

PHYTOREMEDIATION OF ARSENIC IN CONSTRUCTED WETLAND USING Pennisetum purpureum Schumach. AND PLANT GROWTH-PROMOTING RHIZOBACTERIA

By

MD. EKHLASUR RAHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

July 2023

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

I dedicated my thesis to beloved my parents, my wife and my sons for their prayer, patient and support

During my study to achieve my goal

Grateful to almighty Allah and Thanks to my family members as well as my friends who appreciated me about my study

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PHYTOREMEDIATION OF ARSENIC IN CONSTRUCTED WETLAND USING Pennisetum purpureum Schumach. AND PLANT GROWTH-PROMOTING RHIZOBACTERIA

By

MD. EKHLASUR RAHMAN

July 2023

Chairman : Mohd Izuan Effendi bin Halmi, PhD

Faculty : Agriculture

Nowadays there are many types of technologies to restore contaminated areas with heavy metals. One of the technologies that belong to a green technology is the remediation of soil and groundwater contaminated with heavy metals using plants and plant growth-promoting rhizobacteria (PGPR). This technology is known as PGPRassisted phytoremediation in the world. Among the advantages of phytoremediation are a cost-effective, environmentally friendly and it can be used as an alternative for bioenergy. The research was conducted to search for potential plants which can be used in phytoremediation mainly for inorganic arsenic in arsenate form [As(V)]. The objectives of this study were to determine the maximum concentration of As that could be taken up by *Pennisetum purpureum* in phytoremediation, to identify the role of rhizobacteria in the root of *P. purpureum* which can enhance phytoremediation process, to determine the mechanisms of As uptake and bioaccumulation by P. purpureum and to optimize the As phytoremediation process using pilot reed beds. As phytotoxicity test, rhizobacteria isolation, molecular identification of rhizobacteria, qualitative and quantitative screening of the rhizobacterial isolates for As-tolerance, determination of different plant growth-promoting traits, As phytoremediation in pilot reed beds, determination of different enzyme activity in pilot reed beds and the optimization of phytoremediation process were included in this study. Results of rhizobacteria isolation showed that two gram-positive and seven gram-negative rhizobacteria that resistant to As. Almost all rhizobacteria (nine) through molecular identification showed excellent performance on As tolerance and different plant growth-promoting activity. Among them Bacillus australimaris showed the highest performance on As-tolerant and different plant growth-promoting activity. Based on SEM-EDX and TEM-EDX analysis showed that there was a difference between B. australimaris in control and exposed with As. P. purpureum was able to survive up to 40 mg kg⁻¹ As concentration for 77 days of exposure at the time of advanced phytotoxicity test. The amount of bioaccumulation of As in entire P. purpureum on 77 days reached $2,323.22 \pm 74.34$ mg kg^{-1} dry weight with bioaccumulation factor 0.23 \pm 0.006, translocation factor 0.87 \pm 0.028, percentages of translocation 42.92 ± 1.2 and calorie value of P. purpureum 16,841.32 ± 199.10 J g⁻¹. Results on phytoremediation of As in non-aerated pilot reed beds showed that the highest amount of As bioaccumulation by P. purpureum that occurred in the As concentration of 39 mg kg⁻¹ at a retention time of 42 days was $5,733.28 \pm 68.80$ mg kg⁻¹ dry weight. The addition of aeration in pilot reed beds could enhance toxic effect of As on P. purpureum although the accumulation of As increased. Optimization results on the phytoremediation process with concentration of 39 mg kg⁻¹ As showed that addition of nine rhizobacteria consortium and NPKS fertilizer could alleviate the As toxic effect and increase the biomass of P. purpureum, however the total As bioaccumulation ability increased and its highest uptake was $6,944.48 \pm 69.44$ mg kg⁻¹ dry weight. Results of SEM-EDX analysis of fresh roots, stems and leaves of P. purpureum revealed significant differences in the context on the effect of As on plant tissue and uptake of As between control and different treatments. In conclusion, P. purpureum is an As hyperaccumulator plant but it is sensitive to high concentration of As and the addition of PGPR consortium has enhanced both the growth of P. purpureum and the As accumulation. These results suggest that PGPR-assisted phytoremediation of As in constructed wetland can be used in As phytoremediation in agricultural polluted areas and anthropogenically polluted environments due to its high capability to uptake and bioaccumulation of As.

Keywords: Phytoremediation, Arsenic, Constructed wetland, *Pennisetum purpureum*, Plant growth-promoting rhizobacteria

SDG: GOAL 3: Good health and well-being, GOAL 6: Clean water and sanitation

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

FITOREMEDIASI ARSENIK DI TANAH BENCAH YANG DIBINA MENGGUNAKAN Pennisetum purpureum Schumach. DAN RHIZOBAKTERIA PENGALAK TUMBESARAN

Oleh

MD. EKHLASUR RAHMAN

Julai 2023

Pengerusi : Mohd Izuan Effendi bin Halmi, PhD

Fakulti : Pertanian

Kini terdapat banyak jenis teknologi untuk memulihkan kawasan yang tercemar dengan logam berat. Salah satu teknologi yang tergolong dalam teknologi hijau ialah pembaikan tanah dan air bawah tanah yang tercemar dengan logam berat menggunakan tumbuhan dan rhizobakteria penggalak tumbesaran tumbuhan (PGPR). Teknologi ini dikenali sebagai PGPR dibantu oleh fitoremediasi di dunia. Antara kelebihan fitoremediasi ialah kos efektif, mesra alam dan ia boleh digunakan sebagai alternatif untuk biotenaga. Penyelidikan ini dijalankan untuk mencari tumbuhan berpotensi yang boleh digunakan dalam fitoremediasi terutamanya untuk arsenik tak organik dalam bentuk arsenat [As(V)]. Objektif kajian ini adalah untuk menentukan kepekatan maksimum As yang boleh diambil oleh *Pennisetum purpureum* dalam fitoremediasi, untuk mengenal pasti peranan rhizobakteria dalam akar P. purpureum yang boleh meningkatkan proses fitoremediasi, untuk menentukan mekanisme arsenik (As) pengambilan dan bioakumulasi oleh P. purpureum dan untuk mengoptimumkan proses fitoremediasi As menggunakan pilot rid bed. Ujian kefitotoksikan, pengasingan rhizobakteria, pengenalpastian molekular rhizobakteria, saringan kualitatif dan kuantitatif bagi pengasingan rhizobakteria untuk toleransi As, penentuan ciri-ciri penggalak pertumbuhan tumbuhan yang berbeza, fitoremediasi dalam pilot rid bed, penentuan aktiviti enzim yang berbeza dalam rid bed dan pengoptimuman proses fitoremediasi turut dijalankan dalam kajian ini. Keputusan pengasingan rhizobakteria menunjukkan dua gram positif dan tujuh gram negatif rhizobakteria yang mempunyai rintangan kepada As. Hampir semua rhizobakteria (sembilan) melalui pengenalpastian molekul menunjukkan prestasi cemerlang pada toleransi As dan aktiviti yang menggalakkan pertumbuhan tumbuhan yang berbeza. Antaranya Bacillus australimaris menunjukkan prestasi tertinggi. Berdasarkan analisis SEM-EDX dan TEM-EDX menunjukkan terdapat perbezaan antara B. australimaris dalam kawalan dan terdedah dengan As. P. purpureum mampu bertahan sehingga 40 mg kg⁻¹ As kepekatan selama 77 hari pendedahan pada masa ujian fitotoksisiti lanjutan. Jumlah bioakumulasi As

dalam keseluruhan *P. purpureum* pada 77 hari mencapai $2,323.22 \pm 74.34$ mg kg⁻¹ berat kering dengan faktor bioakumulasi 0.23 ± 0.006, faktor translokasi 0.87 ± 0.028, peratusan nilai translokasi 42.92 kalori dan purpureum. 16,841.32 ± 199.10 J g⁻¹. Keputusan fitoremediasi As dalam pilot rid yang tidak berudara menunjukkan jumlah bioakumulasi As tertinggi oleh *P. purpureum* yang berlaku dalam kepekatan As 39 mg kg⁻¹ pada masa pengekalan 42 hari ialah 5,733.28 ± 68.80 mg kg⁻¹ berat kering. Penambahan pengudaraan dalam pilot rid bed boleh meningkatkan kesan toksik As pada P. purpureum walaupun pengumpulan As meningkat. Hasil pengoptimuman terhadap proses fitoremediasi dengan kepekatan 39 mg kg⁻¹ Seperti yang menunjukkan bahawa penambahan sembilan konsortium rhizobakteria dan baja NPKS dapat mengurangkan kesan toksik As dan meningkatkan biojisim P. purpureum, namun jumlah keupayaan bioakumulasi As meningkat dan pengambilan tertinggi ialah $6,944.48 \pm 69.44$ mg kg⁻¹ berat kering. Keputusan analisis SEM-EDX akar, batang dan daun segar P. purpureum mendedahkan perbezaan yang ketara dalam konteks kesan As pada tisu tumbuhan dan pengambilan As antara kawalan dan rawatan yang berbeza. Kesimpulannya, P. purpureum adalah tumbuhan hiperakumulator As tetapi ia sensitif kepada As dan penambahan konsortium PGPR telah meningkatkan kedua-dua pertumbuhan P. purpureum dan pengumpulan As. Keputusan ini menunjukkan bahawa fitoremediasi As dibantu PGPR dalam tanah lembap yang dibina boleh digunakan dalam fitoremediasi As dalam kepekatan rendah seperti kawasan tercemar pertanian dan kawasan perindustrian kerana keupayaannya yang tinggi untuk menyerap dan bioakumulasi As.

Kata kunci: Fitoremediasi, Arsenik, Tanah bencah yang dibina, *Pennisetum purpureum*, Rhizobakteria pengalak tumbesaran

SDG: GOAL 3: Kesihatan dan kesejahteraan yang baik, GOAL 6: Air bersih dan sanitasi

ACKNOWLEDGEMENTS

First of all, I am most grateful to almighty Allah for giving me the strength and courage to complete the writing of this thesis. I would like to express my sincere gratitude to dear supervisor, Senior Lecturer Dr. Mohd Izuan Effendi bin Halmi for his intellectual guidance and supervision, productive discussion, constructive criticisms, advice and continuous encouragement throughout the study. I am very much grateful and indebted to supervisory committee members, Associate professor Dr. Md. Kamal Uddin, Senior Lecturer Dr. Khairil bin Mahmud and Principal Scientific Officer Dr. S. M. Shamsuzzaman for their constructive suggestions and guidance in all phases of this research work. I express my deep sense of respect to all of the lecturers and professors in the Department of Land Management for their valuable suggestions and constructive comments. I would like to thank my laboratory mates for their valuable support in my research work. I am grateful to all the technical laboratory staff of the Department of Land management, Faculty of Agriculture, Universiti Putra Malaysia.

I am indebted to my father Md. Tozammel Haque, mother Mrs Josna Banu, wife Zakia Laboni, elder son Rizvan Al Azwad, younger son Ayaan Al Ehteram, brother, sister, brother-in-law and sister-in-law for their prayer, encouragement and tolerance during the whole period of the study. A special thanks to my dear father in-law Mohammad Eakub Ali and mother in-law Mashuda Parvin for their prayer and encouragement throughout the study.

Thankfully acknowledge the assistance of the National Agricultural Technology Program- Phase 2 project (NATP-2), Bangladesh Agricultural Research Council (BARC), Farmgate, Dhaka-1215, Bangladesh, for financial support and facilitating my study and Universiti Putra Malaysia for providing research facilities under the Department of Land Management, Faculty of Agriculture.

This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Izuan Effendi bin Halmi, PhD

Senior Lecturer Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Md. Kamal Uddin, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Khairil bin Mahmud, PhD

Senior Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

S. M. Shamsuzzaman, PhD

Principal Scientific Officer Soil Resource Development Institute Dhaka, Bangladesh (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 August 2024

TABLE OF CONTENTS

ABST	ΓRAC	T			Page i
ABST	TRAK				iii
ACK	NOW:	LEDGEM	IENTS		V
APPI	ROVA	L			vi
		TION			vii
		ABLES			xviii
		IGURES			xxi
LIST	OF A	BBREVI	ATIONS		XXXV
СНА	PTER				
CIIA	LIEN				
1	INTI	RODUCT	ION		1
•		CODCOL	1011		•
2	LITE	ERATURI	E REVIEW		5
	2.1	Arsenic			
		2.1.1	Speciation	of arsenic	5 5
		2.1.2		e effects of arsenic in plants	6
	2.2	Construct	ted wetland		8
		2.2.1	Classificat	ion of constructed wetland	8
		2.2.2	Design and	d operation of constructed wetland	9
			2.2.2.1	Plants utilized in constructed wetlands	9
			2.2.2.2	Substrates utilized for constructed wetlands	11
			2.2.2.3	Factors influencing the design and operation of CW	11
		2.2.3		ion of constructed wetland	15
			2.2.3.1	Optimization utilizing Response Surface Methodology (RSM)	15
			2.2.3.2	Determination of the optimal point utilizing the desirability function method	17
			2.2.3.3	Three-Dimensional (3D) surface plot under	17
				the optimum conditions	
	2.3	Napier gr	ass (Pennise	etum purpureum)	18
		2.3.1	Origin, pr	ropagation and distribution of Pennisetum	18
			purpureun	i	
		2.3.2		stics of <i>P. purpureum</i> as a phytoremediator	19
	2.4			ing rhizobacteria	20
		2.4.1	Mechanism stress	ns of PGPR that combat against heavy-metal	20
			2.4.1.1	Specific plant growth promoting techniques of PGPR species	20
				2.4.1.1.1 Phytohormone generation	21
				2.4.1.1.2 Nitrogen fixation	22
				2.4.1.1.3 Phosphate solubilization	23
				2.4.1.1.4 Siderophores and ammonia production	23

