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ABSTRACT

This paper reports an investigation into a public key cryptosystem, which is derived
from a fourth order linear recurrence relation and is based on the Lucas function. This
cryptosystem is also analogous to the RSA, LUC and LUC, cryptosystems. The explicit
formulation involves a generalisation of the Euler Totient function, which underlie the
algebra of the RSA cryptosystem.
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INTRODUCTION

The most striking development in the history of cryptography was when Diffie and
Hellman (1976) published New Directions in Cryptography. Rivest et al. (1978)
discovered the first practical public-key encryption and signature scheme, now referred
to as RSA. The RSA scheme is based on another difficult mathematical problem, which
is the intractability of factoring large integers. This application of a difficult mathematical
problem to cryptography revitalized efforts to find more efficient methods for factoring.
Therefore, the study aimed to develop a new cryptosystem analog to the RSA, LUC and
LUC, cryptosystems. Apart from the advancement in knowledge, a prime motivation to
develop a new cryptosystem is the possibility that LUC, cryptosystem is more secure
than RSA, LUC and LUC, cryptosystems. This is because the calculations of LUC,
cryptosystem are more complicated than those of RSA, LUC and LUC, cryptosystems.

The RSA Cryptosystem
In the RSA cryptosystem (Rivest et al., 1978), an encryption key (e, N)is being used,
where e and N are positive integers and N is the product of two large primes p and q,
which are not revealed. The decryption key is the pair of positive integers (d, N), where
d is determined by . Here, the Euler totient function is computered as (])(N) =(p-1)(g- 1).
For maximum security, p and g are of equal length.

To encrypt the message, the sender raises the message M to the e-th power modulo
N. To decrypt the ciphertext, it is raised to another power d, again modulo N. The
encryption and decryption algorithms E and D are thus:
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C =E(M)= M®mod N, for a message M.
M= D(C) = C? mod N, for a ciphertext C.

Note that encryption does not increase the size of a message. Both the message and
the ciphertext are integers in the range 0 to N-1. Each user makes the encryption key
public, and keeps the corresponding decryption key private. Then the encryption key,
e, is randomly choosen such that e and (p-1)(g-1) are relatively prime.

LUC Cryptosystem

Suppose N and e are two chosen numbers, with N the product of two different odd
primes, p and . The number e must be chosen so it is relatively prime to
(p-1)(9-1)(p+1)(g+1). Let M be a message, which is less than N, and relatively prime
to N. This is not a real restriction on M, because p and q are large enough such that the
probability of the secret key being divisible by one of them is less than the probability
of the secret key being revealed by some unforeseen event. Then, the encryption of
LUC cryptosystem (Smith and Lennon, 1993) can be defined as:

f (M) =V (M,1) mod N

where V, is a Lucas function. This is the LUC public key process, giving an encrypted
message, M'. To define the matching decryption key process, a number d is reduced

such that de = 1 mod S(N), where S(N) = lcm ((p —(EJ (q- (E])), D=(M")-4 and(%),

q
common multiple.

D
(jare the Legendre symbols of D with respect to p and g and Icm is the least

The decryption is then the same as the encryption keys processes, with e replaced by
d. The fact that M < N,

M=V, (V.(M,1) mod N, 1) mod N,
and the decryption key process and encryption key process are inversions of each
other by the symmetry between e and d.

LUC, Cryptosystem

As in the RSA and LUC cryptosystems, the strength of the cubic analogue to the RSA
cryptosystem (Said & Loxton, 2003) depends on the difficulty of factoring large
numbers. Thus, it is necessary to pick two large secret primes p and g, the product N
of which is part of the encryption key. The encryption key is (e, N) which is made
public. Note that, e must be chosen so that it is relatively prime to the function

d(N) = Ea because it is necessary to solve the congruence ed =1 mod F(N) to find
the decryption key d. The Euler Totient function is:
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(D(N) _ plbl—l 61 pzbz—l EZ prb'_l Er

where

pi2+ p.+1 if f(x)isof typet[3] mod p
Ei: pi2—1 if f(x)isof typet[2,1] mod p,
P -1 if f(x)isof typet[l] mod P,

and f(x) is a cubic polynomial f(x) = x®—Px®+Qx—R. Inpractice, since F (N)
depends on this type of an auxiliary polynomial, we choose e prime to p-1, g-1, p+1,
g+1, p>+p+1, and g>+qg+1 to cover all possible cases.

