
RUMEN MICROBES AND SOME OF THEIR BIOTECHNOLOGICAL APPLICATIONS

Prof. Dr. Norhani Abdullah

07 NOV 2006

Hak cipta terpelihara.

Tiada bahagian terbitan ini
boleh diterbitkan semula,
disimpan untuk pengeluaran
atau ditukarkan ke dalam
sebarang bentuk atau dengan
sebarang alat juga pun,
sama ada dengan cara elektronik,
gambar serta rakaman dan
sebagainya tanpa kebenaran
bertulis daripada
Bahagian Komunikasi Korporat
UPM terlebih dahulu.

Diterbitkan di Malaysia oleh Bahagian Komunikasi Korporat Universiti Putra Malaysia 43400 UPM Serdang Selangor, Malaysia

Tel : 603-8946 6003 Fax : 603-8948 7273

e-mail: cco@admin.upm.edu.my

ISBN 967-960-201-X

173 545 5981

1000567615

4

no.90

INAUGURAL LECTURE

PROF. DR. NORHANI ABDULLAH

Rumen Microbes and Some of Their Biotechnological Applications

27 January 2006

DEWAN TAKLIMAT TINGKAT 1, BANGUNAN PENTADBIRAN UNIVERSITI PUTRA MALAYSIA

NORHANI ABDULLAH

Professor Dr. Norhani Abdullah was born in Kuala Pilah, Negri Sembilan in 1951. She completed her secondary schooling at College Tunku Kurshiah, Seremban. She graduated in 1976 with a B.Sc. (Hons.) degree majoring in Biochemistry from the University of Malaya, and in the same year, began her academic career as a tutor in the Department of Biochemistry and Microbiology, Universiti Putra Malaysia (UPM) (previously known as Universiti Pertanian Malaysia).

In the following year, she was granted a scholarship by the Australian government under the 'Asian Australian University Co-operation Scheme (AAUCS)' to do her MS degree at the Department of Biochemistry and Nutrition, University of New England, Australia and returned to UPM as a lecturer in 1980. After about three years of teaching in UPM, she did her doctoral degree in animal biochemistry at the Department of Animal Science, UPM. She conducted a comparative study between cattle and swamp buffaloes on various aspects of feed utilisation and digestion, rumen microbes and their activities and urea recycling.

She was involved in a number of coordinated research programmes, including 'The Use of Nuclear Techniques to Improve Domestic Buffalo Production in Asia – Phase II Programme' (1984-1987) under the auspices of the Food and Agriculture Organisation (FAO) of the United Nations and the International Atomic Energy Agency (IAEA); 'Evaluation of Different Buffalo Genotypes' organised by the Australian Centre for International Agricultural Research (ACIAR); 'Isolation, enumeration and identification of rumen microorganisms in Malaysian livestock' under the Japan-Malaysian collaborative research organized by the Japanese Society for the Promotion of Science (JSPS); 'Isolation and characterisation of cellulolytic rumen bacteria' funded by FAO and the 'Development, standardisation and validation of nuclear based technologies for measuring microbial protein supply in ruminant livestock for improving productivity' also organised by the FAO/IAEA. She was also involved in a collaborative research on the microbiology and physiology of mouse deer organized by the Japan International Research Centre for Agricultural Sciences (JIRCAS).

Professor Norhani has been awarded numerous study/travel grants including the FAO/IAEA to attend the Interregional Training Course on the Use of Isotope-Aided Techniques in Ruminant Nutrition at the Seibersdorf Laboratory, Vienna, Austria; the Japanese Society for the Promotion of Science (JSPS)/VCC Scientific Exchange Programme, to spent a couple of weeks at the Tokyo University of Agriculture and the National Institute of Animal Health, Tsukuba, Japan; the British Council to stay for a month at the at the Hannah Research Institute, Ayr, Scotland and by JIRCAS to visit the National Institute of Animal Health, Tsukuba. Most of these stays involved short studies on techniques to isolate and characterize rumen microbes.

From her involvement in research on rumen microbiology and nutritional biochemistry, she has authored or co-authored more than 70 publications in local and international journals. Research products from her group have been recognized in the form of awards in research competitions organised by UPM and other organisations within the country.

Her other duties beside teaching and research include supervising post-graduate students at MS and PhD levels and conducting workshops or training for microbiologists from universities and local industries. She is a member of a number of committees within the Department and the Faculty and has been the Honorable Secretary of the Malaysian Society for Microbiology and an Executive Committee Member of the Malaysian Society of Animal Production for two terms. Just recently, she was appointed the Head of Department for the Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, UPM.

RUMEN MICROBES AND SOME OF THEIR BIOTECHNOLOGICAL APPLICATIONS

ABSTRACT

The rumen is a unique ecosystem, well suited to maintain a dense population of microbes. Its anaerobic and reduced conditions are favourable for an intensive microbial degradation of feedstuffs consumed by the host. The rumen bacteria, protozoa and fungi produce the enzymes to hydrolyse the various nutrients present in the feed. The cellulases and hemicellulases degrade the complex plant cell wall polysaccharides and the products are assimilated and fermented by the microbes for their own energy requirement. The end-products of fermentation, mainly the volatile fatty acids and microbial protein are made available to the host. The massive amount of genetic materials and gene products present in the rumen offers a source of unlimited materials for the development of biosensors, bioassays and enzymes for biotechnological applications.

INTRODUCTION

Microorganisms are present in the gut of all animals and their contribution to the host digestive systems depend on the diet and the construction of the gut. For herbivorous animals, the microorganisms present are of central importance to the digestive processes, particularly in the utilization of plant cell wall materials such as cellulose and hemicellulose which cannot be digested by the normal intestinal enzymes. The ruminants have developed modified digestive tracts that can maintain suitable environments for the microbial digestion of the plant materials. On the other hand, monogastrics are animals that have a simple stomach, where their diets consist of feed that can be easily digested in the gastrointestinal tract. The dense microbial population in the rumen offers an unlimited source of genetic materials and gene products for development of various biotechnological applications like bioassays and microbioassays using bacteria or enzymes to measure chemical toxicity in the environment; biosensors for biochemical and clinical analyses and enzyme supplements for livestock production.

THE RUMINANT

Despite the large proportion of plant materials constituted by cellulose and related structural carbohydrates, mammals including herbivores do not synthesise enzymes capable of degrading β-linked polymeric carbohydrates like cellulose and xylans. Ruminants are a class of animals which differ from the monogastric by having a large complex compartmental stomachs and by the process of rumination or cud-chewing. Their fore-stomachs are made up of four compartments, namely, the rumen, reticulum, omasum and abomasum (true stomach). The rumen is the first and the largest compartment of the digestive tract and is highly reduced and anaerobic. Its volume is 4 to 10 litres in sheep and 100 to 300 litres in cattle. It contains a large population of microbes consisting of bacteria, protozoa and fungi, which play an important role in digesting the feed before it is passed to the other parts of the digestive tract. The microbial mix in the rumen is complex and highly dependent on diet. Under normal conditions of feeding, the rumen contents of adult animals contain about 10¹⁰-10¹² bacterial cells/g rumen content (solid and liquid), and 10⁵ protozoal cells per ml of rumen fluid (Abdullah et al., 1995). The population density of rumen fungi (fungal zoospores) is difficult to estimate but a range of 10³-10⁵ ml⁻¹ had been reported (Joblin, 1981). The microbial populations are maintained reasonably constant in number by being swept out of the rumen with the movement of fluid digesta, and also by the break-down within the rumen. Bacteria are generally believed to constitute most of the microbial biomass in the rumen, although estimates of up to 40% have been recorded for protozoal biomass in some animals. The amount of fungal biomass is thought to contribute less than 8% of the total microbes (Orpin and Joblin, 1997).

RUMEN BACTERIA

The rumen contains a mixed population of bacteria. Although many species are present in the rumen, authentic ruminal bacteria were found to consist of only abut 30 species (Ogimoto and Imai, 1981). The bacteria can be associated with rumen digesta particles and the epithelial wall as well as those that are present in the fluid phase. In general, the conditions and types of microbial population are different between the fluid and solid phase, but they coexist and interact with each other. The primary end-products of one species will be secondarily fermented by another and only the volatile fatty acids (acetic, propionic and butyric acids) are produced in quantity.