			2.4.1.2	2.4.1.2.1 2.4.1.2.2 2.4.1.2.3 2.4.1.2.4 2.4.1.2.5	of PGPR species Exopolysaccharide Hydrogen cyanide Biosurfactants ar acids production Hydrolytic enzyme Antibiotic production induced systemic re	production nd organic productions action and esistance	24 24 24 25 25 25
		2.4.2	•		Stress managemer metal between PGPR a		26 26
			heavy met	als reduction			
3					TY STUDY OF	Pennisetum	28
				AL OF ARS	SENIC		• •
	3.1	Introduct					28
	3.2		and method				29
		3.2.1	Site descri				29
		3.2.2		of the experin			29 29
		3.2.3		on procedure	lity of glasshouse		29 29
		3.2.4			cal growth of <i>P. pur</i>	nuraum	29
		3.2.6			o nutrients, micro r		30
		3.2.0		tial elements	o nutrients, inicio i	idifferits and	30
		3.2.7		termination			31
		3.2.8	Statistical				31
	3.3		nd discussion				31
		3.3.1		rowth of P. p	urpureum		31
		3.3.2		te of P. purpi			33
		3.3.3			iomass of P. purpur	reum by wet	35
				eight method		•	
		3.3.4	Water con	tent in P. pur	p <mark>ureum</mark>		36
		3.3.5	Calorie de	termination of	of P. purpureum		38
	3.4	Conclusio	on				39
4					Y TEST OF ARS	SENIC ON	40
	Peni	_	rpureum Pl	LANTS			
	4.1	Introduct		_			40
	4.2		and method				41
		4.2.1	Site descri				41
		4.2.2		of the experin			41
		4.2.3			<i>tum purpureum</i> plan	ts	41
		4.2.4		y phytotoxic			42
		4.2.5			containing treatment		42
		4.2.6			cal growth of P. purp	oureum	45 45
		4.2.7			cal parameters	and plants	45 45
		4.2.8	Determina	mon of arsen	ic in treatment sand	ana piants	43

		4.2.9	Determination of BF, TF and Percentage of translocation by plants	46
		4 2 10		47
		4.2.10	Calorie determination	47
	4.2	4.2.11	Statistical analysis	47
	4.3		nd discussions	47
		4.3.1	Physical growth of <i>P. purpureum</i>	47
			4.3.1.1 Determination of EC50 Value	53
			4.3.1.2 The wet weight (gm), dry weight (gm) and	55
			water content of Pennisetum purpureum	
			during preliminary phytotoxicity test	
			4.3.1.3 Absolute growth rate (AGR) (gm/day) of	59
			Pennisetum purpureum during preliminary	
			phytotoxicity test	
			4.3.1.4 The length (cm) of the Pennisetum	60
			purpureum root and stem during the	
			preliminary phytotoxicity test	
		4.3.2	Physical parameters in treatment Sand [pH,	61
			Temperature, Moisture and ORP]	
		4.3.3	Bioavailable arsenic concentration in treatment sand	63
		4.3.4	Arsenic concentration in <i>P. purpureum</i> plants	65
		4.3.5	Determination of BF, TF and Percentage of	68
			Translocation	
		4.3.6	Calorie Value	70
		4.3.7	Mass Balance	73
	4.4	Conclusio	on	74
5	ISOI	ATION	SCREENING AND CHARACTERIZATION OF	76
5			SCREENING AND CHARACTERIZATION OF SISTANT PLANT GROWTH-PROMOTING	76
5	ARS	ENIC-RE		76
5	ARS	ENIC-RE ZOBACT	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum	76 76
5	ARS RHI	ENIC-RE ZOBACT Introducti	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum	
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods	76
5	ARS RHI 5.1	ENIC-RE ZOBACT Introduct Materials	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study	76 77
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria	76 77 77 79
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria	76 77 77 79 79
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria	76 77 77 79 79 80
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity	76 77 77 79 79
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity)	76 77 77 79 79 80 80
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of	76 77 77 79 79 80
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate	76 77 77 79 79 80 80
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria	76 77 77 79 79 80 80 80
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria 5.2.7.1 DNA extraction	76 77 77 79 79 80 80 80
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria 5.2.7.1 DNA extraction 5.2.7.2 Gene amplification by PCR	76 77 77 79 79 80 80 80
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria 5.2.7.1 DNA extraction 5.2.7.2 Gene amplification by PCR 5.2.7.3 Agarose gel electrophoresis	76 77 77 79 79 80 80 80 81 81 81 82
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria 5.2.7.1 DNA extraction 5.2.7.2 Gene amplification by PCR 5.2.7.3 Agarose gel electrophoresis 5.2.7.4 DNA Sequencing	76 77 77 79 79 80 80 80 81 81 81 82 82
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria 5.2.7.1 DNA extraction 5.2.7.2 Gene amplification by PCR 5.2.7.3 Agarose gel electrophoresis 5.2.7.4 DNA Sequencing 5.2.7.5 Bioinformatics protocol	76 77 77 79 80 80 80 81 81 81 82 82 82
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria 5.2.7.1 DNA extraction 5.2.7.2 Gene amplification by PCR 5.2.7.3 Agarose gel electrophoresis 5.2.7.4 DNA Sequencing 5.2.7.5 Bioinformatics protocol Phylogenetic analysis	76 77 77 79 80 80 80 81 81 81 82 82 82 82 83
5	ARS RHI 5.1	ENIC-RE ZOBACT Introducti Materials 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	SISTANT PLANT GROWTH-PROMOTING ERIA ISOLATED FROM Pennisetum purpureum ion and methods Sample collection and duration of the study Isolation of epiphytic rhizobacteria Gram staining of rhizobacteria Microscopic analysis of rhizobacteria Biochemical tests (oxidase activity, catalase activity and motility activity) Preliminary and advanced screening of pure culture of rhizobacteria to arsenate Molecular identification of selected rhizobacteria 5.2.7.1 DNA extraction 5.2.7.2 Gene amplification by PCR 5.2.7.3 Agarose gel electrophoresis 5.2.7.4 DNA Sequencing 5.2.7.5 Bioinformatics protocol	76 77 77 79 80 80 80 81 81 81 82 82 82

		5.2.10.2	Exopolysaccharide production	84
		5.2.10.3	Estimation of flocculation	85
		5.2.10.4	Biofilm formation	85
		5.2.10.5	SEM observation for bacterial	86
			exopolysaccharide, biofilm and floc yield production	
	5.2.11	Determina	3	86
		Concentra	tion (MIC) of arsenic	
	5.2.12	Qualitative	1	87
		rhizobacte	ria for plant growth promoting properties	
		determina		
		5.2.12.1	Determination of indole acetic acid (IAA)	87
		5.2.12.2	Determination of phosphate solubilization	87
			activity	
		5.2.12.3	Determination of potassium solubilization	88
			activity	
		5.2.12.4	Determination of nitrogen fixation activity	88
		5.2.12.5	Determination of siderophore	88
			production	
		5.2.12.6	Determination of hydrolyzing enzymes	89
			production	
			5.2.12.6.1 Cellulase enzyme assay	89
			5.2.12.6.2 Pectinase enzyme assay	89
	5.2.13		biosorption experiment using identified	89
	5 10 14		ria in batch system	00
	5.12.14		Electron Microscopy (SEM) – Energy	90
	5.0.15		X-ray (EDX) Analysis	0.1
	5.2.15		ion Electron Microscopy (TEM)- Energy	91
	5 2 16		X-ray (EDX) Analysis	0.1
<i>5</i> 2	5.2.16	Statistical and discussion		91
5.3	5.3.1			91 92
	3.3.1	Isolation,	morphological and biochemical stics of epiphytic rhizobacteria	92
	5.3.2		ry and advanced screening of pure culture of	100
	3.3.2		ria to arsenate	100
	5.3.3		characterization	102
	5.3.4		of molecular ID	102
	5.3.5		erial growth curve	103
	5.3.6		olerance of identified species	116
	3.3.0	5.3.6.1	Effect of arsenic concentrations on bacterial	116
		3.3.0.1	growth	110
		5.3.6.2	Effect of arsenic concentrations on bacterial	117
		3.3.0.2	exopolysaccharide production and biofilm	117
			formation	
		5.3.6.3	Effect of As concentrations on	119
			rhizobacterial floc yield production	
		5.3.6.4	SEM observation on rhizobacterial As-	120
			tolerance mechanism under As-stress	0
			condition	

			5.3.6.5 Summary of As-tolerance of ide rhizobacteria at 300 mg L ⁻¹ and 750 of As concentrations	
		5.3.7	Minimal inhibitory concentration (MIC)	121
		5.3.8	Qualitative and quantitative screening or rhizobacteria for plant growth promoting prodetermination	of the 125
			5.3.8.1 Effect of As concentrations rhizobacterial IAA production	on 125
			5.3.8.2 Effect of As concentrations on bar phosphate solubilization	acterial 129
			5.3.8.3 Effect of As concentrations rhizobacterial potassium solubilization	
			5.3.8.4 Nitrogen fixation, siderophore hydrolyzing enzyme production identified rhizobacteria	and 132 n of
			5.3.8.5 Summary of plant growth-pro properties of identified rhizobacteria	at 300
		5.3.9	mg L ⁻¹ and 750 mg L ⁻¹ of As concentr Biosorption ability of the identified rhizobacteria	
		3.3.9	5.3.9.1 SEM-EDX analysis	142
			5.3.9.2 TEM-EDX analysis	145
	5.4	Conclusio		145
6			PHYTOTOXICITY TEST OF ARSENIC	C ON 147
6			rpureum PLANTS	C ON 147
6	Penn	nisetum pu Introduct	rpureum PLANTS	
6	Penn 6.1	nisetum pu Introduct	ion s and methods Site description	147
6	Penn 6.1	nisetum pu Introduct Materials	rpureum PLANTS ion s and methods	147 147
6	Penn 6.1	Introduct Materials 6.2.1	ion s and methods Site description	147 147 147
6	Penn 6.1	Introduct Materials 6.2.1 6.2.2	rpureum PLANTS ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test	147 147 147 148
6	Penn 6.1	Introduct Materials 6.2.1 6.2.2 6.2.3	rpureum PLANTS ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants	147 147 147 148 148
6	Penn 6.1	Introduct Materials 6.2.1 6.2.2 6.2.3 6.2.4	rpureum PLANTS ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test	147 147 147 148 148 148 150
6	Penn 6.1	Introduct Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	rpureum PLANTS ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand	147 147 147 148 148 148 150 Plants 151
6	Penn 6.1	Introduct: Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage	147 147 147 148 148 148 150 Plants 151
6	Penn 6.1	Introduct: Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7	ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum Calorie Determination	147 147 148 148 148 150 Plants 151 ge of 151
6	Penn 6.1	Introduct: Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9	rpureum PLANTS ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum	147 147 148 148 148 150 Plants 151 ge of 151
6	Penn 6.1 6.2	Introduct: Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9	rpureum PLANTS ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum Calorie Determination Statistical Analysis	147 147 148 148 148 150 Plants 151 ge of 151 152 152
6	Penn 6.1 6.2	Introduct Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 Results at	rpureum PLANTS ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum Calorie Determination Statistical Analysis nd discussions Expression of Physical Growth of Pennipurpureum	147 147 148 148 148 150 Plants 151 ge of 151 152 152
6	Penn 6.1 6.2	Introduct Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 Results at 6.3.1	ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum Calorie Determination Statistical Analysis nd discussions Expression of Physical Growth of Pennipurpureum Physical Parameters in Treatment Sand	147 147 148 148 148 148 150 Plants 151 ge of 151 152 152 152 152 152 152 152 152
6	Penn 6.1 6.2	Introduct Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 Results at 6.3.1 6.3.2	ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum Calorie Determination Statistical Analysis nd discussions Expression of Physical Growth of Pennipurpureum Physical Parameters in Treatment Sand Bioavailable Arsenic Concentration in Treatment	147 147 148 148 148 148 150 Plants 151 ge of 151 152 152 152 152 152 152 152 152
6	Penn 6.1 6.2	Introduct Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 Results at 6.3.1 6.3.2 6.3.3	ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum Calorie Determination Statistical Analysis nd discussions Expression of Physical Growth of Pennipurpureum Physical Parameters in Treatment Sand	147 147 148 148 148 148 150 Plants 151 ge of 151 152 152 152 152 152 152 152 152 156 166 167
6	Penn 6.1 6.2	Introduct: Materials 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 Results at 6.3.1 6.3.2 6.3.3 6.3.4	ion s and methods Site description Duration of the experiment Propagation of Pennisetum purpureum plants Advanced phytotoxicity test Preparation of Arsenic containing treatment sand Determination of Arsenic in Treatment Sand and Determination of BF, TF and Percentage Translocation by P. purpureum Calorie Determination Statistical Analysis and discussions Expression of Physical Growth of Pennipurpureum Physical Parameters in Treatment Sand Bioavailable Arsenic Concentration in Treatment Arsenic concentration in P. purpureum plants Determination of BF, TF and Percentage	147 147 148 148 148 148 150 Plants 151 ge of 151 152 152 152 152 152 152 152 152 156 166 167