With these preliminary observations, a public-key cryptosystem is set up based on
the cubic recurrence sequence V, derived from the cubic polynomial x*-Px*+Qx-R=0 .
The encryption function is defined by E(P,Q) = (V,(P.Q,1),Ve(Q,R,1)) =(C,,C,) mod N,
where N = pq as above, V (P,Q,l) is the e-th term of the cubic recurrence defined by
V. .,=PV_, QV . +V modN withinitial values V, = 3,V, = P and V, = P?-2Q, and
(P, Q) constitutes the message. At the same time, P and Q are coefficients for cubic
polynomial f(x) = x3- Px? + Qx-1. The encryption key is (e, N).

The decryption key is (d, N) where d is the inverse of e modulo ¥ (N). To decrypt
the message, the receiver must know or be able to compute F(N) and then calculate

D(C,C)=(v,(C,C,1),V,(C,C 1) =(PQ) mod N

which recovers the original message (P, Q).

HIGH ORDER LINEAR RECURRENCE
SEQUENCE OF LUCAS FUNCTION

A second order linear recurrence of Lucas function is a sequence of integers T_defined
byT,=a,T,=b(aandbintegers)and T =PT__ - QT ,, wherePand Q are coefficients
in Quadratic polynomial, x>-Px+Q=0. The extensions of this result are fourth and sixth
order linear recurrence sequence.

Fourth Order Lucas Sequence
By analogy with the Lucas sequence, we consider the quartic polynomial
x*-Px®+Qx?-Rx+S=0

4
with integer coefficients P, Q, R, and S and roots 3,,.,.8, ; where P = Zﬁi ,
i=1

3

Q=3 X BA R=X X zkﬂiﬂj/”k and 5=Hﬂi .

2
i=l j=2;i<] i=1l j=2;i<j<k k=3;i, j<l
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The factorization of f(x)=x*-Px® + Qx> - Rx + S modulo p is unique and can be
classified into five major types as follows:
i. typet[4] -- f(x)isirreducible,

ii. typet[3,1] -- f(x) factors as an irreducible cubic times a linear factor,

iii. typet[2,1] -- f(x) factors as an irreducible quadratic times two linear factors,
iv. typet[2] - f(x) factors as two irreducible quadratic,

v. typet[l] - f(x) factors into four linear factors.

Corresponding to the Quartic polynomial, we define the fourth order linear recurrence
relation as below.

4
Proposition 1: Let vV (P.Q,R,S)= Zﬁi” Wwith initial values V (P,Q,R,S) = 4,V (P.Q,R,S)
i=1

=P, V,(PQ,R,S) = P2-2Q, and V3(P,Q,R,S) = P*-3PQ + 3R.
Then, the fourth order Lucas sequence is
V(P,QR,S) =PV -QV ,+RV -SV  forn>4

Proof
The Principle of Mathematical Induction is used to prove the above proposition. First, it
must be established that V, is true.

VEXAERALA R B AR B B AAARAALA

=PV -QV_+RV -5V
3 2 1 0
Then, supposing
4
V(P.QRS)=2 B"=pv - QV_ +RV_ -SV
i=1

Given this assumption, it can be shown that

n-4

Vn+1(P’Q’ R’ S) = Zﬂinﬂ

NN SIS WIDW SN TS

=PV -QV__+RV _-SV
n n-1 n-2 n-3
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Sixth Order Lucas Sequence
By analogy with the Lucas sequence, we consider the Sextic polynomial
Xe-b ¥ +hxt -bx®+bx*-bx+b =0
with integer coefficients b, b,, b,, b,, b, and b, and roots «,, o, o, ,, o, o;
6 5 6 4
where b =>a b =ZZO&% for i<j, B, =2
i=1 i=1

5
i=1l j=2 i j

6
Z;ai“ﬂk for i<j<k,

=1 j=2k

4 5 6 2 3 4
b,=> > > > aaea fori<j<k<l, b=
2.2,

6
for i<j<k<l<m, and b, =1;[0¢i :

6
Proposition 2: V(b,b,b,b,b,b):Ea_n Let with initial values,
n-1 2 3 4 5 6 Py i

V,(b,.b,b,,b,bb)=6, V1(b,b,b,b, b b)=b,, ;V2(b, bbb, b,b)=b? ;

374775
V,(b,b,b,b,b
and V(b,,b,,b

2'3

50

b,,b, b,)=h,>-5b,b,+5b, b2+5b,2b -5b,b,-5b, b, +5b..