The majority of rumen bacteria are able to digest starch, while a number of the predominant bacteria exhibit high cellulase and hemicellulase activity. *Fibrobacter succinogenes* and *Ruminococcus flavefaciens* are able to synthesise very active cellulases which can degrade crystalline cellulose, while *R. albus* and certain strains of *Butyrivibrio fibrisolvens* are cellulolytic towards the more amorphous types of cellulose. These bacteria are also able to degrade hemicellulose. *Prevotella* spp. do not hydrolyse native cellulose, but actively degrade the hemicellulose xylan.

Fibre digestion involves specific adhesion of microorganisms to their particular substrates. Figure 1 is a scanning electron micrograph (SEM) showing the attachment of a mixed population of bacteria on a grass fragment after 24 h incubation in the buffalo rumen. The cellulolytic bacteria degrade cellulosic materials and provide monomers as substrates to other microorganisms which cannot degrade this polymer.

Figure 1: SEM showing the attachment of a mixed population of bacteria on a guinea grass fragment. Note the disorganized tissue surface and digestion pits (empty cavities)

Cellulose digestion requires close proximity between the microbes and the substrates. Bacterial attachment is an important aspect and a prerequisite for fibre degradation. Figure 2 shows the attachment of a pure culture of *R. albus* D3 isolated from a Sika deer on avicel (a crystalline cellulosic material).

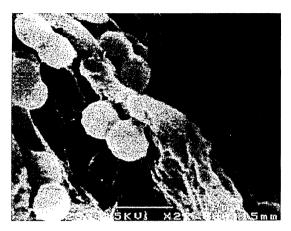
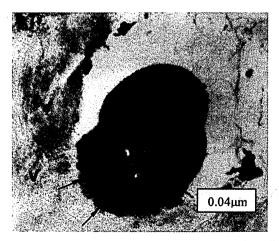
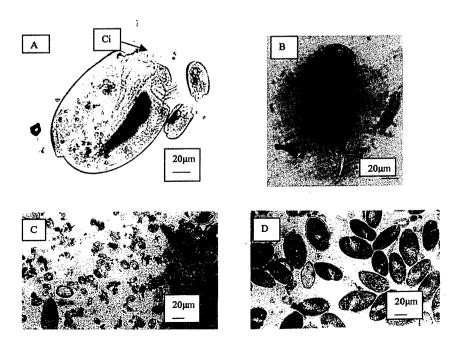


Figure 2: SEM showing the attachment of coccobacillary form of *R. albus* D3 on avicel after 10 min incubation (Sieo *et al.*, 1999).

Ruminococcus albus D3 produces glycocalyx as shown in Figure 3. Glycocalyx has long been recognized as a common structure involved in the attachment of bacteria. Further studies showed the involvement of cellulose binding proteins (CBPs) for attachment of *R. albus* D3 on avicel, where one of the CBPs had xylanase activity (Sieo *et al*, 2000).




Figure 3: Transmission electron micrograph showing attachment of *R. albus* D3 to avicel after 18 h incubation. Note the diffused glycocalyx (arrows) at the point of contact (Sieo *et al.*, 1999).

RUMEN PROTOZOA

Rumen protozoa are part of the microbial population in the rumen. They are mainly ciliates and the two important groups of ciliates are the holotrichs and the entodiniomorphids. The holotrichs are almost completely covered in cilia, whereas the entodiniomorphids possess cilia at certain parts of the body. The holotrichs use mainly soluble carbohydrates, while the large species of entodiniomorphids ingest and utilize particulate materials. The protozoa to a certain degree are responsible for digestion of plant material either by direct enzymatic action or by breaking up of the tissues for further microbial colonization and digestion.

The metabolic end products formed during carbohydrate utilization by the holotrichs are lactic acid, acetic acid, butyric acid, H₂, CO₂ and storage polysaccharide (Williams and Coleman, 1992). Hydrogen is produced in subcellular organelle called hydrogenosome. Like mitochondria, hydrogenosomes are double-membrane bounded organelles that produce ATP using pyruvate as the primary substrate. Hydrogenosomes are, however, markedly different from mitochondria as they lack DNA, cytochromes and the citric acid cycle. Instead, they contain enzymes typically found in anaerobic bacteria that are capable of producing molecular hydrogen (Bui et al., 1996).

Figure 4 (A-F) shows light micrographs of a few examples of rumen protozoa fixed in methylgreen formalin-saline (MFS) solution observed in the local animals. Figure 4 G shows a light and SEM of Isotricha jalaludinii n. sp. found in the rumen of lesser mouse deer, Tragulus javanicus in Malaysia (Imai et al., 1995).

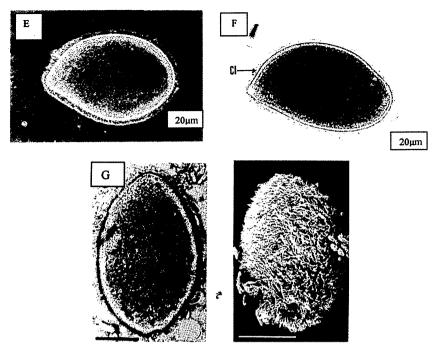


Figure 4: Some examples of rumen protozoa

A,B: Entodiniomorphids

C: Mixed population holotrichs and entodiniomorphids

D: A pure sample of holotrichs

E : Isotricha prostoma
F : Isotricha intestinalis

G: Isotricha jalaludinii (light and SEM micrographs, Bar =30 μm)

Ma: Macronucleus

Ci : Cilia Ca : Spine

S: Skeletal plate

Generally, the composition of rumen ciliate protozoal population of domestic ruminants is similar, but characteristic variations in the occurrence of some species within host species may occur due to geographical distribution of the hosts as well as the diets. It was reported that the levels of *Metadinium* and *Eudiplodinium* (considered to be fermenters of cellulosic materials) were higher in both the local cattle and swamp buffalo. This indicates that Malaysian cattle and buffalo possess a ciliate protozoal composition favaorable for digestion of cellulosic feed materials (Imai *et al.*, 1995). The total number of ciliates per ml of rumen contents was 12.7×10^4 in swamp buffalo and 11.6×10^5 in Kedah Kelantan cattle. In both animal species, the majority of ciliates were *Entodinium*.

Protozoa engulf bacteria and dietary proteins for their nitrogen requirements and release amino acids and ammonia as waste materials. This predatory behaviour reduces the efficiency of microbial growth and hence the net yield of microbial amino acids available for intestinal absorption. A number of methods have been employed to defaunate the rumen. Dietary manipulation is probably safer than chemical drenching. It was reported that protozoa were absent in steers fed palm kernel cake (Abdullah and Hutagalung, 1988). Hence palm kernel cake (PKC) could be a natural substrate to reduce the protozoal population in the rumen. This was confirmed in a later study where the number of rumen protozoa decreased in sheep fed PKC. Figure 5 shows the changes in protozoal counts in the rumen of sheep fed PKC. In this study, bentonite (finely divided montmorillonite clay) was added to reduce the detrimental effects of PKC on rumen metabolism and the host. The copper (~ 30 ppm) and zinc (~ 45 ppm) present in PKC may contribute to the defaunation effect of PKC (Abdullah *et al.*, 1995). Sheep fed grass showed diurnal variation in protozoal counts, probably due to the changes in the nutrient composition of the feed.

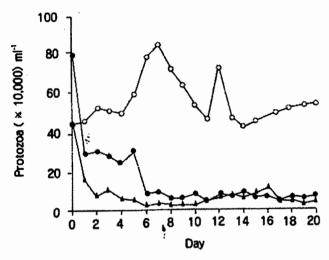


Figure 5: The mean daily protozoal numbers per ml of rumen fluid of sheep fed palm kernel cake (▲) palm kernel cake + bentonite (●) or grass (○). All animals were initially fed with guinea grass

RUMEN FUNGI

Anaerobic fungi were first discovered in the rumen of a sheep by Orpin (1975). The delay in discovering this group of microbe in the rumen is attributed to the common practice among researches that usually work with strained rumen fluid and discarding the solid digesta. Following this discovery, studies on rumen fungi became one of the major interests of rumen microbiologists. The significance and possible role of rumen fungi in fibre digestion was recognized when extensive colonization of fibrous plant materials by the fungi was observed in the rumen of sheep, cattle and buffaloes (Orpin, 1977; Abdullah, 1987; Ho *et al.*, 1996a; Abdullah *et al.*, 1991a,b; Ho and Abdullah, 1999). Figure 6 shows the extensive colonization and tissue degradation by the rumen fungi on straw fragments incubated in the cattle rumen. The fungi occupy a unique niche in the digestive tract of

ruminants and other mammalian herbivores where they participate in primary colonization of plant cell walls. Rumen fungi preferentially colonise thick-walled lignified tissues. Hence diets that are high in fibre content support a higher population of rumen fungi. To date there is no report on the presence of rumen fungi in the lesser mousedeer, probably because of the succulent or concentrate nature of the animal's diet.