	6.4	Concl	usion	178
7	ARS	oureum	OPERATION AND PHYTOREMEDIATION OF IN CONSTRUCTED WETLAND USING Pennisetum AND PLANT GROWTH PROMOTING CTERIA	180
	7.1		luction	180
	7.2		rials and methods	181
		7.2.1	Site description	181
		7.2.2	Duration of the experiment	183
		7.2.3	Design of pilot reed bed	183
		7.2.4	Ratio of total plant and arsenic load in the pilot reed bed	183
		7.2.5	Propagation of P. purpureum plants	185
		7.2.6	Preparation of Arsenic containing Treatment Sand	185
		7.2.7	Phytoremediation experiments in pilot reed bed with	185
			determination of physical and Chemical Parameters of	
			Treatment sand and leachate	
		7.2.8	Determination of arsenic concentration in treatment sand and plant	186
		7.2.9	Determination of BF, TF and Percentage of	186
			Translocation by P. purpureum	
		7.2.10	Scanning Electron Microscopy (SEM) – Energy	186
			dispersive X-ray (EDX) analysis of plants	
		7.2.11	Determination of different enzymes activity	187
			7.2.11.1 Urease	187
			7.2.11.2 Acid phosphatase and alkaline phosphatase	187
			7.2.11.3 Arylsulfatase	187
			7.2.11.4 β-glucosidase	188
			7.2.11.5 Dehydrogenase	188
			7.2.11.6 Amylase	188
			7.2.11.7 Catalase	188
			7.2.11.8 Total Enzyme Activity	189
		7.2.12	2 Determination of number of bacterial populations	189
		7.2.13		189
		7.2.14	Statistical Analysis	190
	7.3	Resul	ts and discussions	190
		7.3.1	Observation of Physical Growth of P. purpureum	190
		7.3.2	Physical and Chemical Parameters in Treatment Sand and Leachate	195
		7.3.3	Arsenic Concentration in Treatment Sand and Leachate	209
		7.3.4	Arsenic concentration in P. purpureum	214
		7.3.5	SEM-EDX Analysis	218
		7.3.6	Determination of BF, TF and Percentage of Translocation	220
		7.3.7	Different enzymes activity in treatment sand in Pilot reed bed	221
			7.3.7.1 Urease	221
			7.2.7.2 Acid phosphatase and alkaline phosphatase	222

			7.2.7.3	Arylsulphatase	225
			7.3.7.4	β-glucosidase	226
			7.2.11.5	Dehydrogenase	227
			7.2.7.6	Amylase	228
			7.3.11.7	Catalase	229
			7.3.7.8	Total Enzyme Activity	231
		7.3.8		n of rhizobacteria	231
		7.3.9	Calorie V		232
		7.3.10		lass Balance	234
	7.4	Conclusio			237
8	ОРТ	IMIZATI	ON AND	PHYTOREMEDIATION OF ARSENIC IN	238
	CON	STRUCT	ED WETI	LAND USING Pennisetum purpureum AND	
	PLA	NT GROV	WTH PRO	MOTING RHIZOBACTERIA	
	8.1	Introduct	ion		238
	8.2	Materials	and metho	ds	239
		8.2.1	Site descr	i <mark>ption</mark>	239
		8.2.2	Duration	of the experiment	239
		8.2.3	Determin	ation of optimization of the phytoremediation	239
			process		
		8.2.4	Design of	pilot plant	243
		8.2.5	Addition	of Rhizobacteria Consortium	243
		8.2.6	Addition	of NPKS fertilizer	244
		8.2.7	Phytorem	ediation experiments in pilot reed bed with	246
			determina	ation of physical and Chemical Parameters of	
			Treatmen	t sand and leachate	
		8.2.8	Determin	ation of Arsenic Concentration in Treatment	246
			Sand and	Plants	
		8.2.9	Determin	ation of BF, TF and Percentage of	246
			Transloca	tion by P. purpureum	
		8.2.10	Scanning	Electron Microscopy (SEM) - Energy	246
			dispersive	X-ray (EDX) analysis of plants	
		8.2.11	Determin	ation of different enzyme activity	246
		8.2.12	Determin	ation of Population of Rhizobacteria	247
		8.2.13	Calorie D	etermination	247
		8.2.14	Statistical	Analysis	247
	8.3	Results an	nd discussion	ons	247
		8.3.1	Optimizat	tion on Phytoremediation of As using Design	248
			Expert So	oftware version 6.0.12	
		8.3.2	Comparis	on of Optimization Conditions	261
			8.3.2.1	Observation of Physical Growth of P.	261
				purpureum	
			8.3.2.2	Arsenic Concentration in Treatment Sand	277
				and Leachate	
			8.3.2.3	Arsenic concentration in <i>P. purpureum</i>	281
			8.3.2.4	Determination of BF, TF and Percentage of	293
				translocation	
			8.3.2.5	Scanning Electron Microscopy (SEM) -	294
				Energy dispersive X-ray (EDX) analysis	

		8.3.2.6	Different enzyn reed bed	nes a	ctivity	in Pilot		298
		8.3.2.7	Determination rhizobacteria	of	total	population	of	314
		8.3.2.8	Calorie value					314
	8.4	Conclusion						315
9	CO	NCLUSIONS AND R	ECOMMENDA	TIO	NS			317
	9.1	Conclusions						317
	9.2	Recommendations						319
R	EFER	ENCES						321
APPENDICES								361
Bl	ODA	TA OF STUDENT						419
LIST OF PUBLICATIONS								420

LIST OF TABLES

Table		Page
2.1	Effect of arsenic on morphological and physiological parameters of different plants	7
3.1	Amount of macro nutrients, micro nutrients and non-essential elements (mg/kg) in garden soil	30
4.1	Amount of macro nutrients, micro nutrients and non-essential elements (mg/kg) in treatment sand	44
4.2	Conversion of As (V) (mg L-1) concentration to As (V) in sand treatment (mg kg-1)	44
4.3	Expression of physical growth of <i>P. purpureum</i> during phytotoxicity test of As	50
4.4	EC50 As (V) of various plants	54
4.5	Total removal of extracted As at the time of exposure for 28 days	65
4.6	BF values of <i>P. purpureum</i> plants	69
4.7	TF values of <i>P. purpureum</i> plants	70
4.8	BF and TF of As non-accumulator, moderate accumulator and hyperaccumulator plants	71
4.9	Percentage of translocations in P. purpureum	71
4.10	Determination P. purpureum as a moderate As accumulator plant	72
5.1	Molecular markers used in bacteria identification	82
5.2	Morphological and biochemical characteristics of rhizobacterial isolates	93
5.3	Summary of the percentage of physical growth of isolated bacteria on preliminary and advanced arsenic screening test	99
5.4	Molecular identity of rhizobacteria isolated from rhizosphere zone of <i>Pennisetum purpureum</i> using 16S rRNA gene	104
5.5	Output of molecular identification of rhizobacterial isolates by using <i>16S rRNA</i> marker	106

5.6	The values of k (growth rate constant), g (generation time) and μ (special growth rate) for each species of rhizobacteria	108
5.7	Effect of Arsenic concentrations on bacterial growth (OD value and Log CFU/mL)	111
5.8	Summary of As tolerance of identified rhizobacteria at 300 and 750 mg L ⁻¹ Arsenic	115
5.9	Summary of minimum inhibitory concentration on arsenate	122
5.10	Nitrogen fixation and siderophore production of identified rhizobacteria at different concentration of arsenic	127
5.11	Cellulase and pectinase enzyme production of identified rhizobacteria at different concentration of arsenic	128
5.12	Summary of plant growth-promoting traits of identified rhizobacteria at 300 mg L ⁻¹ Arsenic	134
5.13	Summary of plant growth-promoting traits of identified rhizobacteria at 750 mg L ⁻¹ Arsenic	135
6.1	Conversion of As (V) (mg L ⁻¹) concentration to As (V) in sand treatment (mg kg ⁻¹)	150
6.2	Removal of total concentration of As at the time of exposure for 28 and 77days	167
6.3	BF values of <i>P. purpureum</i> plants	172
6.4	TF values of <i>P. purpureum</i> plants	172
6.5	BF and TF of As non-accumulator, moderate accumulator and hyperaccumulator plants	174
6.6	Percentage of translocations in P. purpureum	175
6.7	Determination of <i>P. purpureum</i> as a moderate As accumulator plant	175
7.1	Ratio between the number of <i>P. purpureum</i> plants with the As load in the pilot reed bed	184
7.2	Conversion of As concentration (mg L^{-1}) to As concentration in the treatment sand (mg kg ⁻¹) at the pilot reed bed	185
7.3	Percentage of withering effects of As (V) on P. purpureum plants	191
7.4	Removal of bioavailable As in the treatment sand (%)	211

7.5	Removal of total As in treatment sand (%)	213
7.6	Average values of BF, TF and percentage of translocation	219
7.7	BF and TF of As non-accumulator, moderate accumulator and hyperaccumulator plants	220
8.1	Number of runs using Box Behnken design	242
8.2	Criteria for selection of rhizobacteria as PGPR	245
8.3	Data for optimization	249
8.4	ANOVA for response to As concentration in P. purpureum	250
8.5	ANOVA for response to Translocation factor (TF)	250
8.6	ANOVA for response to percentage of translocation	251
8.7	ANOVA for response to percentage of arsenic uptake by P. purpureum	251
8.8	ANOVA for response to percentage of removal of bioavailable arsenic	252
8.9	ANOVA for response to percentage of removal of total extractable arsenic	252
8.10	Comparison between tests and models of each response	254
8.11	Validation run between validation test and model at optimum condition	260
8.12	The removal of bioavailable As in treatment sand (%)	278
8.13	Removal of As in leachate (%)	280
8.14	BF, TF and Percentage of translocation of <i>P. purpureum</i> plants	286
8.15	BF and TF of As non-accumulator, moderate accumulator and hyperaccumulator plants	287

LIST OF FIGURES

Figure		Page
2.1	Classification of CWs utilized in wastewater management	8
2.2	Design of Constructed Wetland	10
3.1	Length of <i>P. purpureum</i> roots and stems during propagation in garden soil	32
3.2	Total number of leaves, flowers and fruits of <i>P. purpureum</i> throughout the propagation time	32
3.3	Absolute growth rate (AGR) of P. purpureum plants	33
3.4	Wet weight of root, stem and leaf of <i>P. purpureum</i> during propagation in garden soil	34
3.5	Dry weight of root, stem and leaf of <i>P. purpureum</i> during propagation in garden soil	34
3.6	Wet and dry weight of <i>P. purpureum</i> during propagation in garden soil	35
3.7	Linear regression analysis of dry weight and wet weight of <i>P. purpureum</i> throughout the propagation using the garden soil	36
3.8	Water content in P. purpureum plants	37
3.9	Calorie value of Root, Stem, leaves and seeds of P. purpureum plant during propagation	37
3.10	Average calorie value of <i>P. purpureum</i> during propagation	38
4.1	Flow diagram of preliminary phytotoxicity test of As on <i>P. purpureum</i> plants	43
4.2	Photograph of <i>P. purpureum</i> roots after initial phytotoxicity test (a) control (b) 5 mg kg ⁻¹ As (c) 20 mg kg ⁻¹ As (d) 40 mg kg ⁻¹ As (e) 60 mg kg ⁻¹ As and (f) 80 mg kg ⁻¹ As	48
4.3	As(V) toxicity to <i>P. purpureum</i> concentration-response curve	53
4.4	Wet weight and dry weight of <i>P. purpureum</i> during preliminary phytotoxicity test	56

4.5	Relationship between dry weight and wet weight of <i>P. purpureum</i>	57
4.6	Water content in <i>P. purpureum</i> plants during preliminary phytotoxicity test of As (V)	58
4.7	Absolute growth rate (AGR) of <i>P. purpureum</i>	59
4.8	The length of the <i>P. purpureum</i> root during preliminary phytotoxicity test of As (v)	60
4.9	The length of the <i>P. purpureum</i> stem during preliminary phytotoxicity test of As (v)	61
4.10	Moisture in sand treatment during preliminary phytotoxicity test	61
4.11	pH of the treatment sand during the preliminary phytotoxicity experiments	62
4.12	The temperature of the treatment sand during the preliminary toxicity test	62
4.13	ORP of sand treatment during preliminary phytotoxicity test	63
4.14	Concentration of bioavailable As in treatment sand	64
4.15	Concentration of total As in <i>P. purpureum</i> [Section A = roots, Section B = stems and Section D = leaves]	66
4.16	Concentration of total As in entire P. purpureum	67
4.17	The total calorie value of <i>P. purpureum</i> plants after the end of the experiment (after 28 days) of preliminary phytotoxicity of As (V)	72
4.18	Mass balance flow chart of preliminary phytotoxicity test of As	73
4.19	Mass balance after 28 days of As (V) exposure	74
5.1	Flow chart of rhizobacteria study methods	78
5.2	Percentage of morphological observation	97
5.3	Amplification of 16S rRNA gene of bacteria isolates. Lane L: 10 kb DNA Ladder, Lane 1: 28N A UPM, lane 2: 28N B UPM, lane 3: 28N C UPM, lane 4: 28N D UPM, lane 5: 28N E UPM, lane 6: 28N G UPM, lane 7: 28N H UPM, lane 8: 28N I UPM, lane 9: 28N K UPM, lane 10: 28N L UPM, lane 11: 28N M UPM, lane 12: 28N N UPM, lane 13: 28N R UPM, lane 14: 28N S UPM, lane 15: 28N T UPM, lane 16: 28N U UPM and lane 17: 28N V UPM	101