Then, the sixth order Lucas sequence is

b.)=b*-3b,b,+3b_V,(b,,b,.b,b,,bb)=b *-4b b +2b +4b b -4b,

Vn (bl’ bz ! bs’ b4 ! bs’ be) = blvn—l - bzvn-z + bsvn-s - b4Vn-4 + bsvn-s - bevn-e’ forn>6

Proof

The Principle of Mathematical Induction is used to to prove the above. First, it must be

established that V is true

6 6 s 5 6 6 . 4 5 6 6 3
=Za2a —z z 0{_05_20{ +Z Z ac o o —
i=1 ' i=1 ' i=1l j=2;i<]j ' i=1 ! i=1 j=2;i<j<k k=3;i, j<k Ik i=1 '

3 4 5 6 6
Y Y Y aaaadai+
i=1 j=2ji<j<k,l k=3;i, j<k<l I=4;i, ] k<] Pk i=1 I

4 5

ZZ: ZS: Z z ZGZ aiajakalamgai—qjai

i=1 j=2;i<j<k,l,mk=3;i, j<k<l,m I=4;i, j,k<l<m m=5;i, j,k,I<m

=bV -bV +bV -bV +bV -bV
15 24 33 42 51 60
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Then supposing
6
Vn(bl,bz,ba,b4,b5,b6):iz:l:ai
=bV -bV +bV -bV +bV -bV
1 n-1 2 n-2 3 n-3 4 n-4 5 n-5 6 n-6

Given this assumption, it can be shown that

Il
MC’
L
MC’

Q

5 6 6 4 5 6 6
. z z aiajZainl+§_ Z Z aiajakzai”_

i=1 i=1 i=l j=2ji<j i=1 i=1 j=2;ji<j<k k=3;i, j<k i=1

3 4 5 6 6

n-3

2 2 2 2 aaaada’+

iT j=2licj<kl k=3, j<k<l 1=4ii kel i1

2 3 4 5 6 6 6 6 5

_ n—

D) > aaaaa et -[]ada
i=1 j=2;i<j<k,l,mk=3;i, j<k<l,ml=4;i,j k<l<m m=5;i, j,k,I<m m i=1 i=1 ' i=1 '

=bV -bV +bV -bV +bV -bV
1n 2 n-1 3 n-2 4 n-3 5 n-4 6 n-5

THE EULER TOTIENT FUNCTION

The Lehmer totient function, S(N), is the generalization of the Euler totient function for
the Lucas function. Inthe case of the fourth order linear recurrence sequence, an analogue
of this function can be constructed. In order to extend this theory, the value of the
constant coefficient of the quartic equation is restricted to 1. Suppose that N is a positive

integer, written in its canonical form, N = p,Bp,P:... p Pr, where the p, are distinct

primes and the bi are positive integers.

Theorem1: Let N = plbl pzbz A p " where the p, are distinct primes, and b, are positive
integers, and let f (x) = x*- Px® + Qx2 -Rx + S be the characteristic polynomial of the
recurrence sequence Vn = PVn_1 —QVn_2 + RVn_3 - SVn_4

Euler totient function is defined as:

CD(N) — p1b1—1 Elpzbz—l EZA prbr—l E

r
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where
opeEpiHpitl if f(x) is of type t[4] modulo p;
pi-1 if f(x) is of type t[3,1] modulo p;
p,= < pl-1 if f(x) is of type t[2,1] modulo p;
pit+1 if f(x) is of type t[2] modulo p;
L pi—-1 if f(x) is of type t[1] modulo p;

Since V kp;bi-L b= P mod pibi foreachi=1, 2, ..., rand any integer k, we have

V =P mod N which implies that V =P mod N.

kF (N)+1 kE(N)+1 —

Theorem?2: Let N = plbl pzbz A prbr where the p, are distinct primes and b, are positive

integers, and let f(x)=x* + Px® + Qx? - Rx + 1 be the characteristic polynomial of the
recurrence sequence V =V (P,Q,R,1). ThenV =V, mod N and, in particular,

Vi eer PQR1) = P modN,
where F(N) is Euler totient function defined above.

kE(N)+I

Proof
If the quartic f(x) is of type t[4] modulo p, and « is one of its roots in its splitting field
over Fpi , then for any positive integer k,

ke, (p7+p 74, +1)

ﬂ - Skpibifl Elmod pibi

Therefore,

4
b kp.bi_l(p.3+p_2+p+1)+1 b,
Vkpibi’l(pi3+pi2+p+1)+1(P:Qv R,S) mod P =Zﬂj ' P mod P
j=1

b1 4 4
=5 > B,=3p =Pmadp®, ifS=1
= =

Similar for a quartic of type t[3,1], t[2,1], t[2] and t[1] modulo p..
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COMPOSITIONAND INVERSE OF RECURRENCE

In this section, some properties of the sequence V , which are a direct consequence of
the definition, are investigated. The rules of the composition of power and the inverse
for the fourth order function are of particular importance in the process of decryption.