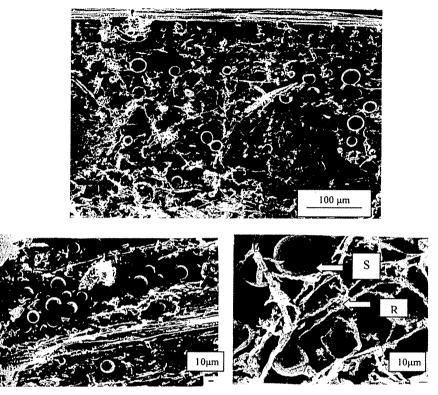


Figure 6: SEM showing fungal colonization of padi straw fragment after 24h incubation in the cattle rumen. Note the disorganised tissue surface which indicate digestion. R: Rhizoids; S: Sporangium

To date, six fungal genera have been established. They were *Neocallimastix*, *Piromyces*, *Caecomyces*, *Orpinomyces*, *Anaeromyces* and *Cyllamyces* (see Ho *et al.*, 2000; Ozkose *et al.*, 2001). The life-cycle (Figure 7) of the fungi consists of a motile, flagellated zoospore stage, that alternates with a vegetative, reproductive stage associated with the digesta fragments. The numbers in Figure 7 represent hours after encystment of a zoospore. Rapid development of an extensive, highly branch of rhizomycellium occurred during the first 6.5h of growth of the thallus. After 21h of encystment, at the base of the zoosporangium, a septum was formed and by 28h, zoosporangia were formed within the sporangium (Trinci *et al.*, 1994). The fungi can be distinguished into two main morphological forms i.e. monocentric and polycentric. In the monocentric species, the thallus usually develops a single sporangium derived from the zoospore cell (Ho *et al.*, 1993), while in the polycentric species, numerous sporangia are produced (Ho *et al.*, 1990).

Figure 8 shows sporangia of polycentric fungi with developing zoospores. The zoospores were eventually liberated through pores formed in the zoosporangial wall (Figure 9). The zoospores can be uni- or multiflagellates depending on the fungal species. Species of *Neocallimastix* produce multiflagellate zoospores (Figure 9A), while species of *Anaeromyces* (*Ruminomyces*) produce uniflagellate zoospores (Ho *et al.*, 1990).

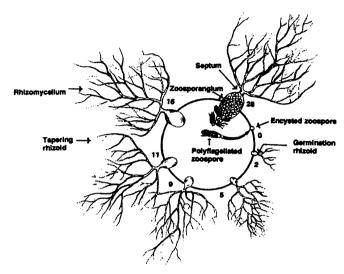
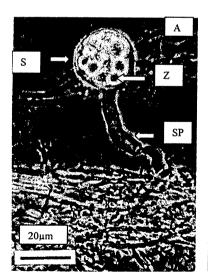



Figure 7: Diagrammatic representation of the life cycle of the monocentric, anaerobic fungus, *Neocallimastix hyrleyensis* originally isolated from the rumen of sheep. The numbers represent hours after encystment of the zoospore (Adapted from Trinci *et al.*, 1994).

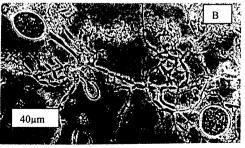
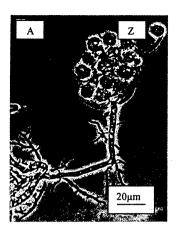



Figure 8: Examples of polycentric anaerobic fungi

- A. Orpinomyces joyonii, with developing zoospores (Ho and Barr, 1995)
- B. Ruminomyces (Anaeromyces) elegans rhizomycelium with three young sporangia (Ho et al., 1990)
- (S: Sporangium, Z: Zoospore, SP: Sporangiophore)

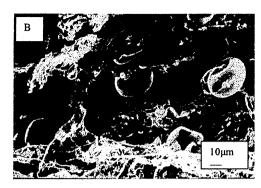


Figure 9: A. A monocentric fungus Neocallimastix variabilis showing a multiflagellate zoospore (Z) released from a matured sporangium (Ho et al., 1993)

B. SEM of sporangia (unidentified fungus) with pores through which zoospores were released (grass fragment incubated in the buffalo rumen for 48h)

All strains of rumen fungi so far examined are capable of degrading structural carbohydrates of plant cell walls. Rumen fungi produce cellulases capable of solubilising both the amorphous and crystalline cellulose. High activities of endo-1,4-β-D glucanase (CMCase) have been detected in the growth supernatants of various rumen fungi (Abdullah et al., 1990; Ho et al., 1996b). Rumen fungi are among the few fungi that can degrade crystalline cellulose. Fungi produce a wide range of hydrolytic enzymes which include cellulases, hemicellulases and phenolic esterases (Teunissen et al., 1993; Ho et al., 1996b). Most fungal species produce acetate, formate, lactate, ethanol, carbon dioxide and hydrogen as end products (Borneman et al. 1989, Ho et al., 1996b). Hydrogen production is a common feature of all anaerobic rumen fungal fermentation. The formation of hydrogen is localized in microbodies called hydrogenosomes (Yartlett et al., 1986).

Anaerobic rumen fungi may not seem to be important to rumen digestive function since they are absent or occur in very small number when the animal is fed low-fibre diet, but the widespread colonization of fibrous plant materials by the fungi indicates that they play a role in fibre digestion. The cellulases, hemicellulases and phenolic esterases produced by the fungi enable them to invade and degrade structural carbohydrates in lignified plant tissues. In tropical regions where most of the forages are fibrous and poor quality, the development of methods to manipulate the fungi in the rumen could offer a means of improving feed efficiency in ruminants fed high-fibre poor quality feeds.

RUMEN DIGESTION AND FERMENTATION

Cellulose digestion by microorganisms is a comparatively slow process, hence the passage of ingesta needs to be slowed down for maximal degradation. Passage rate of small particles and fluid outflow rate would also influence the microbial population in both the fluid and solid compartments (Abdullah *et al.* 1991c). The ability of the reticulo-rumen to retain large feed particles is an important adaptation for microbial digestion of plant fibre. Only the small feed particles can enter the omasum from the reticulum, while large fragments remain, hence the rumen is never emptied even after a prolonged fast. It is in the reticulo-rumen that most of the microbial activity takes place.

Microbial digestion in the rumen is relatively unrelated to the host's digestive processes in the gut, in which hydrolytic enzymes breakdown more complex compounds of plant cell wall polysaccharides to nutrient molecules that can be used by the microbes for their own metabolic needs. Cellulose is a polymer of glucose linked by β -1,4-glucosidic bonds and the chains form numerous intra- and intermolecular hydrogen bonds to form an insoluble cellulose microfibrils. Microbial hydrolysis of cellulose to glucose involves three major classes of cellulases namely endo- β -glucanase (EC 3.2.1.4) or carboxymethylcellulase (CMCase), which cleave β -1,4-glucosidic links throughout cellulose molecules; exo- β -glucanase or cellobiohydrolase (EC 3.2.1.91) or avicelase which digest cellulose from the non-reducing end, releasing cellobiose and β -glucosidase (EC 3.2.1.21) or cellobiase which hydrolyse cellobiose and low molecular-mass cellodextrins to release glucose (Beguin, 1990).

The digestion and fermentation processes of feed constituents like cellulose, hemicellulose, starches, sugars, proteins and amino acids by the rumen microbes (bacteria, protozoa and fungi) in the rumen result in end products, principally volatile fatty acids (VFAs) i.e., acetic, propionic and butyric acids; the gasses methane and CO₂ and NH₃ and the microbial cells. Succinate, hydrogen, lactate, ethanol and formate, important fermentation products of pure cultures of rumen bacteria, protozoa and fungi occur at very low concentrations in the rumen. The composition of the gas space in the rumen is 65% CO₂ and 35% methane and the gasses leave the rumen during eructation through the mouth and enter the environment. The VFAs are largely absorbed through the walls of the fore-stomach, where they are utilised as a source of energy and glucogenic precursor by the host. The microbial cells are digested in the hind gut, where the microbial protein synthesised in the rumen becomes the source of protein for the host. The amino acid components of the microbial protein which are made available to the host may differ in nature and proportions from the amino acids present in the ingested protein.