5.4	Neighbor-joining analysis of bacterial sequences isolated from rhizosphere zone of <i>Pennisetum purpureum</i> based on <i>16S gene</i>	105
5.5	Graph of the growth curve of nine rizobacteria in Tryptic Soy Broth (TSB) media	107
5.6	Effect of As concentrations on rhizobacterial exopolysaccharide production	112
5.7	Effect of As concentrations on rhizobacterial biofilm formation	112
5.8	Exopolysaccharides production of 3 rhizobacteria [28N A UPM (Bacillus subtilis), 28N I UPM (Sphingobacterium thalpophilum) and 28N M UPM (Proteus mirabilis)] in 300 mg L ⁻¹ As and 6 rhizobacteria [28N H UPM (Burkholderia seminalis), 28N G UPM (Enterobacter cloacae), 28N D UPM (Pseudomonas stutzeri), 28N K UPM (Neisseria perflava), 28N S UPM (Pseudomonas boreopolis) and 28N U UPM (Bacillus australimaris)] in 750 mg L ⁻¹ As concentration under TSB medium	113
5.9	Effect of As concentrations on rhizobacterial floc yield production	114
5.10	SEM showing the arsenic-tolerance mechanism of 28N U UPM (<i>Bacillus australimaris</i>) (a) Cells were scattered in non-arsenic conditions. Under 750 mg L ⁻¹ arsenic condition bacteria produced (b) exopolysaccharide (c) floc yield and (d) biofilm	114
5.11	Effect of As concentrations on rhizobacterial IAA production	123
5.12	Effect of As concentrations on rhizobacterial phosphate solubilization	124
5.13	Effect of As concentrations on rhizobacterial potassium solubilization	125
5.14	Figure 5.23 Nitrogen fixation of 3 rhizobacteria [28N A UPM (Bacillus subtilis), 28N I UPM (Sphingobacterium thalpophilum) and 28N M UPM (Proteus mirabilis)] in 300 mg L ⁻¹ As and 6 rhizobacteria [28N H UPM (Burkholderia seminalis), 28N G UPM (Enterobacter cloacae), 28N D UPM (Pseudomonas stutzeri), 28N K UPM (Neisseria perflava), 28N S UPM (Pseudomonas boreopolis) and 28N U UPM (Bacillus australimaris)] in 750 mg L ⁻¹ As amended N-free malate medium	130
5.15	Siderophore production of 3 rhizobacteria [28N A UPM (Bacillus subtilis), 28N I UPM (Sphingobacterium thalpophilum) and 28N M UPM (Proteus mirabilis)] in 300 mg L ⁻¹ As and 6 rhizobacteria [28N H UPM (Burkholderia seminalis), 28N G UPM	131

(Enterobacter cloacae), 28N D UPM (Pseudomonas stutzeri), 28N
K UPM (Neisseria perflava), 28N S UPM (Pseudomonas
boreopolis) and 28N U UPM (Bacillus australimaris)] in 750 mg
L-1 As amended CAS agar medium

132

- 5.16 Cellulase production of 3 rhizobacteria [28N A UPM (Bacillus subtilis), 28N I UPM (Sphingobacterium thalpophilum) and 28N M UPM (Proteus mirabilis)] in 300 mg L-1 As and 6 rhizobacteria [28N H UPM (Burkholderia seminalis), 28N G UPM (Enterobacter cloacae), 28N D UPM (Pseudomonas stutzeri), 28N K UPM (Neisseria perflava), 28N S UPM (Pseudomonas boreopolis) and 28N U UPM (Bacillus australimaris)] in 750 mg L-1 As amended CMC agar medium
- 5.17 Pectinase production of 3 rhizobacteria [28N A UPM (Bacillus subtilis), 28N I UPM (Sphingobacterium thalpophilum) and 28N M UPM (Proteus mirabilis)] in 300 mg L⁻¹ As and 6 rhizobacteria [28N H UPM (Burkholderia seminalis), 28N G UPM (Enterobacter cloacae), 28N D UPM (Pseudomonas stutzeri), 28N K UPM (Neisseria perflava), 28N S UPM (Pseudomonas boreopolis) and 28N U UPM (Bacillus australimaris)] in 750 mg L⁻¹ As amended pectinase agar medium
- 5.18 Concentration of arsenic in the supernatant throughout the 24 h of exposure with individual rhizobacteria. Vertical bars indicate SD of triplicates
- 5.19 Arsenic biosorption capability of Bacillus australimaris, 139
 Burkholderia seminalis, Enterobacter cloacae, Neisseria perflava,
 Pseudomonas boreopolis, Pseudomonas stutzeri,
 Sphinaobacterium thalpophilum, Proteus mirabilis and Bacillus
 subtilis. Vertical bars indicate SD of the triplicates.
- 5.20 SEM-EDX analysis: (a) SEM of 28N U UPM (Bacillus australimaris)10000x in control and (b) SEM of 28N U UPM (Bacillus australimaris)10000x in 9000 mg L-1 As (c) As mapping of 28N U UPM (Bacillus australimaris) in control and (d) As mapping of 28N U UPM (Bacillus australimaris) in 9000 mg L-1 As (e) EDX of 28N U UPM (Bacillus australimaris) in control and (f) EDX of 28N U UPM (Bacillus australimaris) in 9000 mg L-1 As
- 5.21 TEM-EDX analysis: (a) TEM of 28N U UPM (*Bacillus australimaris*)15,000x in control (b) TEM of 28N U UPM (*Bacillus australimaris*) 20,000x in control (c) TEM of 28N U UPM (*Bacillus australimaris*) 25000x in control [Here, C= Cytoplasm, R= Ribosomes, D= Cell wall, O= Outer membrane, M= Plasma membrane, BI= Inclusion bodies and K= Chromosomes] (d) TEM of 28N U UPM (*Bacillus australimaris*)

15,000x in 9,000 mg L ⁻¹ As (e) TEM of 28N U UPM (<i>Bacillus</i>
australimaris) 20,000x in 9,000 mg L-1 As (f) TEM of 28N U
UPM (Bacillus australimaris) 25000x in 9,000 mg L-1 As (g) As
mapping of 28N U UPM (Bacillus australimaris) in control and (h)
As mapping of 28N U UPM (Bacillus australimaris) in 1500 mg
L-1 As (i) EDX of 28N U UPM (Bacillus australimaris) in control
and (j) EDX of 28N U UPM (Bacillus australimaris) in 9,000 mg
L-1 As

	L As	
6.1	Flow diagram of advanced phytotoxicity test of As on <i>P. purpureum</i> plants	149
6.2	Arrangement of plastic containers for advanced phytotoxicity tests at varying concentrations of As (V) (0, 5, 10, 20, 30, 40 and 65 mg kg ⁻¹ As)	151
6.3	Picture of senesce leaf (color change) [While all <i>P. purpureum</i> plants withered and dried at a concentration of As (V) 65 mg kg ⁻¹ from the first day until the end of the advanced phytotoxicity test.]	153
6.4	Wet weight and dry weight of <i>P. purpureum</i> during advanced phytotoxicity test	155
6.5	Relationship between dry weight and wet weight of P. purpureum	156
6.6	Absolute growth rate (AGR) of <i>P. purpureum</i>	157
6.7	The length of <i>P. purpureum</i> root during the advanced toxicity test of As	158
6.8	The length of <i>P. purpureum</i> stem during advanced phytotoxicity test of As	158
6.9	Water content in <i>P. purpureum</i> during the advanced toxicity test of As	159
6.10	Moisture in treatment sand during advanced toxicity test of As (V)	161
6.11	pH in treatment sand during the advanced phytotoxicity test of As (V)	162
6.12	The temperature in treatment sand during the advanced phytotoxicity test of As (V)	163
6.13	ORP in treatment sand during advanced phytotoxicity test of As (V)	164
6.14	Concentration of bioavailable As in treatment sand	165

6.15	Concentration of As in the parts of P . purpureum [Section A = root, Section B = stem and Section D = leaves]	169
6.16	Concentration of total As in entire <i>P. purpureum</i>	170
6.17	The total calorie value of <i>P. purpureum</i> plants after the end of the experiment (after 77 days) during advanced phytotoxicity of As (V)	176
6.18	Mass balance flow chart of Advanced phytotoxicity test of As	177
6.19	Mass balance after 77 days of As (V) exposure	178
7.1	Flow chart of As phytoremediation experiment using pilot reed bed	182
7.2	Design of non-aerated pilot reed bed	183
7.3	Design of 1 L min ⁻¹ aerated pilot reed bed	183
7.4	Design of 2 L min ⁻¹ aerated pilot reed bed	183
7.5	Root distribution of <i>Pennisetum purpureum</i> at the end (42 days) of the exposure of As (V) in (a) 39 mg kg ⁻¹ As with 25 <i>P. purpureum</i> plants in non-aerated Pilot reed bed (b) 39 mg kg ⁻¹ As with 25 <i>P. purpureum</i> plants in 1 L min ⁻¹ aerated Pilot reed bed and (c) 39 mg kg ⁻¹ As with 25 <i>P. purpureum</i> plants in 2 L min ⁻¹ aerated Pilot reed bed	191
7.6	The wet weight and dry weight of <i>P. purpureum</i> during phytoremediation of As in Pilot reed bed	192
7.7	The length of <i>P. purpureum</i> root during phytoremediation of As in Pilot reed bed	193
7.8	The length of <i>P. purpureum</i> stem during phytoremediation of As in Pilot reed bed	193
7.9	Moisture in treatment sand during phytoremediation of As in Pilot reed bed	195
7.10	pH in treatment sand during phytoremediation of As in Pilot reed bed	196
7.11	Temperature in treatment sand during phytoremediation of As in Pilot reed bed	196
7.12	ORP in treatment sand during phytoremediation of As in Pilot reed bed	197

7.13	pH in leachate during phytoremediation of As in Pilot reed bed	198
7.14	Temperature in leachate during phytoremediation of As in Pilot reed bed	198
7.15	ORP in leachate during phytoremediation of As in Pilot reed bed	199
7.16	DO in leachate during phytoremediation of As in Pilot reed bed	199
7.17	COD in leachate during phytoremediation of As in Pilot reed bed	200
7.18	Nutrients in treatment sand during phytoremediation of As in non-aerated Pilot reed bed	201
7.19	Nutrients in treatment sand during phytoremediation of As in 1 L min ⁻¹ aerated Pilot reed bed	202
7.20	Nutrients in treatment sand during phytoremediation of As in 2 L min ⁻¹ aerated Pilot reed bed	203
7.21	Nutrients in leachate during phytoremediation of As in non-aerated Pilot reed bed	204
7.22	Nutrients in leachate during phytoremediation of As in 1 L min ⁻¹ aerated Pilot reed bed	205
7.23	Nutrients in leachate during phytoremediation of As in 2 L min ⁻¹ aerated Pilot reed bed	206
7.24	Concentration of bioavailable As and total As in non-aerated treatment sand	207
7.25	Concentration of bioavailable As and the total As in treatment sand with 1 L min ⁻¹ aeration	208
7.26	Concentration of bioavailable As and the total As in treatment sand with 2 L min ⁻¹ aeration	208
7.27	Comparison of bioavailable As in non aerated and aerated treatment sand	210
7.28	Comparison of total As in non aerated and aerated treatment sand	211
7.29	Comparison of total As in lechate of non aerated and aerated treatment sand	212
7.30	As concentrations in entire P nurnuraum plant	214

7.31	SEM micrograph of <i>Pennisetum purpureum</i> plant: (a) SEM of root (b) SEM of stem (c) SEM of trichomes in leaves and (d) SEM of stomata in leaves of <i>Pennisetum purpureum</i> that growing at control (without arsenic) in non-aerated Pilot reed bed	215
7.32	SEM micrograph of <i>Pennisetum purpureum</i> plant: (e) SEM of root (f) SEM of stem (g) SEM of trichomes in leaves and (h) SEM of stomata in leaves of <i>Pennisetum purpureum</i> that growing at 2% nine-rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ arsenic treatment in non-aerated Pilot reed bed	215
7.33	EDX micrograph and As mapping of <i>Pennisetum purpureum</i> plant: (i) EDX of root (j) EDX of stem (k) EDX of leaves (l) As mapping of root (m) As mapping of stem and (n) As mapping of leaf of <i>Pennisetum purpureum</i> that growing at control (without arsenic) in non-aerated Pilot reed bed	216
7.34	EDX micrograph and As mapping of <i>Pennisetum purpureum</i> plant: (o) EDX of root (p) EDX of stem (q) EDX of leaves (r) As mapping of root (s) As mapping of stem and (t) As mapping of leaf of <i>Pennisetum purpureum</i> that growing at 2% nine-rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ arsenic treatment in non-aerated Pilot reed bed	217
7.35	Amount of urease enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	222
7.36	Amount of acid phosphatase enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	223
7.37	Amount of alkaline phosphatase enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	224
7.38	Amount of arylsulphatase enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	225
7.39	Amount of β -glucosidase enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	226
7.40	Amount of dehydrogenase enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	227
7.41	Amount of amylase enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	228
7.42	Amount of catalase enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	229

7.43	Amount of total enzyme in rhizosphere sand during phytoremediation of As in pilot reed bed	230
7.44	Total population of rhizobacteria in rhizosphere sand during phytoremediation of As in pilot reed bed	232
7.45	The total calorie value of <i>P. purpureum</i> plants	233
7.46	Mass balance of As in the pilot reed bed system at the end of the exposure	234
7.47	Mass balance of As in the pilot reed bed system at the end of the exposure	235
8.1	Flowchart of optimization and phytoremediation of As in constructed wetland using <i>P. purpureum</i> and PGPR	241
8.2	The concentration of As in <i>P. purpureum</i> during phytoremediation test for each replication of middle values	248
8.3	Comparison between test and models on As concentration in <i>P. purpureum</i> response	255
8.4	Comparison between test and models on Translocation factor (TF) response	255
8.5	Comparison between test and models on percentage of translocation response	256
8.6	Comparison between test and models on percentage of As uptake by <i>P. purpureum</i> response	256
8.7	Comparison between test and models on percentage of removal of bioavailable arsenic response	257
8.8	Comparison between test and models on percentage of removal of total extractable arsenic response	257
8.9	The relationship between the actual value and the predicted value of the concentration of As in <i>P. purpureum</i> response	258
8.10	The relationship between the actual value and the predicted value of the Translocation factor (TF) response	258
8.11	The relationship between the actual value and the predicted value of the percentage of translocation response	258
8.12	The relationship between the actual value and the predicted value of the percentage of As untake by P. purpurgum response	258