Composition of Recurrences
If the Quartic polynomial, x* —P,x* +Q,x* =R x+S, =0 hasroot has roots ,",3,"
B, and B,", then we have

i R=Y > > (888) and

i=1 j=2;i<j<k k=3;i, j<k

4
iv. sn= [[8"
i=1

Therefore, albeit is possible to get the formula P, Q_, R , and S_in Lucas Sequence
format, where P, Q, R, and S are coefficients for the Quartic polynomial x*-Px3+Qx?3-
Rx+S=0.

Proposition 3:
Let the quartic polynomial, x*-P x*+Q x*-R x+S§ =0 . Then,

1. P.=V (P,Q,R,S),fork=4;
2. Q =V (Q.PR-S,P’S+R*-2QS,PRS~5%,Qs%,S%), forn=6;

3. R =V (RQS,PS*S%), forn>4;
4, Sn:Sﬂ

where P, Q, R, and S are coefficients for the quartic polynomial
X' —Px®+Qx*-Rx+5=0.
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Proof

4

P=28"=V,(PQRS)

Q- s)

i1 j=2;i<]

:Vn(Q,PR—S,PZS+R2—2QS,PRS—SZ,QSZ,SS), forn>6.

with initial values Q 6:0-Y Y B =Q; Q,-> Y (88 f -2 —2pre2s

i=l j=2;i<] i=1 j=2;i<j

Q3=_ZSZ i(ﬂﬂ)a Q*-3PQR-3QS +3P*S +3R".

i=1l j=2;i<]j

Q 223: i (ﬂﬂ} Q' -4PQ°R-4Q%S +4P?QS +4R’Q + 2P°R? 8PRS+68

i=1 j=2;i<]
3 4
Q-3 ¥ los )
i=1 j=2;i<]j
=Q° -5PQ°R-5Q°S +5P*Q%S +5R*Q* +5P*R°Q —5PQRS +5QS” +
5P?S® +5R’S —5PR® —5P°RS.

The Principle of Mathematical Induction is used to prove the above. First, it must be
established that Q, is true.

.= > lps}

—l i= 2 i<j
=Q°-6PQ'R-6Q"'S +6P°Q’S +6Q°R* +9P*Q°R* +9Q°S* —12P°QRS —
12PQR® - 2P°R® +18P°R’S —18PRS” +25° +3P*S* + 3R*
=QQ, - (PR-5)Q, +(P*S +R*~2QS)Q, —(PRS -5*)Q +(Q5*)Q, - (5%)Q,
:VG(Q,PR—S,PZS+R2—2QS,PRS—SZ,QSZ,S3)

Then, supposing

A

I1]ZI<J

—(Q)Qn,l—(PR—S)Qn;(PZs +RE-205)Q  ~(PRS-5%)Q , +(Q8)Q . ~(S7)Q,,
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It can be shown that

3

DIDWIHIP) (ﬂ,ﬂ),"[iﬂ,"i > (os )ﬁﬂ.”}ii s )+

i=1 i=1 j=2;i<j<k k=3;i,j<k i=1 =1 j=2;i<j

4
=1

[.“ £33 nal| A 5 an 5 5 ba) -

i i=l j=2;i<j =1 j=2;i<j

N
M -
B

—
: IS
==

+

2

So% 3 3 bealTle -] [ 3 s )

i=1 i=l j=2; |<]<kk 3ii, ]<k 1 j=2;i<]j

5 5 o0l 5 o), 5 o)

i=l j=2;i<] j=25i<]j
=QQ —(PR-S)Q , +(P’S+R*~2Q8)Q  ~(PRS-5%)Q _+(QS*)Q ,~(S°)Q ,
:Vn+l(Q,PRfS,PZS+R272QS,PRSfS ,Q5%,5%)

RHZZZ: 23: Z (ﬂ,ﬂJﬂJ:Vn(R,QS,PSZ,Sﬁ, forn > 4.

i=1 j=2;i<j<k k=3;i, j<k
2 3
with initial values R =4;R =>" > Z BB B, =
! i=1l j=2;i<j<k k=3;i, j<k
The Principle of Mathematical Induction is used to prove the above. First, it must be
established that R, is true.