Conditions for normal fermentation are maintained in the ruminal fluid by continual adjustment of pH chiefly by saliva inflow and absorption of VFAs into the blood across the rumen wall. However, due to the rapid fermentation processes after the onset of feeding, changes in pH still occur. Figure 10A shows the changes in rumen pH at various

times after the onset of feeding of sheep fed chopped guinea grass and four types of supplements. The supplements tested were two types of energy source (corn flour and paper pulp) and two types of protein (fish meal and soybean meal). At 3 h after feeding, rumen pH of sheep fed soybean meal + corn flour was the lowest. Sheep fed this supplement also showed rapid fermentation activity as indicated by the highest concentration of VFAs in the rumen (Figure 10B) (Jetana *et al.*, 2000).

As can be seen from Figure 10, rumen fermentation pattern is greatly affected by diet. However, the activity of a microbial population adapted to a particular carbohydrate shows a typical fermentation pattern. With less easily hydrolysed carbohydrates or highly fibrous feeds like roughages, acetic acid predominates, but with hexose and easily hydrolysed carbohydrates like molasses, acetic acid still predominates, but the production of propionic and butyric acids increased (Abdullah, 1984; Abdullah *et al.*, 1992). Palm kernel cake with a high protein content showed higher propionate production. The change in molar proportions indicate the shift in microbial population. The molar proportions of individual fatty aids of animals fed different diets are shown in Table 1.

Figure 10: A. Rumen pH

B. Total VFA

Sheep fed chopped guinea grass ad libitum and four different supplements.

SBM + PP = Soybean meal + paper pulp SBM + CF = Soybean meal + corn flour FM + PP = Fish meal + paper pulp FM + CF = Fish meal + corn flour

anieren aleis				
Diets	Total VFA (mM)	Acetic	Molar % Propionic	Butyric
Guinea grass	96.4 <u>+</u> 1.3	74.5 <u>+</u> 0.2	17.0 <u>+</u> 0.2	7.0 <u>+</u> 0.2
Straw	98.0 <u>+</u> 2.2	76.6 <u>+</u> 0.2	17.1 <u>+</u> 0.1	5.0 <u>+</u> 0.1
Straw + molasses	81.5 <u>+</u> 1.2	65.0 <u>+</u> 0.4	18.2 <u>+</u> 0.1	13.8 <u>+</u> 0.3
Palm kernel cake	74.8 <u>+</u> 5.5	54.4 <u>+</u> 2.7	26.4 <u>+</u> 1.3	11.6 <u>+</u> 1.6
Molasses -based diet	95.1 <u>+</u> 1.2	41.7 <u>+</u> 0.8	24.9 <u>+</u> 1.1	30.8 <u>+</u> 1.3
Molasses + fish meal	113.9 <u>+</u> 1.5	43.4 <u>+</u> 1.3	19.7 <u>+</u> 0.7	34.6 <u>+</u> 1.3

Table 1: Changes in total rumen VFA and molar percent of acetic, propionic and butyric with different diets

The addition of molasses which contain highly fermentable sugars result in high butyrate fermentation. The shift in fermentation to high butyrate production could be due to the increase in protozoal population as they are known to be butyrate producers (Williams and Coleman, 1992). The holotrichs develop in large numbers when soluble carbohydrates are readily available in the diet (Jouany and Ushida, 1990).

The equations below show production of acetate (HAc), propionate (HPro), butyrate (HBu), methane and energy (ATP) from hexose fermentation.

```
Hexose \rightarrow 2 pyruvate + 4 [H] + 2ATP

2pyruvate + 2H<sub>2</sub>O \rightarrow 2HAc + 2CO<sub>2</sub> + 2H<sub>2</sub> + 2ATP

2pyruvate + 8[H] \rightarrow 2HPro + 2H<sub>2</sub>O + 2CO<sub>2</sub> + 2ATP

2pyruvate + 4[H] \rightarrow HBu + 2H<sub>2</sub>O + 2CO<sub>2</sub> + 2ATP

CO<sub>2</sub> + 4H<sub>2</sub> \rightarrow CH<sub>4</sub> + 2H<sub>2</sub>O + ATP
```

High cellulolytic activity is associated with high acetate and methane production. Molecular hydrogen produced by the rumen microbes is the major electron donor for methanogenesis by the various species of methanogens. However, to a lesser extent, methane is also synthesized from formate. The excretion of methane from the rumen can represent a loss of up to 15% of the digestible energy depending on the type of diet.

BIOTECHNOLOGICAL APPLICATIONS OF RUMEN MICROBES

Lignocellulolytic microorganisms and their lignocellulolytic enzymes have many potential biotechnological applications ranging from the production of bio-fuel, chemicals, proteins, and to improving textiles, wood-pulping and animal feeds for domesticated herbivores. In the baking industry, xylanases are used for improving desirable texture, loaf volume and shelf life of bread. Hemicellulases have the potential use for pulping and bleaching in the pulp and paper industry to modify the structure of xylan and glucomannan in pulp fibres to enhance chemical delignification (see Howard *et al.*, 2003). Different industries have different needs and consequently require specific enzymes. The detergent,

textile and paper deinking industries prefer cellulases which remove short protruding ends to restore smooth surfaces and which do not hydrolyse intact cellulose fibres.

Ruminal microbes and microbial enzymes offer the possibility of eliminating antinutritional factors and toxins in plants, enhancing fiber digestion and nutritive value of feed (Bonneau and Laarveld, 1999). A lot of work on genetic manipulation on rumen microbes has been conducted, in particular genes involve in polysaccharidases production. Over 100 different genes encoding enzymes for fiber digestion have been identified and cloned from ruminal bacteria such as *Butyrivibrio fibrisolvens*, *Fibrobacter succinogenes*, *Prevotella ruminicola*, *Ruminococcus albus* and *Ruminococcus flavefaciens*. At least 30 genes that encode cellulase, xylanases, mannanases, and endoglucanases have been isolated from ruminal fungi. These are of particular interest due to their powerful fibrolytic activity and ability to break down very resistant cell wall polymers (Bowman and Sowell, 2003).

The rumen *Streptococcus bovis* is tolerant to O_2 and gene transfer methods have been developed for this species that make it a candidate as a host for the expression of genes from other organisms. Ekinci *et al.* (2002) were able to use a β -glucanase promoter found in *S. bovis* to express a cellulase gene from the anaerobic rumen fungus *Neocallimastix patriciarum* that is found in very low levels in the rumen, and is important for the degradation of crystalline cellulose. The resulting enzyme product was active against a wide variety of cellulosic substrates. The advantages of using fungal enzymes are their stability to low pH and their extremely high activity level (Ekinci *et al.*, 2002). Some ruminal bacterial species like *Butyrivibrio fibrisolvens* and *Prevotella ruminicola* are found widely in significant numbers in ruminant animals on varied diets. These species can be considered as logical choices to introduce new or enhanced genetic material into the rumen (Selinger *et al.*, 1996).

Protein engineering has been used to increase the catalytic activity and substrate diversity of fibrolytic enzymes from ruminal microbes. This has resulted in enzymes with up to 10 times higher specific activity, changed pH and temperature optima and increased substrate binding activity than the enzymes from which they originated (Selinger *et al.*, 1996).

MICROBIAL ENZYMES AS FEED SUPPLEMENTS

Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. One particularly promising technology is feeding enzymes as supplements for animal diets. Supplementation of diets for non-ruminants (e.g., swine and poultry) with fibrolytic enzymes, such as cellulases, xylanases and β -glucanases, increases the feed conversion efficiency and growth rate of the animals. Enzymatic hydrolysis of plant cell wall polymers (e.g., cellulose, xylan, β -glucans) releases glucose and xylose and eliminates the antinutritional effects of β -glucans and arabinoxylans.

Phytase supplementation has been found to increase not only the growth rate of monogastric animals but also the efficiency of phosphate utilization in feeds. This would reduce phosphorous excretion and the chances of environmental pollution.