8.13	The relationship between the actual value and the predicted value of the percentage of removal of bioavailable arsenic response	258
8.14	The relationship between the actual value and the predicted value of the percentage of total extractable arsenic response	258
8.15	As concentration in <i>P. purpureum</i>	259
8.16	Translocation factor (TF) value	259
8.17	Percentage of translocation	259
8.18	Percentage of As uptake by P. purpureum	259
8.19	Percentage of removal of bioavailable arsenic	259
8.20	Percentage of removal of total extractable arsenic	259
8.21	Root distribution of <i>P. purpureum</i> during phytoremediation of As in pilot reed bed on the basis of optimization result at the end (42 days) of the exposure of As (a) Control (without As) (b) 39 mg kg ⁻¹ As (c) 2% nine rhizobacteria consortium +39 mg kg ⁻¹ As (d) 0.04% NPKS fertilizer+39 mg kg ⁻¹ As (e) 2% nine rhizobacteria consortium+0.04% NPKS fertilizer+39 mg kg ⁻¹ As	262
8.22	Wet weight and dry weight of <i>P. purpureum</i> at different treatment during phytoremediation of As in Pilot reed bed	263
8.23	Root length of of <i>P. purpureum</i> at different treatment during phytoremediation of As in Pilot reed bed	264
8.24	Stem length of of <i>P. purpureum</i> at different treatment during phytoremediation of As in Pilot reed bed	264
8.25	pH in treated sand at different treatment during phytoremediation of As in Pilot reed bed	266
8.26	Temperature in treated sand at different treatment during phytoremediation of As in Pilot reed bed	266
8.27	Moisture in treated sand at different treatment during phytoremediation of As in Pilot reed bed	267
8.28	ORP in treated sand at different treatment during phytoremediation of As in Pilot reed bed	267
8.29	pH in the leachate at different treatment during phytoremediation of As in Pilot reed bed	268

8.30	Temperature in leachate at different treatment during phytoremediation of As in Pilot reed bed	268
8.31	ORP in leachate at different treatment during phytoremediation of As in Pilot reed bed	269
8.32	DO in leachate at different treatment during phytoremediation of As in Pilot reed bed	269
8.33	COD in leachate at different treatment during phytoremediation of As in Pilot reed bed	270
8.34	Nutrients in treatment sand at control during phytoremediation of As in Pilot reed bed	271
8.35	Nutrients in treatment sand at 39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	271
8.36	Nutrients in treatment sand at 2% nine rhizobacteria consortium+39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	272
8.37	Nutrients in treatment sand at 0.04% NPKS fertilizer+39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	273
8.38	Nutrients in treatment sand at 2% nine rhizobacteria consortium+0.04% NPKS fertilizer+39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	274
8.39	Nutrients in leachate at control during phytoremediation of As in Pilot reed bed	274
8.40	Nutrients in leachate at 39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	275
8.41	Nutrients in leachate at 2% nine rhizobacteria consortium+39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	275
8.42	Nutrients in leachate at 0.04% NPKS fertilizer+39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	276
8.43	Nutrients in leachate at 2% nine rhizobacteria consortium+0.04% NPKS fertilizer+39 mg kg ⁻¹ As during phytoremediation of As in Pilot reed bed	276
8.44	Bioavailable As concentration in treatment sand	277

8.45	Comparison of bioavailable and total As concentration in the treatment sand	278
8.46	Total As concentration in leachate	280
8.47	As concentrations in whole P. purpureum	282
8.48	As concentration in the parts of P . $purpureum$ [Section A = root, Section B = stem and Section D = leaves]	283
8.49	SEM of root in control (A1), SEM of root in 39 mg kg ⁻¹ As (A2), SEM of root in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (A3), SEM of root in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (A4) and SEM of root in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (A5)	288
8.50	SEM of stem in control (B1), SEM of stem in 39 mg kg ⁻¹ As (B2), SEM of stem in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (B3), SEM of stem in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (B4) and SEM of stem in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (B5)	288
8.51	SEM of trichomes in leaves in control (C1), SEM of trichomes in leaves in 39 mg kg ⁻¹ As (C2), SEM of trichomes in leaves in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (C3), SEM of trichomes in leaves in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (C4) and SEM of trichomes in leaves in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (C5)	289
8.52	SEM of stomata in leaves in control (D1), SEM of stomata in leaves in 39 mg kg ⁻¹ As (D2), SEM of stomata in leaves in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (D3), SEM of stomata in leaves in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (D4) and SEM of stomata in leaves in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (D5)	289
8.53	As mapping of root in control (E1), As mapping of root in 39 mg kg ⁻¹ As (E2), As mapping of root in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (E3), As mapping of root in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (E4), As mapping of root in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (E5), EDX micrograph of root in control (E6), EDX micrograph of root in 39 mg kg ⁻¹ As (E7), EDX micrograph of root in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (E8), EDX micrograph of root in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (E9) and EDX micrograph of root in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (E10)	290

8.54	As mapping of stem in control (F1), As mapping of stem in 39 mg kg ⁻¹ As (F2), As mapping of stem in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (F3), As mapping of stem in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (F4) As mapping of stem in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (F5), EDX micrograph of stem in control (F6), EDX micrograph of stem in 39 mg kg ⁻¹ As (F7), EDX micrograph of stem in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (F8), EDX micrograph of stem in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (F9) and EDX micrograph of stem in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (F10)	291
8.55	As mapping of leaf in control (G1), As mapping of leaf in 39 mg kg ⁻¹ As (G2), As mapping of leaf in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (G3), As mapping of leaf in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (G4) As mapping of leaf in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (G5), EDX micrograph of leaf in control (F6), EDX micrograph of leaf in 39 mg kg ⁻¹ As (G7), EDX micrograph of leaf in 2% nine rhizobacteria consortium + 39 mg kg ⁻¹ As (G8), EDX micrograph of leaf in 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (G9) and EDX micrograph of leaf in 2% nine rhizobacteria consortium + 0.04% NPKS fertilizer + 39 mg kg ⁻¹ As (G10)	292
8.56	Amount of urease enzyme in rhizosphere sand, non-rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	295
8.57	Amount of acid phosphatase enzyme in rhizosphere sand, non-rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	297
8.58	Amount of alkaline phosphatase enzyme in rhizosphere sand, non- rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	300
8.59	Amount of arylsulphatase enzyme in rhizosphere sand, non- rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	302
8.60	Amount of β -glucosidase enzyme in rhizosphere sand, non-rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	304
8.61	Amount of dehydrogenase enzyme in rhizosphere sand, non- rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	306

8.62	Amount of amylase enzyme in rhizosphere sand, non-rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	308
8.63	Amount of catalase enzyme in rhizosphere sand, non-rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	310
8.64	Amount of total enzyme in rhizosphere sand, non-rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	312
8.65	Total bacterial population in rhizosphere sand, non-rhizosphere sand and leachate at different treatment during phytoremediation of As in Pilot reed bed	313
8.66	The total calorie value of <i>P. purpureum</i> at different treatment in Pilot reed bed	315

LIST OF ABBREVIATIONS

kg Kilogram

g Gram

μg Microgram

mL Milliliter

μL Microliter

ppm Parts per million

CFU Colony-forming unit

spp. Species

COD Chemical oxygen demand

BOD Biochemical oxygen demand

TSS Total suspended solids

TKN Total Kjeldahl nitrogen

TP Total phosphate

CO₂ Carbon dioxide

DMDSe Dimethyldiselenide

DMSe Dimethylselenide

HMs Heavy metals

As (III) Arsenic trivalent (arsenite)

As (V) Arsenic pentavalent (arsenate)

N Nitrogen

P Phosphorus

K Potassium

S Sulfur

Na Sodium

Ca Calcium

Cl Chlorine

Mg Magnesium

Ni Nickel

Cr (VI) Hexavalent chromium

Cr (III) Trivalent chromium

Pb Lead

Fe Iron

Co Cobalt

Al Aluminium

Se Selenium

Sr Strontium

US United States

UK United Kingdom

USA United States of America

pH Potential of hydrogen

mV Millivolt

< Less than

> Greater than

rpm Revolution per minute

MWH Megawatt hour

kWh Kilowatt hour

ATP Adenosine triphosphate

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

nm Nanometer

MW Molecular weight

min Minutes

EDTA Ethylenediamine tetra acetic acid

M Molar

°C Degree Celsius

PCR Polymerase Chain Reaction

mM Millimolar

bp Base pair

kb Kilobases

w/v Weight per volume

v/v Volume per volume

HNO₃ Nitric acid

H₂O₂ Hydrogen peroxide

HCl Hydrochloric acid

NaOH Sodium hydroxide

KH₂PO₄ Potassium dihydrogen phosphate

NaCl Sodium chloride

KCl Potassium chloride

Na₂HPO₄.7H₂O Sodium phosphate dibasic heptahydrate

MgSO₄ Magnesium Sulfate

FeCl₃ Ferric chloride

CaCO₃ Calcium carbonate

NaNO₃ Sodium nitrate

MgSO₄ Magnesium sulfate

KOH Potassium hydroxide

OD Optical density

NBRIP National Botanical Research Institute's phosphate growth medium

SAS Statistical analysis software

CHAPTER 1

INTRODUCTION

1.1 Research background

Arsenic (As) is a hazardous, cancer-causing, as well as widespread metalloid in the ecosystem. Owing to industrial usage, the total global arsenic production was anticipated to reach 8.61 million tons (Statista, 2023). As polluted soil, sludge, as well as sediment are the primary factors to the arsenic pollution of drinkable water, aquifers, as well as the food cycle. Arsenite (As (III)) as well as arsenate (As (V)) are the main abundant types of arsenic in environment (Pillewan et al., 2014). It is reported to reduce crop production in plants and prolonged contact to arsenic at levels more than 50 mg L⁻¹ can cause a wide array of diseases in humans, including different types of cancers, premature delivery, stillbirth, and spontaneous abortion (Beniwal, Yadav and Ramakrishna 2023). More than 140 million inhabitants in seventy countries are reportedly impacted through arsenic contamination, according to a United Nations Children's Fund (UNICEF) report in 2007. Due to this issue, there is growing awareness in using various treatment methods to get rid of arsenic from polluted water. Although it is well recognized that traditional designed treatment methods are expensive and have issues with sludge formation and disposal. It is crucial to discover onsite, decentralized, as well as ecologically safe treatment processes that are reliable, have little need for maintenance, and are inexpensive to operate.

Constructed wetlands are a reliable and economically viable natural process that have been helpful in eliminating a variety of contaminants, including arsenic (Ayangbenro and Babalola, 2017). Constructed wetlands (CWs) are artificial processes that have been created to utilize the natural processes incorporating the plants, soils, as well as related microbial populations of wetlands to help purify wastewater (Hammer, 2020). Arsenic and other metals and metalloids might be effectively removed by this technique (Buddhawong et al., 2005). Different types of plants have been found useful for phytoremediation of heavy metals in the CWs such as Pennisetum purpureum, Scirpus grossus, Ludwigia octovalvis, Melastoma malabathricum etc. (Rahman et al., 2020). Napier grass (Pennisetum purpureum) is a perennial grass, has lately gained international interest as a process for bioremediation of heavy metals (Zhang et al., 2010). Juel, Dey & Akash 2018 studied Napier grass (P. purpureum) and Indian mustard (Brassica juncea) plants grew well on tannery waste and gathered large levels of heavy metals in various areas of the plant. Yun and Ali, 2019 directed a research on Pennisetum purpureum (elephant grass) for phytoremediation of cadmium. They discovered that the maximum cadmium ion elimination percentages for both untreated as well as treated P. purpureum were 92% and 98%, respectively. Although, Napier grass is efficient in removing toxic heavy metal and nutrients. However, the capability and efficiencies of Napier grass in removing arsenic in constructed wetland is not much reported in the literature.

Recently, the probable synergies between phytoremediation including bioenergy generation have been progressively studied (Kumar et al., 2017). By using the biomass that is collected during the phytoremediation operation, it is possible to create renewable bioenergy, like biogas, while simultaneously removing hazardous toxins as well as improving the condition of the soil (Hunce et al., 2019). As 100% of the biomass is being used, this is also one of the zero-waste management concepts (Osmana et al., 2020). Due to P. purpureum has been extensively investigated and may be used as a feedstock for the manufacture of biofuels, its effectiveness for bioenergy generation cannot be disputed in this aspect (Takara and Khanal, 2015; Mohammed et al., 2019). Many investigations have been done on the process of making ethanol from P. purpureum. According to Bensah et al. (2015), when compared to other biomass kinds investigated, P. purpureum had the greatest ethanol generation of 65.1% (bamboo wood, rubber wood, Siam weed, including coconut husk). Theoretically, the highest ethanol output is 35%. Research proved that this plant is a good resource for biofuel generation (Osmana et al., 2020). Napier grass obtained as a by-product after removing of arsenic in constructed wetland and then its substantial cellulose level allowed for the production of biofuels (Takara and Khanal, 2015). Its abundant cellulose may be used as a reservoir of carbon in the synthesis of biofuels like ethanol as well as butanol (He et al., 2017).

Previously, there are various methods used to get rid of that pollution from the environment. Amongst the approaches, phytoremediation is a green and an awful lot convincing device for clean-up of arsenic. Nevertheless, the implementation of phytoremediation in polluted places is constrained by dual major issues as for example i) Slow and steady expansion rate at stronger heavy metals polluted places and ii) Systemic absorption of heavy metals. This situation will be minimized and hasten the phytoremediation effectiveness by integrating the latent rhizobacteria as a complementary method. For this reason, to remove arsenic from environment rhizobacteria assisted phytoremediation of arsenic in Constructed wetland (CW) are very important at this moment. Plant growth promoting rhizobacteria (PGPR) assisted phytoremediation in CW is a system utilized to eliminate ecological pollutants from the environment and utilized the biological mechanisms inherent in microbes and plants eradicated harmful contaminants and restored the ecosystem to its original state (Ayangbenro and Babalola, 2017). Additionally, constructed wetlands are designed to mimic natural chemical, microbiological, and physical methods. The process is dependent on 3 factors: contact with soil microorganisms or rhizobacteria, chemical as well as physical properties of the reed bed, along with the identity of the plant itself.