=Y S Y lessl)

i=l j= 2|<]<kk 30, j<k
=R(R*-3QRS +3PS*)—QS(R*-2QS) + (PS*)R—(5*)4
=V4(R,Qs,Psz,s3)

Then,supposingR =RR —QSR +PS?R —S°R . Itisshown that
n-2 n-3

n-4
> (psp )

i<j<k k=3;i,j<k

Y 8p ﬂkZZ: Wjﬁ)

j<k k=3;i,j<k |1]2|<]<kk 3Ij<k

> al18% 33 sl

<j i=1 j=2;i<j<k k=3;i, j<k

14 2

Il
N

Mw

R

n+l

j=2;

Mw

j=2;i

A

_M»

i=

N WMw
X

3

5 Hﬂ] >3 lass) [Hﬁjz > Y lpss)

i=1 i=1 j=2;i<j<k k= 3Ij<k i=1 i =2;i<j<k k=3;i, j<k

=RR QSR _+PS’R -S°R
:Vn(R,QS,PSZ,S3).
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Proposition 4

4
i, Let V_(P.QR,S)=> 8% then V_(P,.QR,S)=V (P,Q ,R,S)
i=1 e e
. 3 4
ii. Let v (Q,PR-S,P’S+R*-2QS,PRS-5%QS*5%)=3" > @iﬁj}”'
i=1 j=2;i<]j
thenv (Q,PR-S,P’S+R"-2QS,PRS -5%,Q5°,S7)
_ _ 2 2 Q2 2 o3
_Ve(Qd’Pde Sd'Pd Sd+Rd ZQde'PdeSd Sd ’std 'Sd)
2 3 4

il Let V_(R.QS,PS?,5%) = Z > 2 iﬂ,ﬂk}d

1 j=2;i<j<k k=3;i, j<k

then Vv (R,QS,PS*,8")=V (R,QS, PeSez, sj)
where
P =V (P,QR,S);
Q, =Vd(Q,PR—S,P2+R2—2QS,PRS—SZ,QSZ,S‘°’);
R, :Vd(R,QS,PSZ,S3);

s =5,

d

Proof
Let B,.B, B, and j3, be the roots of the polynomial x* - Px*+ Qx?-Rx +S=0and j3,
¢ B¢ B, and B,° be the roots of the polynomial x* - P, x* + Q,x*-R,x +S,=0.

Ve(Pd’Qd’Rd‘Sd):Z‘l:('Bid)e:Z‘l:ﬂfd

=Ved(P,Q,R,S)
VAQURR S, RS, PRI0S, RRS,2S1Q8,8,)
> > s3> sk

i=l j=2;i<]j i 1J 2 i<j

=V_(QPR-S, P?S +R*-2QS,PRS —S%,Q5%,5%)

Ve(Rd,Qde,PdeZ,SdB) ZZ: (ﬂﬂ ﬂ )e= (ﬂ.ﬂ,ﬂ}

|:112|<J<kk 3Ij<k i= 2I<j<kk 3Ij<k

=V_(R,QS,PS’,S%)
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Inverse of Recurrences
From the composition of recurrences, an inverse operation can be formulated. Consider

the sequence V (P,Q,R,S) and suppose ed =1mod ®(N), that is ed = 1 mod kF (N) +
1 for some integer k. Then, by proposition 4 and theorem 2,

V,(V.(PQR1), V(Q, PR-1,P+R?-2Q,PR-1,Q,1),V (R, Q,P 1),1)

=V (P, QR 1)

=V g P QR

=P modN

V(Q.PR-LP*+R*-2Q PR -1Q 1)
=V_(Q,PR-1P*+R’-2Q,PR-1Q,])

=V, (Q PR-1P*+R*~2Q,PR-1,Q.1)

=QmodN

where,
Pe :Ve(P,Q, R,D);

Q =V (QPR-LP*+R*-2Q,PR-1Q1);

R =V (R,Q,PJ).
V(V,(RQP1), V.(Q, PR -1, P4R?- 2Q, PR-1,Q, 1), V.(P, Q, R, 1), 1)
=V_(R, QP 1)

= VkF (N)+1 (Rv Q, P, 1)
=R mod N

There is an obvious difference between Euler's function, ¢(n), and its extension, F(n).
The function, ¢(n), depends only on the prime factors of n, whereas the function, F(n),

also depends on the type of the characteristic polynomial f(x). If each E is respectively
replaced in the definition of F(n) by lem(p°+p*+p +1 p’-1 p*~1 p +1 p -1).