RUMEN BACTERIA AS A SOURCE OF THE PHYTASE ENZYME

Phytate or phytic acid (*myo*-inositol 1,2,3,4,5,6 hexakisphosphate, IP6) is the main storage form of phosphorus (P) in cereal grains, legumes, pollens and oilseeds which form a major component of animal feed. More than 60% of P in these products are present as phytate-P. Phytate is also considered as an anti-nutritional factor as it can chelate important minerals such as Ca, Zn, Cu, Mn and Fe and binds protein to form insoluble phytate-protein complexes. Theoretically, the P contents of feeds originating from plant materials should be sufficient to meet the requirements of poultry. Unfortunately, phytate-P is poorly utilized by poultry because of the lack of the digestive enzyme, phytase, to hydrolyse phytate into inorganic-P. The limited ability of poultry to utilise phytate-P poses two problems, i.e., the need to supplement inorganic-P in the feed (e.g. dicalcium phosphate) where P is the third most expensive nutrient in poultry production after energy and protein; and the excretion of large amounts of P in manure which pollutes the environment.

Phytase or myo-hexakisphosphate phosphohydrolase hydrolyses myo-inositol hexakisphosphate into inorganic orthophosphate and myo-inositol. The enzyme is widespread in nature, occurring in microorganisms, plants and in some animal tissues. Ruminants are able to utilize phytate-P efficiently as they have phytase-producing bacteria in the rumen. In the process of a large scale screening for phytase-producing bacteria from the rumens, a new phytase-producing bacterial species, *Mitsuokella jalaludinii*, which can hydrolyze phytate in the feed of chickens effectively *in vitro* has been isolated from the rumen of cattle in Malaysia (Lan *et al.*, 2002a). The rod-shaped Gram negative bacterium (Figure 11) hydrolysed sodium phytate rapidly and the phytase production was strongly induced by phytate present in the growth medium.

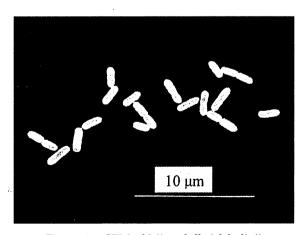


Figure 11: SEM of Mitsoukella jalaludinii

Rice bran and soybean milk were found to be the best carbon and nitrogen sources, respectively (Lan *et al.*, 2002b). Under optimum conditions (Lan *et al.*, 2002c), this bacterium produces 12.93 Ug⁻¹ culture broth of phytase activity. The production of phytase was comparable to the yield of phytase produced by *Aspergillus ficuum* NRRL 3135 - a wild fungal strain which produces the highest phytase activity among fungi (Wodzinski and Ullah, 1996). The enzyme produced is very active at pH 4.0 – 4.5 and stable up to 60°C.

Feeding trials were conducted to determine the efficacy of supplementation of *M. jalaludinii* culture on the performance and nutrient utilisation in broiler chicken (Lan *et al.* 2002d). A total of 360 one-day old chicks (Avian-43) were fed *ad libitum* with one of the four diets: T1: low available-P (aP) feed+2.0% inactivated *M. jalaludinii*; T2: low-aP feed+2% active *M. jalaludinii* (500U phytase/kg feed); T3: low-aP feed+2% inactivated *M. jalaludinii* +500U Natuphos® phytase/kg feed and T4: normal-aP (0.44% aP) feed+2% inactivated *M. jalaludinii*. The experiment was conducted for 21 days. The growth performance and nutrient utilisation of the chickens were compared to those supplemented with a commercial phytase (Natuphos® phytase). Figure 12 shows the growth performance of broiler chickens and Figure 13 shows the P excretion at 21 days.

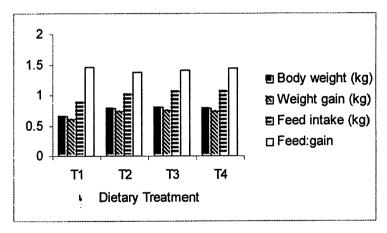


Figure 12: Effects of T1: low available-P (aP) feed+2.0% inactivated *M. jalaludinii*; T2: low-aP feed+2% active *M. jalaludinii* (500U phytase/kg feed); T3: low-aP feed+2% inactivated *M. jalaludinii*+500U Natuphos® phytase/kg feed and T4: normal-aP (0.44% aP) feed+2% inactivated *M. jalaludinii* on growth performance of broiler chickens at 21 days.

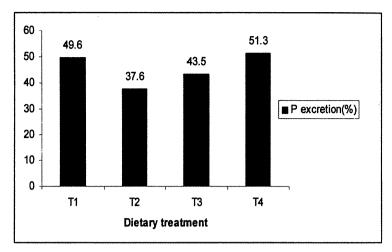


Figure 13: Effects of T1: low available-P (aP) feed+2.0% inactivated *M. jalaludinii*; T2: low-aP feed+2% active *M. jalaludinii* (500U phytase/kg feed); T3: low-aP feed+2% inactivated *M. jalaludinii*+500U Natuphos® phytase/kg feed and T4: normal-aP (0.44% aP) feed+2% inactivated *M. jalaludinii* supplementations on % excretion of phosphorus (P) of broiler chickens at 21 days.

Feeding trials conducted on broiler chickens have shown the ability of freeze-dried culture of *M. Jalaludinii* to enhance P utilisation, hence decreasing the amount of organic-P excreted and reducing the requirement of inorganic-P in the diet. The bacterial preparation also improves the feed intake, feed conversion rate, body weight gain, retention of Cu and Zn, P, Ca, Mn and ash content of the tibia and the concentrations of plasma P and Zn of broiler chickens.

In addition, the apparent metabolisable energy value of feed in broilers fed low available-P diet has been significantly enhanced and digestibilities of N and DM have also been improved. These results indicate the effectiveness of the product in improving the nutritive value of the feed. The activity of the phytase enzyme is comparable to that of the commercial phytase (Natuphos® phytase). However, the presence of other enzymes in the bacterium like amylase and protease further enhances the digestive process of the birds. Hence, *M. jalaludinii* supplementation is more efficient in improving the dietary nutrient utilisation in broiler chickens than Natuphos® phytase.

CLONING OF PHYTASE GENE

Based on the 16s rRNA gene sequence, *M. jalaludinii* is closest to *Selenomonas ruminantium*, where both of them were rumen bacteria producing high phytase activity. To clone the phytase gene from *M. jalaludinii*, degenerate primers were designed based on phytase gene sequence of *S. ruminantium*. PCR amplification was carried out by using different combinations of four pairs of forward and reverse primers. As a result, a few specific bands were obtained from PCR amplifications. Two longest PCR fragments with sizes 689 bp (*pPHY1*) and 700 bp (*pPHY2*) were cloned and sequenced. Sequence alignment of

pPHY 1 and *pPHY 2* were done and it represents a contig which consist of 736bp fragment. Through Blast homology search and clustal alignment, it showed that it is a partial phytase gene.

DNA walking was chosen as an approach to obtain the up and down stream of the phytase gene. DNA walking was performed by using DNA walking SpeedUpTMKit (Seegene) which consists of three steps PCR amplification. PCR amplification were performed by using three different specific inverse primers with annealing control primer. As a result, a 1.1kb fragment and 300bp fragment were amplified. Both of these fragments were cloned and sequenced. Clustal alignment showed that the 1.1kb fragment had high homology to the upper stream of the phytase gene and 300bp fragment to the down stream of the phytase gene. A pair of specific primer was designed based on the upper and down streams sequence obtained from DNA walking. The full length of the phytase gene was successfully isolated from M. jalaludinii. The gene is 1047bp in length and consists of 348 amino acids. Through a Blast homology search, the sequence cloned was similar to S. ruminantium JY35 myo-inositol hexaphosphate phosphohydrolase precusor (phyA) gene (E value = 0.0) and shared 98% similarities at the DNA nucleotide level with S. ruminantium JY35 phyA.

A phytase gene phylogenetic tree (Figure 14) was generated and the phylogenetic analysis shows that there are differences among fungal and bacterial phytases. *Bacillus* spp. phytase genes show high similarity among each other. The analysis also indicates that *M. jalaludinii* and *S. ruminantium* phytase genes are different from the other genes where both of them separated to form a new branch (Phang et al., 2005).

