()1,,,(
413

≡

== VPQRVC
e

667mod)249,558,108(

mod),,(),,(
321

≡

≡ NCCCRQPE

The receiver thus constructs the function g(x)=x4-108x3+558x2-249x+1.  In order to
determine the decryption key d, the owner of the encryption key (41,667)  has to determine
the function  Φ(N) and, to this end, must deduce the type of the function f with respect
to the primes p and q.
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For prime  p=23, discriminant of g is D ≡9 mod 23 which is non-zero and this implies
that f is of the same type as g, namely t[1,1,1,1] since the function

23mod)2)(6)(9)(13(
23mod1467

1249558108)(
234

234

++++≡
++++≡

+−+−=

xxxx
xxxx

xxxxxg

(In fact,

.)23mod)3)(4)(9)(13(
23mod1276

121717)(
234

234

++++≡
++++≡

+−+−=

xxxx
xxxx

xxxxxf

In case of the primes q =29 , discriminant of g is D ≡ 28 and 29 which is non-zero and
this implies that f is of the same type as g, namely t[1,1,1,1], since the function

29mod)9)(10)(19)(28(
29mod11278

1249558108)(
234

234

++++≡
++++≡

+−+−=

xxxx
xxxx

xxxxxg

(In fact,

.)29mod)3)(13)(26)(28(
29mod18712

121717)(
234

234

++++≡
++++≡

+−+−=

xxxx
xxxx

xxxxxf

 Therefore,
616)129)(123()2923()( =−−=•Φ=Φ N

 and, the decryption key

616mod601
616mod41

616mod141
)(mod1

1

≡
≡

≡
Φ≡

−d

d
Ned

Now, the receiver can readily decrypt by computing

667mod17

667mod)1,149,558,108(

mod)1,,,(

601

321

≡

≡

≡

V

NCCCVP
d
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667mod7

667mod)1,558,211,513,211,558(

mod)1,,1,2,1,(

601

2312

2

3

2

1312

≡

≡

−−+−≡

V

NCCCCCCCCCVQ
d

667mod21

667mod)1,108,558,149(

mod)1,,,(

601

123

≡

≡

≡

V

NCCCVR
d

NRQP

CCCD

mod),,(

667mod)21,7,17(),,(
321

≡

≡

THE EFFICIENCY AND SECURITY
As in the LUC cryptosystem, the first obvious test of the efficiency of the extended
system is the ability to compute the e-th of the fourth order and sixth order Lucas
sequences; they are , Ve (P,Q,R,1), Ve (R,Q,P,1) and Ve (Q,PR-1,P2+R2-2Q,PR-1,Q,,1),
in a reasonable amount of time, close to the efficiency of calculation the e-th power of
an integer.  Smith and Lennon (1993) claim that LUC is as efficient as RSA.  Besides
that, Said and Loxton (2003) claim that the efficiency of LUC3 is close to the efficiency
of LUC.  Thus, we can assume that the efficiency of LUC4 is close to the efficiency of
RSA, LUC, and LUC3.

The LUC4 cryptosystem is analogous to the RSA cryptosystem; therefore the security
for this cryptosystem is similar to the security for RSA cryptosystem.  The GCD attack
is one of the polynomial attacks on the RSA-type cryptosystems.  If two messages differ
only from a known fixed value Δ and are RSA-encrypted under same RSA-modulus n,
then it is possible to recover both of them.

Let (P1,Q1,R1) be the first set of the message and

),,(),,(
312111222

Δ+Δ+Δ+= RQPRQP  be the second set of the message and let

(C1,C2,C3) ≡ E(P1,Q1,R1) mod N and (C4,C5,C6) ≡ E(P2,Q2,R2) mod N, where  E(Pi,Qi,Ri)
mod N is encryption function defined previously.  Then, form the polynomial Xi and

],,[
321

xxxY
ni

Ζ∈ , defined by

NCxxxVxxxX
e

mod)1,,,(),,(
13213211

−=  ;

NCxxxxxxxxxVxxxX
e

mod)1,,1,2,1,(),,(
22312

2

3

2

13123212
−−−+−= ;
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NCxxxVxxxX
e

mod)1,,,(),,(
31233213

−= ;

 NCxxxVxxxY
e

mod)1,,,(),,(
43213211

−= ;

NCxxxxxxxxxVxxxY
e

mod)1,,1,2,1,(),,(
52312

2

3

2

13123212
−−−+−=  ; and

NCxxxVxxxY
e

mod)1,,,(),,(
61233213

−=

Since the message   (P1,Q1,R1) are roots of the polynomial  (X1,X2,X3)  and (Y1,Y2,Y3)
P1,will be the root of W1=gcd(X1,Y1), Q1  will be the root of W2=gcd(X2,Y2), and R1  will
be the root of W3=gcd(X3,Y3).  Solving the polynomial Wi  in x1, x2 , and x3 give the value

of (P1,Q1,R1)  and ),,(),,(
312111222

Δ+Δ+Δ+= RQPRQP   .

According to our objective, we develop a cryptosystem which is using fourth order
and sixth order linear recurrence of Lucas sequence in the process of encryption and
decryption.  Beside that, the composition and inverse of recurrence help us to recover
the original message in the process of decryption.  The Euler totient function gives us
the conditions of encryption key and helps us to find the decryption key.  However, the
Euler totient function depends on which type of quartic polynomial.  Therefore, an
algorithm to compute the type has been defined.  A new cryptosystem has been developed
which is able to compute three messages, (P, Q, R) for each calculation.  Some aspects
of efficiency and security were discussed, but further research is needed to address
these issues.
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