The result is a uniform "Totient' function, R(N), which works in each case and allows the
doing away with determining the type of the polynomial. The drawback is that the
function is generally larger and, in the interests of computational efficiency, it is desirable
to avoid moduli which are larger than necessary.

For quadratics f(x) = x> - Px + 1, the additional information needed to compute

D
S(N) is the set of Legendre symbols [p] where D = P? - 4 is the discriminant of the

quadratic and p runs through the prime factors of N. In discussing LUC, the inverse
relation involves the quantity V (V (P, 1), 1) which comes from the recurrence associated
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with the quadratic g(x) = x* - V (P, 1)x + 1 with discriminant V (P, 1)>-4. However,

p p
it can be found directly from the cipher V (P, 1) without decryption.
The extension of this phenomenon to the cubic polynomial f(x) = x, -Px* + Qx -1, and
the argument C, =V (P, Q, 1) and C, =V (Q, P, 1). So, the type of the polynomial g(x)
=x%-Cx*+ Cx-lisinany way related to the type of the polynomial f(x) = x* - Px* + Qx
-1.

’— 4 e2 -4 . .
[P] = (V J , 0 the type of the polynomial g(x) is the same as the type of f(x) and

In investigating the extension of the quartic polynomial, f (x) = x* — Px® + Qx? — Rx +1;
that is, given P, Q, R and the argument
C =V (P.Q.RY),

C,=V (QPR-1P*+R*-2Q,PR-1Q)) and

C3 =Ve(R,Q, P.1), a major objective is to determine whether polynomials
of the type
A 3 2 . .
9(x) =x"-C x"+C x"—C x+1are in any way related to polynomials of the type
f(x) = x4-Px® + Qx?-Rx + 1.

ANALGORITHM TO COMPUTE THE TYPE
OF QUARTIC POLYNOMIAL
It is already known that the quartic polynomial can be factorized to five major types,
which are t[4], t[3,1], t[2,1], t[2] and t[1]. An investigation into the algorithm for
computing the type of quartic polynomial in Fp[x] follows with p a prime number.
An algorithm is sketched in the form of a decision tree to compute the type of a

quartic polynomial f(x) =x"—Px*+Qx*—Rx+S in Fp[x], where p is any prime
number.

Step 1

From Quartic Equation [Weisstein,1999], the polynomial x* —Px® +Qx* - Rx+S =0
can be modified to

2 1 2 1 2 —
y +§(Pi P —4R+421)Y+§(21H z°-45)=0.

It is known that the resolvent cubic polynomial
z°—Qz* +(PR-4S)z+(4QS —R* -P?S)=0

can help in solving the quartic polynomial.
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|hen,
2 1 2 _1 2 _
y +§(P+ P —4R+4Zl)y—7(21_ Zl 43)

(y+;(Pi P2—4R+4z1))2=(;(P4_r P2—4R+4z1))2+;(z14_r 2°-48)

(256y+64(Pi P2—4R+4zl))2=(PJ_r /P2—4R+4zl)z+8(zlir 2°-48)

For this case, the roots are integers modulo p. So, this equation modulo p can be used.
Thus,

(256y+64(Pi p? —4R+4z1))Z

E(PJ_r P2—4R+4zl)z+8(zlir 212—43)”100| p
Step 2A

fis of type t[4], if and only if P? —4R + 4z or 212 —4S mod p are not perfect squares;

or there is no real root in the resolvent cubic polynomial.
It is already known that no having a real root in the resolvent cubic polynomial

results in the inability to solve the quartic polynomial. And, if P2 —4R+4z or

212 —4S mod p is not a perfect square, the problem cannot be solved also.

Step 2B
If there is at least a real roots in the resolvent cubic polynomial; and

P°—4R +421' and 212 —4Smod p are perfect squares, there will exist three types

for quartic polynomials.

fis of type t[2], if and only if ( D

fisof type t[2,1], if and only if 0

((PJr\/P24R+4z1 )2 +8(zl+\/21243)j " ((P\/P24R+4z1 )ZJrB(zl—\/zl2 —48 )j
p

i)

fis of type t[1], if and only if ( 0

76 Malaysian Journal of Mathematical Sciences



The Quartic Analog to the RSA Cyptosystem

Step 2C

If there is a real root in the resolvent Cubic polynomial, then it is of case t[2], t[2,1] or
t[1]. If there is no real root in the Resolvent Cubic polynomial, then it is of case t[4].
Thus, there is no condition for type t[3,1]. However, Stickelberger's theorem [5] is used
here to compute the Quartic polynomial of type t[3,1]. At the same time, there is a need
for another condition to compute it.