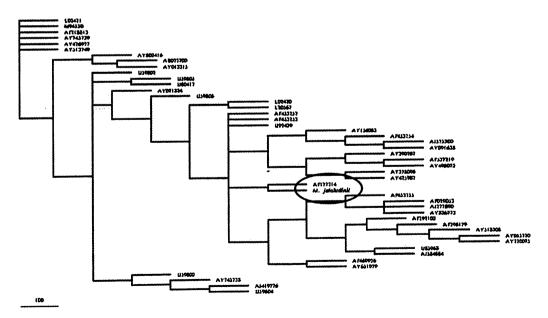


Figure 14: Phylogenetic relationship of *M. jalaludinii* phytase gene with other microbial phytase genes.

CONCLUSION

The ruminal ecosystem is among the novel enzyme sources currently being explored for the production of industrial enzymes. Understanding the role of enzymes in feed digestion through characterization of the enzymology and genetics involved in digestion of feedstuffs will provide the information required to improve or develop new products for livestock production and other biotechnological applications. The use of microbial enzymes in the various industries has been limited largely because of the cost of development and production of enzymes. Developments in recombinant DNA technology have increased the efficiency of existing microbial production systems and facilitated exploitation of alternative sources of industrial enzymes. Characterization of genes encoding a variety of hydrolytic enzymes, such as cellulases, xylanases, β -glucanases, amylases, pectinases, proteases, phytases, urease and tannases and other microbial enzymes, will promote the development of more effective enzyme supplements and enzyme expression systems. Characteristics of the original source organism need no longer restrict the production of a useful enzyme.

ACKNOWLEDGEMENT

The funds provided by the Ministry of Science and the Environment of Malaysia under the IRPA Program (Project Codes: 01-02-04-0547, 01-02-04-0390, 01-02-04-0365) are acknowledged.

REFERENCES

- Abdullah, N. 1984. The effect of protein (as fish meal) on rumen VFA patterns of molasses-fed sheep. *Pertanika* 7: 89-94.
- Abdullah, N. 1987. Rumen bacteria and fungi of cattle and buffaloes. *Pertanika* 10(1): 49-52.
- Abdullah, N., Hanita, H., Ho, Y.W., Kudo, H., Jalaludin, S. and Ivan, M. 1995. The effects of bentonite on rumen protozoal population and rumen fluid characteristics of sheep fed palm kernel cake. *Asian-Australasian Journal of Animal Science* 8: 249-254.
- Abdullah, N., Ho, H.W., Jalaludin, S. and Kudo, H. 1990. Fermentation activity of a polycentric fungus. Proceedings: Animal Industry Vision in the 90's Through Technology, 6-10 October, Kuala Lumpur. pp 137-139.
- Abdullah, N., Ho, Y.W. and Jalaludin, S. 1991a. Microbial colonization and digestion of feed materials in cattle and buffaloes: II. Rice straw and palm press fibre. *Asian Australasian Journal of Animal Science* 5: 329-335.

- Abdullah, N., Ho, Y.W., Mahyuddin, M. and Jalaludin, S. 1991b. Microbial colonization and digestion of feed materials in cattle and buffaloes: I. Guinea grass. *Asian-Australasian Journal of Animal Science* 5: 323-327.
- Abdullah, N., Ho, Y.W., Mahyuddin, M. and Jalaludin, S. 1991c. Studies in fibre digestion and passage rate of liquid and solid in cattle and buffaloes. *Asian-Australasian Journal of Animal Science* 4: 137-141
- Abdullah, N. and Hutagalung, R.I. 1988. Rumen fermentation, urease activity and performance of cattle given palm kernel cake based diet. *Animal Feed Science and Technology* 20: 79-86.
- Abdullah, N., Nolan, J.V., Mahyuddin, M. and Jalaludin, S. 1992. Digestion and nitrogen conservation in cattle and buffaloes given rice straw with or without molasses. *Journal of Agriculture Science Cambridge* 119: 255-263.
- Beguin, P. 1990. Molecular biology of cellulose degradation. *Annual Review of Microbiology* 44: 219-248.
- Bowman, J. G. P. and Sowell, B. F. 2003. Technology to complement forage-based beef production systems in the West. *Journal of Animal Science* 81:E18-E26.
- Bonneau, M., and Laarveld, B. 1999. Biotechnology in animal nutrition, physiology and health. *Livestock Production Science* 59: 223–241.
- Borneman, W.S., Akin, D.E. and Ljungdahl 1989. Fermentation products and plant cell wall degrading enzymes produced by monocentricand polycentric anaerobic runinal fungi. *Applied Environmental Microbiology* 55: 1066-1073.
- Bui, E.T.N., Bradley, P.J. and Johnson, P.J. 1996. A common evolutionary origin for mitochondria and hydrogenosomes. *Proceedings of the National Academy of Sciences* 93:9651-9656.
- Ekinci, M. S., Martin, J. C. and Flint, H. J. 2002. Expression of a cellulase gene, celA, from the rumen fungus *Neocallimastix patriciarum* in *Streptococcus bovis* by means of promoter fusions. *Biotechnological Letters* 24: 735–741.
- Ho, Y. W. and Abdullah, N. 1999. The role of rumen fungi in fibre digestion. *Asian-Australasian Journal of Animal Science* 2: 104-112.
- Ho, Y.W., Abdullah, N. and Jalaludin, S. 1996a. Microbiol colonisation and degradation of some fibrous crop residues in the rumen of goats. *Asian Australasian Journal of Animal Science* 9: 519-524.

- Ho., Y. W., Abdullah, N. and Jalaludin, S. 2000. The diversity and taxonomy of anaerobic gut fungi. *Fungal Diversity* 4: 37-51.
- Ho, Y. W., Barr, D.J.S., Abdullah, N., Jalaludin, S. and Kudo, H. 1993. *Neocallimastix variabilis*, a new species of anaerobic fungus from the rumen of cattle. *Mycotaxon* 46: 241-258.
- Ho, Y.W. and Barr, D.J.S. 1995. Classification of anaerobic gut fungi from herbivore swith emphasis on rumen fungi from Malaysia. *Mycologia* 87: 655-677.
- Ho, Y.W., Bauchop, T., Abdullah, N. and Jalaludin, S. 1990. *Ruminomyces elegans* gen. et sp. nov., a polycentric anaerobic rumen fungus from cattle. *Mycotaxon*. 38: 379-405.
- Ho, Y.W., Wong, M.V.L., Abdullah, N., Kudo, H. and Jalaludin, S. 1996b. Fermentation activities of some new species of anaerobic fungi from Malaysia. *Journal of General and Applied Microbiology* 42: 51-59.
- Howard, R.L., Abotsi, E. Jansen van Rensburg, E.L. and Howard, S. 2003. Ligocellulose biotechnology: issues of bioconversion and enzyme production. *African Journal of Biotechnology* 2: 602-619.
- Imai, S., Abdullah, N., Ho, Y.W., Jalaludin, S., Hussain, H.Y., Onodera, R. and Kudo, H. 1995. Comparative study on the rumen cilliate populations in small experimental herds of water buffalo and Kedah-Kelantan cattle in Malaysia. *Animal Feed Science and Technology* 52: 345-351.
- Imai, S., Kudo, H., Fukuta, K., Abdullah, N., Ho, Y.W. and Onodera, R. 1995. *Isotrichia jalaludinii* n. sp. found from the rumen of lesser mouse deer, *Tragulus javanicus*, in Malaysia. *Journal of Eukaryotic Microbiology* 42: 75-77.
- Jetana, T., Abdullah, N., Halim, R. A., Jalaludin, S. and Ho, Y. W. 2000. Effects of energy and protein supplementation on microbial-N synthesis and allantoin excretion in sheep fed guinea grass. *Animal Feed Science and Technology* 84: 167-181.
- Joblin, K.N. 1981. Isolation, enumeration and maintenance of rumen anaerobic fungi in roll tubes. *Applied and Environmental Microbiology* 42: 1119-1122.
- Jouany, J.P. and Ushida, K. 1990. Protozoa and fibre digestion in the rumen. In: The Rumen Ecosystem (Eds: Hoshino, S. Onodera, R., Minato, H. and Itabashi, H.). pp139-150. Tokyo. Japan Scientific Press.
- Lan G.Q., Ho Y.W. and Abdullah, N. 2002a. *Mitsuokella jalaludinii* sp. nov., from the rumens of cattle in Malaysia. *International Journal of Systematic Evolutionary Microbiology*. 52:713-718.