PGPR is a set of bacteria that can be obtained in the rhizosphere (Ahmad et al., 2008). Soil rhizobacteria may also have a direct influence on metal dissolvability through affecting the speciation of heavy metals in the root zone, as well as metal bioavailability through modifying their chemical characteristics (Jing et al., 2007). Due to the absence of beneficial microorganisms, polluted soils are frequently lacking in nutrients. Nevertheless, such soils may be rendered nutrient-rich through introducing metal-resistant microorganisms, particularly PGPR, which not only offer critical nutrients to plants, but also enable plants to extract heavy metals, which can then be used in agricultural production or phytoremediation of polluted soil.

The interactions between plant and rhizobacteria have widely been applied in farming activities by providing plant with nitrogen sources and thus stimulate plant growth. This relationship has been applied in heavy metal contaminated soils to enhance soil fertility and to increase bioavailability of the metals through nitrogen fixation along with generation of the plant growth promoting factors like generation of carboxylic acid, solubilize insoluble phosphate, siderophores, indole acetic acid including 1-aminocyclopropane-1-carboxylate deaminase. However, the mechanisms of PGPR from Napier grass in assisting arsenic (As) uptake has never been studied. Therefore, in this study, PGPR will be isolated and characterized from Napier grass rhizosphere environment in constructed wetland. The functions and mechanisms of isolated rhizobacteria to enhance arsenic uptake will be investigated.

1.2 Problem statement

Amongst the Potentially toxic elements (PTEs), Arsenic (As) was identified as one of the most extremely hazardous as well as cancer causing chemicals (Niazi et al., 2017; Mehmood et al., 2017). Arsenic along with its components were classified as a category 1 human carcinogens by the US Environmental Protection Agency including the International Agency for Research on Cancer (Niazi et al., 2018). As species are harmful to the humans, animals and plant varieties (Quaghebeur and Rengel, 2005). As poisoning in both groundwater including soil has considered a major health along with ecological issue around the globe, particularly in South as well as Southeast Asia (Podgorski et al., 2017; Beniwal, Yadav and Ramakrishna 2023). As levels in drinkable water in certain emerging countries, such as Bangladesh, India, as well as China, surpass requirements for human health safety, resulting in significant toxicity including probably death (Srivastava et al., 2012).

Previously, there are various methods used to remediate arsenic from the environment. These include physical, chemical and biological methods. These are overpriced, environmentally not so safe and inadequate in performance but we need to find out such method which is being aesthetically pleasing, sustainable, environmentally friendly, easy to operate and economically viable. So, an importance has been averted development of another technologies, like PGPR phytoremediation, which uses various living organisms and plants for the elimination of toxic metals and covers all the aforesaid side. Besides, by removing arsenic from the soil, it will be possible to protect the health of the soil; crops will be conserved from the phytotoxic effect of arsenic; production of crops will be enhanced as well as prevent the entry of arsenic in our food chain. Continuation of this study will make it possible to grow arsenic free crops in healthy soil. As a result, overall ecosystem will be protected and food security will be ensured.

There have been very few studies on the elimination of heavy metals including various pollutants utilizing exclusively *P. purpureum*, but no research has been done yet on arsenic removal in constructed wetland utilizing *P. purpureum* and plant growth promoting rhizobacteria that were the novelty of my research.

1.3 Objectives

- 1. To determine the maximum concentration of As that *P. purpureum* can survive and assess the capability of As uptake through preliminary and advanced phytotoxicity test for phytoremediation application.
- 2. To isolate, screen, identify and characterize the As resistant PGPR from *P. purpureum* and determine their capability for biosorption of As.
- 3. To design, operate and assess the capability of arsenic uptake with different rate of aeration in CW using *P. purpureum* and PGPR.
- 4. To optimize some factors (As loading, retention time including rate of aeration) and determine the effects of applying PGPR consortium, NPKS fertilizers as well as PGPR consortium including NPKS fertilizers together on the growth of *P. purpureum* and phytoextraction of As in CW.

REFERENCES

- Abbasi, S., Lamb, D., Rahman, M. A., Naidu, R., & Megharaj, M. (2021). Response of phosphorus sensitive plants to arsenate. *Environmental Technology & Innovation*, 24, 102008.
- Abedon ST (1999). Chapter: Growth and culturing of bacteria. http://www.mansfield.ohio-state.edu/~sabedon/black06.htm.
- Abou-Shanab RA, Ghozlan H, Ghanem K, Moawad H (2005). Behavior of Bacterial Popultions Isolated from Rhizosphere of Diplachne fusc dominant in Industrial Sites. *World J. Microbiol. Biotechnol.* 21: 1095–1101.
- Abou-Shanab, R.A, Van Berkum, P., & Angle, J.S. (2007b). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gramnegative bacteria present in Ni-rich serpentine soil and in the rhizosphere of *Alyssum murale*. *Chemosphere* 68: 360-367.
- Achour, A.R., Bauda, P., Billard, P., (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. *Res. Microbiol.* 158 (2), 128–137.
- Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. *Soil biology and biochemistry*, 33(7-8), 943-951.
- Adriano, D.C. (1986). Trace elements in the terrestrial environment. New York: Springer.
- Agency for Toxic Substances and Disease Registry (ATSDR) (2007). CERCLA Priority List of Hazardous Substances. U.S. Department of Health and Human Services. Atlanta, GA (http://www.atsdr.cdc.gov/cercla/07list.html. (Ulaşılma Tarihi: 20.02.2012).
- Agnihotri, P., Banerjee, S., Maitra, M., & Mitra, A. K. (2021). Isolation, characterization and identification of an As (V)-resistant plant growth promoting bacteria for potential use in bioremediation. *APST*, 26(02).
- Ahemad M. Implications of bacterial resistance against heavy metals in bioremediation: A review. *IIOAB J.* (2012); 3: 39-46.
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. *Microbiol. Res.* (2008), 163, 173–181.
- Akkajit, P. & Tongcumpou, C. (2010). Fractionation of metals in cadmium contaminated soil: relation and effect on bioavailable cadmium. *Geoderma* 156: 126-132.

- Aksorn, E. & Visoottiviseth, P. (2004). Selection of Suitable Emergent Plants for Removal of Arsenic from Arsenic Contaminated Water. Science Asia 30: 105-113.
- Al-Baldawi, I.A., Abdullah, S.R.S., Anuar, N., Suja, F., Mushrifah, I., 2015. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using *Scirpus grossus*. Ecol. Eng. 74, 463–473. https://doi.org/10.1016/j.ecoleng.2014.11.007.
- Al-Baldawi, I.A.W.; Abdullah, S.R.S.; Hasan, H.A.; Suja, F.; Anuar, N.; Mushrifah, I. Optimized conditions for phytoremediation of diesel by *Scirpus grossus* in horizontal subsurface flow constructed wetlands (HSFCWs) using response surface methodology. *J Environ Manage*, (2014), 140, 152–159. [CrossRef]
- Alori ET, Babalola OO. Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol. 2018; 9:2213.
- Alvarez-Benedí, J., Bolado, S., Cancillo, I. Calvo, C. & García-Sinovas, D. (2005). Adsorption—Desorption of Arsenate in Three Spanish Soils. *Vadose Zone Journal* 4(2): 282-290.
- Anderson, W. F., Dien, B. S., Brandon, S. K. & Peterson, J. D. (2007). Assessment of Bermuda grass and bunch grasses as feedstock for conversion to ethanol. Biotechnology for Fuels and Chemicals. *ABAB Symposium (Part A: Enzyme Engineering and Biotechnology)*. Humana Press 2007:13-21.
- Andrade, H.M.; Oliveira, J.A.; Farnese, F.S.; Ribeiro, C.; Silva, A.A.; Campos, F.V.; Neto, J.L. Arsenic toxicity: Cell signalling and the attenuating effect of nitric oxide in *Eichhornia crassipes*. Biol. Plant. 2016, 60, 173–180. [CrossRef]
- Anon. (2010a). http://encyclopedia.thefreedictionary.com/Biomass+(ecology) [22 Mei 2010].
- Ansari, M. I., & Malik, A. (2007). Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. *Bioresource technology*, 98(16), 3149-3153.
- Arif, S., Shahzad, S.M., Yasmeen, T., Riaz, M., Ashraf, M., Ashraf, M.A., Mubarik, M.S., Kausar, R., (2017). In: Naeem, M., et al. (Eds.), Improving Plant Phosphorus (P) Acquisition by Phosphate-Solubilizing Bacteria. Springer International Publishing AG. Essential Plant Nutrients, pp. 513–556.
- Armendariz, A. L., Talano, M. A., Oller, A. L. W., Medina, M. I., & Agostini, E. (2015). Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. *Journal of Environmental Sciences*, 33, 203-210.
- Armendariz, A.L.; Talano, M.A.; Travaglia, C.; Reinoso, H.; Oller AL, W.; Agostini, E. Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol. Biochem. 2016, 98, 119–127. [CrossRef]

- Arnetoli, M., Vooijs, R., ten Bookum, W., Galardi, F., Gonnelli, C., Gabbrielli, R., ... & Verkleij, J. A. (2008). Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration. *Environmental Pollution*, 152(3), 585-591.
- ATSDR. (2007). Available online: www.atsdr.cdc.gov/cercla/07list.html (accessed on 27 April 2012).
- Babu AG, Kim JD, Oh BT. (2013). Enhancement of heavy metal phytoremediation by *Alnus firma* with endophytic *Bacillus thuringiensis* GDB-1. *Journal of Hazardous Materials* 250–251:477–483.
- Badri DV, Weir TL, Lelie DV, Vivanco JM (2009). Rhizosphere chemicals dialogues: plant-microbe interaction. *Curr. Opin. Biotechnol.* 20 (6): 642-650.
- Bagga, D.K. & Peterson, S. (2001). Phytoremediation of arsenic-contaminated soil as affected by the chelating agent CDTA and different levels of Soil pH. *Remediation Journal* 12: 77-85.
- Bailey, Regina. (2021, February 17). Phases of the Bacterial Growth Curve. Retrieved from https://www.thoughtco.com/bacterial-growth-curve-phases-4172692.
- Ball, S. (2007). Leadership of academics in research. *Educational Management Administration & Leadership*, 35(4), 449-477.
- Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. *J Environ Sci Health* A 46:1736-1747.
- Banerjee, Manas, Ranjan, Yesmin, Laila, (2011). Sulfur-oxidizing Plant Growth Promoting Rhizobacteria for Enhanced Canola Performance. Patern no: EP2239318.
- Barber, S.A. (1984). Soil Nutrient bioavaibility a mechanistic approach. John Willey & Sons, Inc.
- Beauvais, A., Latge, J.P., (2018). Special issue: fungal cell wall. J. Fungi. 4, 91.
- Beniwal, R., Yadav, R., & Ramakrishna, W. (2023). Multifarious effects of arsenic on plants and strategies for mitigation. *Agriculture*, 13(2), 401.
- Bensah, E. C., Kádár, Z., & Mensah, M. Y. (2015). Ethanol Production from Hydrothermally-Treated Biomass from West Africa. *Bioresources* 10(4):6522-6537.
- Beolchini, F., Rocchetti, L. & Dell'Anno, A. (2011). Kinetic modeling of bioremediation processes applied to marine sediments. *Proceedings of Chemical Engineering Transaction, ICheaP-10, 10th International Conference on Chemical and Process Engineering.* Florence, Italy, hlm. 1039-1044.

- Bercu, R., (2007). Variation in the anatomy of the vascular system of *Asplenium trichomanes-ramosum* L. *Nat. Montenegr. Podgor.* 6, 9–17.
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. *Talanta* (2008), 76, 965–977. [CrossRef]
- Bhati, R., Sreedharan, S. M., & Singh, R. (2021). Deciphering the Multi-Dimensional Abilities of Indigenous Bacteria *Enterobacter Cloacae* Isolated from Arsenic Contaminated Industrial Sites.
- Bjorkman, O. & B. Demming. (1987). Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origin. *Planta* 170: 489–504.
- Blanca, M., Thijs, S., Lobo, M.C., Weyens, N., Ameloot, M., Vangronsveld, J., Perez-Sanz, A., (2017). Cultivar and metal-specific effects of endophytic bacteria in *Helianthus tuberosus* exposed to Cd and Zn. *Int. J. Mol. Sci.* 18, 2026.
- Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., MartínezEstevez, M., (2017). Aluminum, a friend or foe of higher plants in acid soils. *Front. Plant Sci.* 8, 363–369. https://doi.org/10.3389/fpls.2017.01767.
- Bondada, B.R. & Ma, L.Q. (2003). Chapter 28: Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese, Brake Fern (*Pteris Vittata* L.). Dlm. S. Chandra & M. Srivastava (pnyt.), *Pteridology In The New Millennium*, hlm. 397-420. Kluwer Academic Publishers.
- Botes, E., Van Heerden, E., & Litthauer, D. (2007). Hyper-resistance to arsenic in bacteria isolated from an antimony mine in South Africa: research in action. *South African Journal of Science*, 103(7), 279-281.
- Branco, R., Chung, A.P., Morais, P.V., (2008). Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic resistant strain Ochrobactrum tritici SCII24^T. *BMC Microbiol*. 8, 95.
- Bratbak, G. & Dundas, I. (1984). Bacterial dry matter content and biomass estimations. *Applied Environmental Microbiology* 755-757.
- Braud, A., Jezequel, K., Bazot, S., Lebeau, T., (2009). Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore- producing bacteria. *Chemosphere* 74, 280–286.
- Brettar, I., Christen, R. and Hofle, M.G. (2002). *Rheinheimera baltica* gen. nov., sp. nov., a blue-colored bacterium isolated from the central Baltic Sea, *Int. J. Syst. Evol. Microbiol.*, 52: 1851–1857.