Theorem 3 (Stickelberger's Theorem)
Let p an odd prime f(x) be a monic polynomial of degree d with coefficients in Fp[X]
without multiple factors. Let r be the number of irreducible factors of f(x) in Fp[x].

Then r=d mod 2 and only if (gj =1

From theorem 3, it is known that if the Quartic polynomial is of type t[3,1], (%) =-1,

But, this condition also fulfills for another type, like t[1]. Therefore, it must be ensured
that there is at least a condition for type t[1] that is not fulfilled.

THE QUARTIC CRYPTOSYSTEM
Asinthe RSA, LUC and LUC, cryptosystems, the strength of the system to be constructed
depends on the difficulty of factoring large numbers. Thus, it is necessary to pick two
large secret primes p and g, the product of N which is part of the encryption key. The
encryption key is (e, N) which is made public. Note that, e must be chosen so that it is

relatively prime to the function ®(N) :E because it is necessary to solve the

congruence ed =1mod®(N) to find the decoding key d. In practice, since ®(N)

depends on the type of an auxiliary polynomial, we choose e prime to p-1, g-1 ,p+1,
g+1, p%-1, g*-1, p*-1, g*+1, p*+p?+p+1,03+g>+g+1 to cover all possible cases.

With these preliminary observations, a public-key cryptosystem will be set out based
on the quartic recurrence sequence V _derived from the quartic polynomial,

x* —Px*+Qx* —Rx+S =0.

The encryption function is defined by
E(P,QR)=(V,(P,Q,R1),V (Q,PR-1P*+R*-2Q,PR-1Q,1),V (R,Q,P,1))
E(Cl,Cz,Cg)modN

where N=pq as above, (P,Q,R) constitutes the message and the encryption key, (e,N).
V.(P,QR,1)andV (R, Q,P, 1) arethe e-th term of the quartic recurrence and Ve(Q,PR-
1,P?+R%-2Q,PR-1,Q,1) is e-th term of the Sextic recurrence defined earlier.
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The decryption key is (d, N) where d is the inverse of e modulo F(N). To decipher the
message, the receiver must know or be able to compute F(N) and then calculate

D(Cl,Cz,Cg)

2 2
:(\/d (Cl,C2 ,C3,1),Vd (02'0103_1'01 +C, —2C2,C1C3—1,C2,1),Vd (C3,C2 ,Cl,l))
=(P,Q,R)modN

which recovers the original message (P,Q,R) .
In decryption, g(x) = x* —C,x* + C,x* - C,x+1,is given but not f (x) = x* - Px® + Qx? —Rx+1
and so we have to deduce the type of f in order to apply the algorithm correctly.

Example
The following example is an illustration that describes the details required in the
computations to show how the system works.

Let p=23and g=29 be two primes and thus N=667. Assume that the plain text messages
are P=17, Q=7, R=21. The function fis givenby f(x)=x"-17x*+7x"-21x+1. If
the encryption key is e=41, then the sender calculates
C =V (P.QRY)=V (17,7,21])

=108 mod 667
C,=V (Q,PR-1, P?+R*-2Q,PR-1,Q,1) =V, (7,356,716,356,7,1)

=558mod 667
C,=V.(RQP=V (21,717

=249mod 667
E(P,Q,R)= (C1 : C2 : Cs)mod N

= (108,558, 249) mod 667

The receiver thus constructs the function g(x)=x*-108x3+558x2-249x+1. In order to
determine the decryption key d, the owner of the encryption key (41,667) has to determine
the function @ (N) and, to this end, must deduce the type of the function f with respect
to the primes p and g.
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For prime p=23, discriminant of g is D =9 mod 23 which is non-zero and this implies
that f is of the same type as g, namely t[1,1,1,1] since the function

g(x) = x* —108x> +558x° — 249x +1
=x" +7x>+6x° + 4x+1mod 23
= (X+13)(x+9)(x+6)(x +2) mod 23

(In fact,

f(x)=x"-17x> +7x° - 21x +1
=x* +6x°+7x* +2x+1mod 23
= (X+13)(x +9)(Xx+ 4)(x+ 3)ymod 23.)
In case of the primes q =29 , discriminant of g is D = 28 and 29 which is non-zero and
this implies that f is of the same type as g, namely t[1,1,1,1], since the function
g(x) = x* —108x> +558x> — 249x +1
=x" +8x° +7x* +12x+1mod 29
= (X+28)(x+19)(x+10)(x +9)mod 29