- Lan, G.Q., Abdullah, N., Jalaludin, S. and Ho, Y.W. 2002b. Culture conditions influencing phytase production of *Mitsuokella jalaludinii*, a new bacterial species from the rumen of cattle. *Journal of Applied Microbiology* 93: 668-674.
- Lan, G.Q., Abdullah, N., Jalaludin, S. and Ho, Y.W. 2002c. Optimization of carbon and nitrogen sources for phytase production by *Mitsuokella jalaludinii*, a new rumen bacterial species. *Letters of Applied Microbiology* 35: 157-161.
- Lan, G.Q., Abdullah, N., Jalaludin, S. and Ho, Y.W. 2002d. Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chicken fed corn-soybean meal diets. *Poultry Science*. 81: 1522-1532.
- Ogimoto, K. and Imai, S. 1981. Atlas of Rumen Microbiology. Tokyo. Japan Scientific Societies Press.
- Orpin, C.G. 1975. Studies on the rumen flagellate *Neocallimastix frontalis*. *Journal of General Microbiology* 91:249-262.
- Orpin, C.G. 1977. Invasion of plant tissue in the rumen by the flagellate *N. frontalis. Journal of General Microbiology* 98: 423-430.
- Orpin, C. G. and Joblin, K. N. 1997. *The Rumen Anaerobic Fungi*. In: The Rumen Microbial Ecosystem. (Eds: Hobson P. N. and Stewart C. S.) pp.140-184.
- Ozkose, M., Thomas, B.J., Davies, D.R., Griffith, G.W. and Theodorou, M.K. 2001. *Cyllamyces aberensis* gen.nov.sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. *Canadian Journal of Botany* 79: 666-673.
- Phang, C.Y., Wong, C.M.V.L., Radu, S., Abdullah, N., Ho, Y.W. 2005. Isolation and phylogenetic analysis of phytase gene from *Mitsuokella jalaludinii*. Proceedings: 27th Symposium of the Malaysian Society for Microbiology, 24-27 November 2005, Penang. pp 300-301.
- Selinger, L. B., C. W. Forsberg, and K. J. Cheng. 1996. The rumen: A unique source of enzymes for enhancing livestock production. *Anaerobe* 2:263–284.
- Sieo, C. C., Abdullah, N., Jalaludin, S. and Ho, Y. W. 1999. Cellular structures involved in the attachment of *Ruminococcus albus* strain D3 to microcrystalline cellulose avicel. *Asia-Pacific Journal of Molecular Biology and Biotechnology* 7: 143-149.
- Sieo, C. C., Abdullah, N., Jalaludin, S. and Ho, Y. W. 2000. Cellulose-binding proteins in *Ruminococcus albus* D3 isolated from the rumen of a Sika deer. *Asia-Pacific Journal of Molecular Biology and Biotechnology* 8: 161-165.

- Teunissen, M.J., de Kort, G.V.M, Opden Camp, H.J.M and Vogels, G.D. 1993. Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates. *Applied Biochemistry and biotechnology* 39/40: 177-189.
- Trinci, A.P.J., Davis, D.R., Gull, K., Lawrence M.I., Nielsen, B.B., Rickers, A. and Theodorou, M.K. 1994. Anaerobic fungi in herbivorous animals. *Mycological Research* 98:129-152
- Williams, A.G and Coleman, G.S. 1992. The Rumen Protozoa. New York. Springer-Verlag.
- Wodzinski, R.J. and Ullah, A.H.J. 1996. Phytase. *Advanced Applied Microbiology* 42: 263-302.
- Yarlett, N., Orpin, C.G. Munn, E.A., Yarlett, N.C. and Greenwood, C.A. 1986. Hydrogenosomes in the rumen fungus *Neocallimastix patriciarum*. *Biochemistry Journal* 236: 729-739.

SENARAI SYARAHAN INAUGURAL

1. Prof. Dr. Sulaiman M. Yassin

The Challenge to Communication Research in Extension 22 Julai 1989

2. Prof. Ir. Abang Abdullah Abang Ali

Indigenous Materials and Technology for Low Cost Housing 30 Ogos 1990

3. Prof. Dr. Abdul Rahman Abdul Razak

Plant Parasitic Nematodes, Lesser Known Pests of Agricultural Crops 30 Januari 1993

4. Prof. Dr. Mohamed Suleiman

Numerical Solution of Ordinary Differential Equations. A Historical Perspective 11 Disember 1993

5. **Prof. Dr. Mohd. Ariff Hussein**

Changing Roles of Agricultural Economics 5 Mac 1994

6. Prof. Dr. Mohd. Ismail Ahmad

Marketing Management: Prospects and Challenges for Agriculture 6 April 1994

7. Prof. Dr. Mohamed Mahyuddin Mohd. Dahan

The Changing Demand for Livestock Products 20 April 1994

8. Prof. Dr. Ruth Kiew

Plant Taxonomy, Biodiversity and Conservation 11 Mei 1994

9. Prof. Ir. Dr. Mohd. Zohadie Bardaie

Engineering Technological Developments Propelling Agriculture into the 21st Century 28 Mei 1994

10. Prof. Dr. Shamsuddin Jusop

Rock, Mineral and Soil
18 Jun 1994

11. Prof Dr. Abdul Salam Abdullah

Natural Toxicants Affecting Animal Health and Production 29 Jun 1994

12. Prof. Dr. Mohd. Yusof Hussein

Pest Control : A Challenge in Applied Ecology 9 Julai 1994

13. Prof. Dr. Kapt. Mohd. Ibrahim Haji Mohamed

Managing Challenges in Fisheries Development through Science and Technology 23 Julai 1994

14. Prof. Dr. Hj. Amat Juhari Moain

Sejarah Keagungan Bahasa Melayu 6 Ogos 1994

15. Prof. Dr. Law Ah Theem

Oil Pollution in the Malaysian Seas 24 September 1994

16. Prof. Dr. Md. Nordin Hj. Lajis

Fine Chemicals from Biological Resources: The Wealth from Nature 21 Januari 1995

17. Prof. Dr. Sheikh Omar Abdul Rahman

Health, Disease and Death in Creatures Great and Small 25 Februari 1995

18. Prof. Dr. Mohamed Shariff Mohamed Din

Fish Health: An Odyssey through the Asia – Pacific Region 25 Mac 1995

19. Prof. Dr. Tengku Azmi Tengku Ibrahim

Chromosome Distribution and Production Performance of Water Buffaloes 6 Mei 1995

20. Prof. Dr. Abdul Hamid Mahmood

Bahasa Melayu sebagai Bahasa Ilmu - Cabaran dan Harapan 10 Jun 1995

21. Prof. Dr. Rahim Md. Sail

Extension Education for Industrialising Malaysia: Trends, Priorities and Emerging Issues 22 Julai 1995

22. Prof. Dr. Nik Muhammad Nik Abd. Majid

The Diminishing Tropical Rain Forest: Causes, Symptoms and Cure 19 Ogos 1995

23. Prof. Dr. Ang Kok Jee

The Evolution of an Environmentally Friendly Hatchery Technology for Udang Galah, the King of Freshwater Prawns and a Glimpse into the Future of Aquaculture in the 21st Century 14 Oktober 1995

24. Prof. Dr. Sharifuddin Haji Abdul Hamid

Management of Highly Weathered Acid Soils for Sustainable Crop Production 28 Oktober 1995

25. Prof. Dr. Yu Swee Yean

Fish Processing and Preservation . Recent Advances and Future Directions 9 Disember 1995

26. Prof. Dr. Rosli Mohamad

Pesticide Usage: Concern and Options 10 Februari 1996

27. Prof. Dr. Mohamed Ismail Abdul Karim

Microbial Fermentation and Utilization of Agricultural Bioresources and Wastes in Malaysia 2 Mac 1996

28. Prof. Dr. Wan Sulaiman Wan Harun

Soil Physics: From Glass Beads To Precision Agriculture 16 Mac 1996

29. Prof. Dr. Abdul Aziz Abdul Rahman

Sustained Growth And Sustainable Development: Is there A Trade-Off 1~'or Malaysia 13 April 1996

30. Prof. Dr. Chew Tek Ann

Sharecropping in Perfectly Competitive Markets . A Contradiction in Terms 27 April 1996

31. Prof. Dr. Mohd. Yusuf Sulaiman

Back to The Future with The Sun 18 Mei 1996.

32. Prof. Dr. Abu Bakar Salleh

Enzyme technology: The Basis for Biotechnological Development 8 Jun 1996

33. Prof. Dr. Kamel Ariffin Mohd. Atan

The Fascinating Numbers
29 Jun 1996

34. Prof. Dr. Ho Yin Wan

Fungi. Friends or Foes 27 Julai 1996

35. Prof. Dr. Tan Soon Guan

Genetic Diversity of Some Southeast Asian Animals: Of Buffaloes and Goats and Fishes Too 10 Ogos 1996

36. Prof. Dr. Nazaruddin Mohd. Jali

Will Rural Sociology Remain Relevant In The 21st Century 21 September 1996

37. Prof. Dr. Abdul Rani Bahaman

Leptospirosis - A Mode/ for Epidemiology, Diagnosis and Control of Infectious Diseases 16 November 1996

38. Prof. Dr. Marziah Mahmood

Plant Biotechnology - Strategies for Commercialization 21 Disember 1996

39. Prof. Dr. Ishak Hj. Omar

Market Relationships in The Malaysian Fish Trade: Theory and Application 22 Mac 1997

40. Prof. Dr. Suhaila Mohamad

Food and its Healing Power 12 April 1997

41. Prof. Dr. Malay Raj Mukerjee

A Distributed Collaborative Environment for Distance Learning Applications 17 Jun 1998

42. Prof. Dr. Wong Kai Choo

Advancing the Fruit Industry in Malaysia: A Need to Shift Research Emphasis 15 Mei 1999

43. **Prof. Dr. Aini Ideris**

Avian Respiratory and Immunosuppressive Diseases - A Fatal Attraction 10 Julai 1999

44. Prof. Dr. Sariah Meon

Biological Control of Plant Pathogens: Harnessing the Richness of Microbial Diversity 14 Ogos 1999

45. Prof. Dr. Azizah Hashim

The Endomycorrhiza: A Futile Investment? 23 Oktober 1999

46. Prof. Dr. Noraini Abd. Samad

Molecular Plant Virology: The Way Forward 2 Februari 2000

47. Prof. Dr. Muhamad Awang

Do We have Enough Clean Air to Breathe? 7 April 2000

48. Prof. Dr. Lee Chnoong Kheng

Green Environment, Clean Power 24 Jun 2000

49. Prof. Dr. Mohd. Ghazali Mohayidin

Managing Change in the Agriculture Sector : The Need for Innovative Educational Initiatives
12 Januari 2002

50. Prof. Dr. Fatimah Mohd. Arshad

Analisis Pemasaran Pertanian Di Malaysia : Keperluan Agenda Pembaharuan 26 Januari 2002

51. Prof. Dr. Nik Mustapha R. Abdullah

Fisheries Co-Management: An Institutional Innovation Towards Sustainable Fisheries Industry 28 Februari 2002

52. Prof. Dr. Gulam Rusul Rahmat Ali

Food Safety: Perspectives and Challenges 23 Mac 2002

53. Prof. Dr. Zaharah Binti A. Rahman

Nutrient Management Strategies for Sustainable Crop Production in Acid Soils: The Role of Research using Isotopes
13 April 2002

54. Prof. Dr. Maisom Abdullah

Productivity Driven Growth: Problems & Possibilities 27 April 2002

55. Prof. Dr. Wan Omar Abdullah

Immunodiagnosis and Vaccination for Brugian Filariasis: Direct Rewards from Research Investments
6 Jun 2002

56. Prof. Dr. Syed Tajuddin Syed Hassan

Agro-ento Bioinformation: Towards the Edge of Reality 22 Jun 2002

57. Prof. Dr. Dahlan Ismail

Sustainability of Tropical Animal- Agricultural Production Systems: Integration of Dynamic Complex Systems 27 Jun 2002

58. Prof. Dr. Ahmad Zubaidi Baharumshah

The Economics of Exchange Rates in the East Asian Countries 26 October 2002

59. Prof. Dr. Shaik Md. Noor Alam S.M. Hussain

Contractual Justice in Asean: A Comparative View of Coercion 31 October 2002

60. Prof. Dr. Wan Md. Zin Wan Yunus

Chemical Modification of Polymers: Current and Future Routes for Synthesizing New Polymeric Compounds
9 November 2002

61. Prof. Dr. Annuar Md Nassir

Is The KLSE Efficient? Efficient Market Hypothesis vs Behavioural Finance 23 November 2002

62. Prof. Ir. Dr. Radin Umar Radin Sohadi

Road Safety Interventions in Malaysia: How Effective Are They? 21 Februari 2003

63. Prof. Dr. Shamsher Mohamad

The New Shares Market: Regulatory Intervention, Forecast Errors and Challenges 26 April 2003

64. Prof. Dr. Han Chun Kwong

Blueprint for Transformation or Business as Usual? A Structurational Perspective of The Knowledge-Based Economy in Malaysia
31 Mei 2003

65. Prof. Dr. Mawardi Rahmani

Chemical Diversity of Malaysian Flora: Potential Source of Rich Therapeutic Chemicals 26 Julai 2003

66. Prof. Dr. Fatimah Md. Yusoff

An Ecological Approach: A Viable Option for Aquaculture Industry in Malaysia 9 Ogos 2003

67. Prof. Dr. Mohamed Ali Rajion

The Essential Fatty Acids-Revisited 23 Ogos 2003

68. Prof. Dr. Azhar Md. Zain

Psychotherapy for Rural Malays - Does it Work? 13 September 2003

69. Prof. Dr. Mohd Zamri Saad

Respiratory Tract Infection: Establishment and Control 27 September 2003

70. Prof. Dr. Jinap Selamat

Cocoa-Wonders for Chocolate Lovers 14 February 2004

71. Prof. Dr. Abdul Halim Shaari

High Temperature Superconductivity: Puzzle & Promises 13 March 2004

72. Prof. Dr. Yaakob Che Man

Oils and Fats Analysis - Recent Advances and Future Prospects 27 March 2004

73. Prof. Dr. Kaida Khalid

Microwave Aquametry: A Growing Technology 24 April 2004

74. Prof. Dr. Hasanah Mohd Ghazali

Tapping the Power of Enzymes - Greening the Food Industry 11 May 2004

75. Prof. Dr. Yusof Ibrahim

The Spider Mite Saga: Quest for Biorational Management Strategies 22 May 2004

76. Prof. Datin Dr. Sharifah Md Nor

The Education of At-Risk Children: The Challenges Ahead 26 June 2004

77. Prof. Dr. Ir. Wan Ishak Wan Ismail

Agricultural Robot: A New Technology Development for Agro-Based Industry 14 August 2004

78. Prof. Dr. Ahmad Said Sajap

Insect Diseases: Resources for Biopesticide Development 28 August 2004

79. Prof. Dr. Aminah Ahmad

The Interface of Work and Family Roles: A Quest for Balanced Lives 11 March 2005

80. Prof. Dr. Abdul Razak Alimon

Challenges in Feeding Livestock: From Wastes to Feed 23 April 2005

81. Prof. Dr. Haji Azimi Hj. Hamzah

Helping Malaysian Youth Move Forward: Unleashing The Prime Enablers 29 April 2005

82. Prof. Dr. Rasedee Abdullah

In Search of An Early Indicator of Kidney Diease 27 Mei 2005

83. Prof. Dr. Zulkifli Hj. Shamsuddin

Smart Partnership: Plant-Rhizobacteria Associations 17 Jun 2005

84. Prof. Dr. Mohd Khanif Yusop

From The Soil to The Table 1 Julai 2005

85. Prof. Dr. Annuar Kassim

Materials Science and Technology: Past, Present and the Future 8 Julai 2005

86. Prof. Dr. Othman Mohamed

Enhancing Career Development Counselling and the Beauty of Career Games 12 August 2005

87. Prof. Dr. Mohd Amin Mohd Soom

Engineering Agricultural Water Management Towards Precision Farming 26 August 2005

88. **Prof. Dr. Mohd Arif Syed**

Bioremediation - A Hope Yet for the Environment? 9 September 2005

89. Prof. Dr. Abdul Hamid Abdul Rashid

The Wonder of Our Neuromotor System and the Technological Challenges They Pose 23 December 2005