(In fact,
f(x)=x"-17x> +7x* - 21x +1
=x* +12x% + 7x* +8x+1mod 29
= (X +28)(x+26)(x +13)(x +3) mod 29.)
Therefore,

D(N) = D(23029) = (23-1)(29-1) = 616

and, the decryption key

ed =1mod®(N)
41d =1mod 616
d =41" mod616
=601mod616

Now, the receiver can readily decrypt by computing
P=V (C,C ,C ,1)modN
d 1 2 3
EV601 (108,558,149,1) mod 667
=17mod 667
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Q=V (C,CC -1,C?+C?*-2C,CC -1,C ,)modN
d 2 1 3 1 3 2 1 3 2
=V_ (568,211,513,211,558,1) mod 667
=7mod 667

R EVd (CS,C2 ,Cl,l) mod N
EV601(149, 558,108,1) mod 667
=21mod 667

D(C1 , C2 : C3) =(17,7,21) mod 667
=(P,Q,R)modN

THE EFFICIENCY AND SECURITY

As in the LUC cryptosystem, the first obvious test of the efficiency of the extended
system is the ability to compute the e-th of the fourth order and sixth order Lucas
sequences; they are, V_ (P.Q,R,1),V, (R,Q,P,1) and V_ (Q,PR-1,P*+R*-2Q,PR-1,Q,,1),
in a reasonable amount of time, close to the efficiency of calculation the e-th power of
an integer. Smith and Lennon (1993) claim that LUC is as efficient as RSA. Besides
that, Said and Loxton (2003) claim that the efficiency of LUC, is close to the efficiency
of LUC. Thus, we can assume that the efficiency of LUC, is close to the efficiency of
RSA, LUC, and LUC,.

The LUC, cryptosystem is analogous to the RSA cryptosystem,; therefore the security
for this cryptosystem is similar to the security for RSA cryptosystem. The GCD attack
is one of the polynomial attacks on the RSA-type cryptosystems. If two messages differ
only from a known fixed value A and are RSA-encrypted under same RSA-modulus n,
then it is possible to recover both of them.

Let (P,Q,R) be the first set of the message and

(P.Q.R)=(P+A.Q+A R +A ) be the second set of the message and let

(C,C,C,)=E((P,Q,R)modNand(C,C,C)=E(P,Q,R,) modN, where E(P,Q,R,)
mod N is encryption function defined previously. Then, form the polynomial X, and

Y €Z [x,X,X ], defined by
Xl(xl, X, x3) =Ve(x1, X, x3,1)—Cl modN

X (X, %, x)=V (X, XX =L,X°+x°=2% ,xX —=1,x ,1)—C_modN :
2 1 2 3 e 2 13 1 3 2 13 2 2
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X (X,%x,x)=V (x,x,x,1)—C modN -
31 2 3 e” 3 2 1 3 !
Y (X,x,x)=V(Xx,x,x,)-C modN -
11 2 3 e 1 2 3 4 !

—_— —_ 2 2 p— — — .
Yz(xl,xz,xs)_ve(xz,xlx3 J,x1 +X, 2x2,xlx3 1 xz,l) C5 modN : and
Y (X,x,x)=V(x,x,x,)—C modN

31 2 3 e” 3 2 1 6
Since the message (P,,Q,,R,) are roots of the polynomial (X,X,,X,) and (Y,,Y,,Y.)

P_,will be the root of W =gcd(X,,Y,), Q, will be the root of W,=gcd(X,,Y,), and R, will
be the root of W,=gcd(X,,Y,). Solving the polynomial W, inx,, X, , and x, give the value

of (P,Q,R,) and (P2,Q2,R2):(Pl+A1,Q1+A2,R1+A3) .

According to our objective, we develop a cryptosystem which is using fourth order
and sixth order linear recurrence of Lucas sequence in the process of encryption and
decryption. Beside that, the composition and inverse of recurrence help us to recover
the original message in the process of decryption. The Euler totient function gives us
the conditions of encryption key and helps us to find the decryption key. However, the
Euler totient function depends on which type of quartic polynomial. Therefore, an
algorithm to compute the type has been defined. Anew cryptosystem has been developed
which is able to compute three messages, (P, Q, R) for each calculation. Some aspects
of efficiency and security were discussed, but further research is needed to address
these issues.
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