- Buddhawong, S., Kuschk, P., Mattusch, J., Wiessner, A., & Stottmeister, U. (2005). Removal of arsenic and zinc using different laboratory model wetland systems. *Engineering in Life Sciences*, 5(3), 247-252.
- Buhari, M. L., Sulaiman, B. R., Vyas, N. L., Sulaiman, B. & Harisu, U. Y. (2016). Role of Biotechnology in Phytoremediation. *Journal of Bioremediation & Biodegradation* 7: 330.
- Burdass, D., & Hurst, J. (2002). Rhizobium, root nodules and nitrogen fixation. In *Society for general microbiology* (Vol. 16, pp. 1-4).
- Busman, L., Lamb, J., Randall, G., Rehm, G., & Schmitt, M. (2002). Phosphorus in the agricultural environment: the nature of phosphorus in soils. University of Minnesota, Minneapolis.
- Cai, L., Liu, G., Rensing, C., & Wang, G. (2009). Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. *BioMed Central Microbiology* 9(4): 1-11.
- Cai, Y., Su, J., & Ma, L. Q. (2004). Low molecular weight thiols in arsenic hyperaccumulator *Pteris vittata* upon exposure to arsenic and other trace elements. *Environmental Pollution*, 129(1), 69-78.
- Cakmakci R, Donmez MF, Erdoan U (2007). The Effect of Plant Growth Promoting Rhizobacteria on Barley Seedling Growth, Nutrient Uptake, Some Soil Properties, and Bacterial Counts. *Turk. J. Agric.* 31: 189-199.
- Calheiros, C.S.C.; Quitério, P.V.B.; Silva, G.; Crispim, L.F.C.; Brix, H.; Moura, S.C.; Castro, P.M.L. Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. *J. Environ. Manag.* (2012), 95, 66–71. [CrossRef] [PubMed]
- Cao, H., Jianga, Y., Chena, J., Zhanga, H., Huanga, W. & Zhanga, L.L.W. (2009). Arsenic accumulation in *Scutellaria baicalensis* Georgi and its effects on plant growth and pharmaceutical components. *Journal of Hazardous Materials* 171: 508-513.
- Cao, Q., Hu Q.H., Baisch, C., Khan, S. & Zhu, Y.G. (2009). Arsenate toxicity for wheat and lettuce in six Chinese with different properties. *Environmental Toxicology and Chemistry* 28(9): 1946-1950.
- Cao, Q., Hu, Q.H., Khan, S., Wang, Z.J., Lin, A.J., Du, X. & Zhu, Y.G. (2007). Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. *Journal of Hazardous Materials* 148: 377-382
- Cardoso, J.A.; Pineda, M.; de la Cruz Jiménez, J.; Vergara, M.F.; Rao, I.M. Contrasting strategies to cope with drought conditions by two tropical forage C4 grasses. *AoB Plants* (2015), 7, plv107. [CrossRef] [PubMed]

- Carlin, A., Shi, W., Dey, S., Rosen, B.P., (1995). The ars operon of Escherichia coli confers arsenical and antimonial resistance. *J. Bacteriol.* 177 (4), 981–986.
- Carlos, M.H.J., Stefani, P.V.Y., Janette, A.M., Melani, M.S.S., Gabriela, P.O., (2016). Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. *Microbial res.* 188 189, 53–61.
- Caselles-Osorio, A.; García, J. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. *Sci. Total Environ.* (2007), 378, 253–262. [CrossRef]
- Casida, L. E. J., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. *Soil Science*, 98(6), 371-376.
- Cassan, F., Vanderleyden, J., Spaepen, S., (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. *J. Plant Growth Regul.* 33, 440–459.
- Cavalca, L., Zanchi, R., Corsini, A., Colombo, M., Romagnoli, C., Canzi, E. and Andreoni, V. (2010). Arsenic-resistant bacteria associated with roots of the wild *Cirsium arvense* (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics, *Syst. Appl. Microbiol.*, 33: 154–164.
- Chandrakar, V.; Naithani, S.C.; Keshavkant, S. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia 2016, 71, 367–377.
- Chandraprabha, M. N., & Natarajan, K. A. (2011). Mechanism of arsenic tolerance and bioremoval of arsenic by *Acidithiobacilus ferrooxidans*. *Journal of Biochemical Technology*, 3(2), 257-265.
- Chaturvedi, I. (2006). Effects of arsenic concentrations on growth and arsenic uptake and accumulation by rice (*oryza sativa*) genotypes. *Electronic Journal of Environmental, Agricultural and Food Chemistry EJEAFChe*, 5(5):1546-1552.
- Chauhan, N.S., Ranjan, R., Purohit, H.J., Kalia, V.C., Sharma, R., (2009). Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. *FEMS Microbiol. Ecol.* 67 (1), 130–139.
- Chen, Z., Zhu, Y. G., Liu, W. J., & Meharg, A. A. (2005). Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. *The New Phytologist*, 165(1), 91–97. https://doi.org/10.1111/j.1469-8137.2004.01241.x
- Cheng, Y. Forage breeding in Taiwan-Review. *Asian Australas. J. Anim.Sci.* (1991), 4, 203–209. [CrossRef]

- Cheraghi, M., Lorestani, B., Khorasani, N., Yousefi, N., Karami, M., (2011). Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. *Biol. Trace Elem. Res.* 144, 1133–1141.
- Chitpirom, K., Akaracharanya, A., Tanasupawat, S., Leepipatpibooim, N., & Kim, K. W. (2009). Isolation and characterization of arsenic resistant bacteria from tannery wastes and agricultural soils in Thailand. *Annals of microbiology*, 59(4), 649-656.
- Chookietwattana, K., & Maneewan, K. (2012). Screening of efficient halotolerant phosphate-solubilizing bacterium and its effect on promoting plant growth under saline conditions. *World Applied Sciences Journal*, 16(8), 1110-1117.
- Choudhary, D.K., Varma, A., (2016). Microbial-Mediated Induced Systemic Resistance in Plants. Springer.
- Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. (1985). Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. *Journal of Clinical Microbiology*, 22(6), 996-1006.
- Clarridge III, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. *Clinical microbiology reviews*, 17(4), 840-862.
- Compant S, Clément C, Sessitsch A (2010). Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. *Soil Biol. Biochem.* 42: 669-678.
- Costa, O.Y.A., Raaijmakers, M., Kuramae, E.E., (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. *Front. Microbiol.* 9, 1636.
- Couselo, J. L., Corredoira, E., Vieitez, A. M., & Ballester, A. (2012). Plant Tissue Culture of Fast-Growing Trees for Phytoremediation Research. *In Plant Cell Culture Protocols*. Humana Press, Totowa, Nj. 247-263.
- Cui, L.; Ouyang, Y.; Lou, Q.; Yang, F.; Chen, Y.; Zhu, W.; Luo, S. Removal of nutrients from wastewater with *Canna indica* L. under different vertical-flow constructed wetland conditions. *Ecol. Eng.* (2010), 36, 1083–1088. [CrossRef]
- Cutts, G. S., Webster, T. M., Grey, T. L., Vencill, W. K., Lee, R. D., Tubbs, R. S. & Anderson, W. F. (2011). Herbicide effect on Napier grass (*Pennisetum purpureum*) control. *Weed science* 59(2):255-262.
- Dahmani-Muller, H., van Oort, F., Gelie, B. & Balabane, M. 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. *Environmental Pollution* 109: 231-238.

- Damodaran, T., Sah, V., Rai, R. B., Sharma, D. K., Mishra, V. K., Jha, S. K., & Kannan, R. (2013). Isolation of salt-tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth promoting rhizobacteria (PGPR) and growth vigor in tomato under sodic environment. *African Journal of Microbiology Research*, 7(44), 5082-5089.
- Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. *Frontiers in environmental science*, 2, 53.
- Das, S., Jean, J. S., Kar, S., & Chakraborty, S. (2013). Effect of arsenic contamination on bacterial and fungal biomass and enzyme activities in tropical arsenic-contaminated soils. *Biology and fertility of soils*, 49(6), 757-765.
- de Souza, L.T., Cambraia, J., Ribeiro, C., de Oliveira, J.A., da Silva, L.C., (2016). Effects of aluminum on the elongation and external morphology of root tips in two maize genotypes. *Bragantia* 75, 19–25. https://doi.org/10.1590/1678-4499.142.
- Del Rio, L.A., Sandalio, L.M., Altomare, D.A., Zilinskas, B.A., (2003). Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. *J. Exp. Bot.* 54, 923–933.
- Dennis, K., (2002). Leaftrichome, http://www.astrographics.com/GalleryPrintsIndex/GP2023.html (accessed 05.07.12).
- Deriase SF, El-gendy NS. Mathematical Correlation between Microbial Biomass and Total Viable Count for Different Bacterial Strains used in Biotreatment of Oil Pollution. *Biosci. Biotechnol. Res.* Asia, (2014);11(April):61–65.
- Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. *Biotechnol Res* 10: 1-7.
- Dixit, G.; Singh, A.P.; Kumar, A.; Mishra, S.; Dwivedi, S.; Kumar, S.; Trivedi, P.K.; Pandey, V.; Tripathi, R.D. Reduced arsenic accumulation in rice (*Oryza sativa* L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol. Biochem. 2016, 99, 86–96. [CrossRef]
- Diz, D.A. Breeding Procedures and Seed Production Management in Pearl millet × Elephant grass Hexaploids Hybrids. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1994.
- Dradrach, A., Karczewska, A., Szopka, K., & Lewińska, K. (2020). Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. *International journal of environmental research and public health*, 17(9), 3342.

- Drewniak L, Styczek A, Majder-Lopatka M, Skłodowska A (2008). Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. *Environ. Pollut.* 156 (3): 1069-1074.
- Drzewiecka, D. (2016). Significance and roles of Proteus spp. bacteria in natural environments. *Microbial ecology*, 72(4), 741-758.
- Dubourg, G.; Raoult, D.; Fenollar, F. Emerging Methodologies for Pathogen Identification in Bloodstream Infections: An Update. Expert Rev. Mol. Diagn. (2019), 19, 161–173. [CrossRef]
- Duester, L., Van Der Geest, H. G., Moelleken, S., Hirner, A. V., & Kueppers, K. (2011). Comparative phytotoxicity of methylated and inorganic arsenic-and antimony species to *Lemna minor*, *Wolffia arrhiza* and *Selenastrum capricornutum*. *Microchemical Journal*, 97(1), 30-37.
- Dunivin TK, Yeh SY, Shade A (2019) A global survey of arsenic-related genes in soil microbiomes. *BMC biol* 17:1-17.
- Dwire, K.A.; Kauffman, J.B.; Baham, J.E. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows. *Wetlands* (2006), 26, 131–146. [CrossRef]
- Eivazi, F., & Tabatabai, M. (1977). Phosphatases in soils. Soil Biology and Biochemistry, 9(3), 167-172.
- Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. *Soil Biology and Biochemistry*, 20(5), 601-606.
- Enebe MC, Babalola OO. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbio Biotechnol. 2018; 102:7821–35.
- Esteban, E., Moreno, E., Penalosa, J., Cabrero, I., Millan, J.R., & Zornoza, P. (2008). Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicator. *Environmental Experimental Botany* 62: 316-322.
- Faisal, M. & Hasnain, S. (2006). Growth stimulatory effect of *Ochrobactrum intermedium* and *Bacillus cereus* on *Vigna radiata* plants. *Letter of Applied Microbiolology* 43: 461-466.
- Fang, L., Wei, X., Cai, P., Huang, Q., Chen, H., Liang, W. and Rong, X. (2011). Role of extracellular polymeric substances in Cu(II) adsorption on *Bacillus subtilis* and *Pseudomonas putida*, *Bioresour*. *Technol.*, 102: 137–141.
- Farago, M.E., Kavanagh, P.J., Leite, M.J., Mossom, J., Sawbridge, G. & Thornton, I. (2003). Uptake of arsenic by plants in Southwest England. *Biogeochemistry of Environmentally Important Trace Element* 835: 115-127.

- Fardeau, S., Mullie, C., Dassonville-Klimpt, A., Audic, N., Sonnet, P., (2011). Bacterial iron uptake: a promising solution against multidrug resistant bacteria. *In: Science against Microbial Pathogens: Communicating Current Research and Technological Advances*, pp. 695–705.
- Fasusi, O. A., Babalola, O. O., & Adejumo, T. O. (2023). Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability. *CABI Agriculture and Bioscience*, 4(1), 26.
- Fellet, G., Marchiol, L., Perosa, D. & Zerbi, G. (2007). The application of phytoremediation technology in a soil contaminated by pyrite cinders. *Ecological Engineering* 31(3): 207-214.
- Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. *evolution*, 39(4), 783-791.
- Ferreira, S.C.; Bruns, R.; Ferreira, H.; Matos, G.; David, J.; Brandao, G.; da Silva, E.P.; Portugal, L.; Dos Reis, P.; Souza, A. Box-Behnken design: An alternative for the optimization of analytical methods. *Anal. Chim. Acta* (2007), 597, 179–186. [CrossRef] [PubMed]
- Fitz WJ, Wenzel WW (2002). Arsenic transformations in the soil rhizosphere-plant system: fundamentals and potential application to phytoremediation. *J. Biotechnol.* 99 (3): 259-278.
- Francis, F.; Sabu, A.; Nampoothiri, K.M.; Ramachandran, S.; Ghosh, S.; Szakacs, G.; Pandey, A. Use of response surface methodology for optimizing process parameters for the production of a-amylase by Aspergillus oryzae. *Biochem. Eng. J.* (2003), 15, 107–115. [CrossRef]
- García, J.; Aguirre, P.; Barragán, J.; Mujeriego, R.; Matamoros, V.; Bayona, J.M. Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. *Ecol. Eng.* (2005), 25, 405–418. [CrossRef]
- García, J.; Aguirre, P.; Mujeriego, R.; Huang, Y.; Ortiz, L.; Bayona, J.M. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater. *Water Res.* (2004), *38*, 1669–1678. [CrossRef] [PubMed]
- Gardner, F.P., Pearce, R.D. & Mitchell, R.L. (2003). *Physiology of crop plant*. Edisi ke-2. Iowa State University Press.
- Gaur, A., & Yadav, S. (2023). Speciation of Arsenic in Environment: Biotransformation and Techniques. Arsenic Toxicity Remediation: Biotechnological Approaches, 15-41.
- Ginneken, L.V., Meers, E., Guisson, G., Ruttens, A., Elst, K., Tack, F.M., Vangronsveld, J., Ludo Diels, L. & Dejonghe W. (2007). Phytoemediation for heavy metal-contaminated soil combined with bioenergy production. *Journal of Environmental Engineering and Landscape Management* 15(4): 227-236.

- Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. *Biotechnology* advances, 28(3), 367-374.
- Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., & McConkey, B. (2007). Promotion of plant growth by bacterial ACC deaminase. *Critical Reviews in Plant Sciences*, 26(5-6), 227-242.
- Gonzaga MIS, Santos JAG, Ma LQ (2006). Arsenic phytoextraction and hyperaccumulation by fern species. *Sci. Agric*. (Piracicaba, Braz.). 63(1): 90-101.
- Goswami, D., Thakker, J.N., Dhandhukia, P.C., (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. *Cogent Food Agric* 2, 1127500.
- Greenberg, B.M, Huang, X.D., Glick, B.R. (2012). A multi-process phytoremediation system for decontamination of soils and its application to alleviating crops plant stess. http://www.science.uwaterloo.ca/~greenber/project/phytorem04.htm [20 Jun 2012].
- Grosskinsky, D.K., van der Graaff, E., Roitsch, T., (2014). Abscisic acid cytokinin antagonism modulates resistance against *Pseudomonas syringae* in Tobacco. Phytopathology 104, 1283–1288 (growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii, *Sci. Total*).
- Gu, Y., Wang, Y., Sun, Y., Zhao, K., Xiang, Q., Yu, X., ... & Chen, Q. (2018). Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from *Pteris vittata*, an arsenic hyperaccumulator. *BMC microbiology*, 18(1), 1-10.
- Guibaud, G., van Hullebusch, E., Bordas, F., (2006). Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges, pH-sorption edge tests and mathematical equilibrium modeling. *Chemosphere* 64 (11), 1955–1962.
- Gulz, P.A. 2002. Arsenic uptake of common crop plants from contaminated soils and interaction with phosphate. Disertasi The Swiss Federal Institute of Technology Zurich for The Degree of Doctor of Natural Science, Swizertland.
- Gupta, P., Rani, R., Chandra, A., Kumar, V., (2018). Potential applications of *Pseudomonas* sp. (strain CPSB21) to ameliorate Cr6b stress and phytoremediation of tannery effluent contaminated agricultural soils. *Sci. Rep.* 8, 4860.
- Halim, R. A., Shampazuraini, S., and Idris, A. B. (2013). Yield and nutritive quality of nine Napier grass varieties in Malaysia. *Malaysian Journal of Animal Production*, 16, 37-44.
- Hall, T.A. (2010). BioEdit, version 7.2.5th ed. for Windows 95/98/NT. Carlsbad, California.

- Hammer, D. A. (Ed.). (2020). Constructed wetlands for wastewater treatment: municipal, industrial and agricultural. CRC Press.
- Hamza, M., Alam, S., Rizwan, M., & Naz, A. (2022). Health Risks Associated with Arsenic Contamination and Its Biotransformation Mechanisms in Environment: A Review. Hazardous Environmental Micro-pollutants, Health Impacts and Allied Treatment Technologies, 241-288.
- Hamzah A, Hapsari RI, Wisnubroto EI. Phytoremediation of Cadmium-contaminated agricultural land using indigenous plants. *Int J Environ Agric Res (IJOEAR)*, (2016), 2: 2454-1850.
- Han, F.X.; Su, Y.; Monts, D.L.; Plodinec, M.J.; Banin, A.; Triplett, G.E. Assessment of global industrial-age anthropogenic arsenic contamination. *Naturwissenschaften* (2003), 90, 395–401. [CrossRef]
- Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., (2017). Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. *Environ. Sci. Technol.* 51, 3233–3241.
- Hardjowigeno, S. (2007). *Evaluasi kesesuaian lahan dan perencanaan tataguna lahan*. Gama Press, Yogyakarta.
- Harley JP, Prescott LM (2002). Laboratory Exercises in Microbiology. Fifth Edition. The McGraw-Hill Companies.
- Hartley, W. & Leep, W.N. (2008). Remediation of arsenic contaminated soils by ironoxide application evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. *Science of The Total Environment* 390: 3-44.
- Hasan, H.A.; Abdullah, S.R.S.; Kamarudin, S.K.; Kofli, N.T. Response surface methodology for optimization of simultaneous COD, NH₄ C–N and Mn2C removal from drinking water by biological aerated filter. *Desalination* (2011), 275, 50–61. [CrossRef]
- He, C. R., Kuo, Y. Y. & Li, S. Y. (2017). Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation. *Bioresource Technology* 231:101-108.
- Hillis, D. M. and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Systematic biology*, 42(2), 182-192.
- Hoffman, B.M., Lukoyanov, D., Yang, Z.Y., Dean, D.R., Seefeldt, L.C., 2014. Mechanism of nitrogen fixation by nitrogenase: the next stage. *Chem. Rev.* 114, 4041–4062.

- Holt JG, Krieg NR, Sneath PHA, Staley, JT, Williams ST (2000). Bergey's manual of determinative bacteriology. Ninth Edition, Lippincott Williams and Wilkins, USA.
- Huang, A., Teplitski, M., Rathinasabapathi, B. and Ma, L. (2010). Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyper accumulator *Pteris vittata*, *Can. J. Microbiol.*, 56: 236–246.
- Huang, H., Li, T., Gupta, D.K., He, Z., Yang, X., Ni, B. & Li, M. 2012. Heavy metal phytoextraction by *Sedum alfredii* is affected by continual clipping and phosphorus fertilization amendment. *Journal of Environmental Science* 24(3): 376-386.
- Huang, J.; Reneau, R.; Hageborn, C. Nitrogen removal in constructed wetlands employed to treat domestic wastewater. *Water Res.* 2000, 34, 2582–2588. [CrossRef]
- Hunce, S. Y., Clemente, R., & Bernal, M. P. (2019). Energy Production Potential of Phytoremediation Plant Biomass: *Helianthus annuus* and *Silybum marianum*. *Industrial Crops and Products* 135:206-216.
- Hunt, R. (2003). Growth analysis individual plants. Dlm. Thomas, B., Murphy, D. J. & Murray, D. (pnyt.). *Encyclopaedia of applied plant sciences*, hlm. 588-596. Academic Press, London.
- Hunter, J. E., Butterworth, J., Perkins, N. D., Bateson, M., & Richardson, C. A. (2014). Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphoma. *British journal of cancer*, 110(4), 928-934.
- Huynh, T.T., Laidlawa, W.S., Singh, B., Gregory, D. & Baker, A.J.M. (2008). Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in-situ sampling technique. *Environmental Pollution* 156: 874-882.
- Imran, M.A.; Khan, R.M.; Ali, Z.; Mahmood, T. Toxicity of arsenic (As) on seed germination of sunflower (*Helianthus annuus* L.). *Int. J. Phys. Sci.* (2013), 8, 840–847.
- Ishii, Y., Hamano, K., Kang, D. J., Idota, S. & Nishiwaki, A. (2015). Cadmium phytoremediation potential of Napier grass cultivated in Kyushu, Japan. *Applied and Environmental Soil Science* 2015.
- Islam, M. S., Phoungthong, K., Islam, A. R. M. T., Ali, M. M., Sarker, A., Kabir, M. H., & Idris, A. M. (2023). Present status and mitigation approaches of arsenic in the environment of Bangladesh: A critical review. *International Journal of Environmental Science and Technology*, 1-12.

- Islam, M. S., Sarker, N. R., Habib, M. A., Ali, M. Y. & Yeasmin, T. (2017). Effect of different soil types on growth and production of Napier-4 at the Regional Station of BLRI. Asian Journal of Medical and Biological Research 3(2): 182-185.
- Jackson CR, Dugas SL, Harrison KG (2005). Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Bio. Biochem. 37: 2319-2322.
- Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. *Journal of clinical microbiology*, 45(9), 2761-2764.
- Jetiyanon, K. & Kloepper, J.W. (2002). Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. *Biological Control* 24: 285-291.
- Jia, W.; Zhang, J.; Wu, J.; Xie, H.; Zhang, B. Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: A microcosm experiment. *Desalination* (2010), 262, 202–208. [CrossRef]
- Jia, W.L.; Zhang, J.; Li, P.Z.; Xie, H.J.; Wu, J.; Wang, J.H. Nitrous oxide emissions from surface flow and subsurface flow constructed wetland microcosms: Effect of feeding strategies. *Ecol. Eng.* (2011), 37, 1815–1821. [CrossRef]
- Jianfeng, W., Zhang, Y., Jin, J., Li, Q., Chenzhou, Z., Wenbin, N., Xiaomin, W., Rongrong, M., Yurong, Bi, (2017). An intact cytokinin-signaling pathway is required for *Bacillus* sp. LZR216-promoted plant growth and root system architecture alteration in *Arabidopsis thaliana* seedlings. *Plant Growth Regul.* 84, 507–518.
- Jing, Y.D., He, Z.L., and Yang, X.E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. *J. Zhej. Univ. Sci.*, 8, 192-207.
- Joshi, D. N., Flora, S. J. S., & Kalia, K. (2009). *Bacillus* sp. strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India. *Journal of Hazardous Materials*, 166(2-3), 1500-1505.
- Kabata, A.P. & Pendias, H. (2001). Trace elements in soils and plants. CRC Press, Inc. Boca Raton, Florida.
- Kabata, D. (2001). ALEXANDR VLADIMIRICH GUSEV 1917–1999. *Journal of Parasitology*, 87(1), 134-134.
- Kabata-Pendias, A. and H. Pendias, (2001). Trace Elements in Soils and Plants. 3rd Edn., CRC Press, Boca Raton, FL., USA., ISBN-13: 9780849315756, Pages: 413.

- Kabirizi, J.; Muyekho, F.; Mulaa, M.; Msangi, R.; Pallangyo, B.; Kawube, G.; Zziwa, E.; Mugerwa, S.; Ajanga, S.; Lukwago, G.; et al. Napier Grass Feed Resource: Production, Constraints and Implications For Smallholder Farmers in Eastern and Central Africa; The Eastern African Agricultural Productivity Project: Naivasha, Kenya, (2015).
- Kadlec, R.H.; Wallace, S.D. *Treatment Wetlands*, 2nd ed.; CRC Press/Taylor Francis Group: Boca Raton, FL, USA, (2009).
- Kaira, Y.P. (1998). Handbook of references method for plant analysis, CRC Press, Boca Rotan, Florida, USA.
- Kale SP, Salaskar D, Ghosh S, Sounderajan S (2015) Isolation and identification of arsenic resistant *Providencia rettgeri* (KDM3) from industrial effluent contaminated soil and studies on its arsenic resistance mechanisma. *J Microb Biochem Technol* 7:194-201.
- Kamaruzzaman, M.A., Abdullah, S.R.S., Hasan, H.A., Hassan, M., Idris, M., Ismail, N., 2019. Potential of hexavalent chromium-resistant rhizosphere bacteria in promoting plant growth and hexavalent chromium reduction. J. Environ. Biol. 40, 427–433. https://doi.org/10.22438/jeb/40/3(SI)/Sp-03.
- Kandel, R.; Singh, H.P.; Singh, B.P.; Harris-Shultz, K.R.; Anderson, W.F. Assessment of genetic diversity in Napier Grass (*Pennisetum purpureum* Schum.) using microsatellite, single-nucleotide polymorphism and insertion-deletion markers from Pearl Millet (*Pennisetum glaucum* (L.) R. Br.). *Plant Mol. Biol. Rep.* (2016), 34, 265–272. [CrossRef]
- Kang, D. J., Seo, Y. J., Saito, T., Suzuki, H. & Ishii, Y. (2012). Uptake and translocation of cesium-133 in napier grass (*Pennisetum purpureum Schum.*) under hydroponic conditions. *Ecotoxicology and environmental safety* 82: 122-126.
- Karamba, K. I., & Ahmad, S. A. (2019). Mathematical Relationship of Optical Density, Total Viable Count and Microbial Biomass for Growth of Serratia marcescens Strain AQ07 on Cyanide. *Journal of Environmental Microbiology* and Toxicology, 7(1), 7-9.
- Karthik, C., Barathi, S., Pugazhendhi, A., Ramkumar, V.S., Dung Thi, N.B., Arulselvi, P.I., (2017a). Evaluation of Cr(VI) reduction mechanism and removal by *Cellulosimicrobium funkei* strain AR8, a novel haloalkaliphilic bacterium. *J. Hazard Mater.* 333, 42–53.
- Karthik, C., Oves, M., Thangabalu, R., Sharma, R., Santhosh, S.B., Arulselvi, P.I., (2016). Cellulosimicrobium funkei-like enhances the growth of *Phaseolus vulgaris* by modulating oxidative damage under chromium (VI) toxicity. *J. Adv. Res.* 7, 839–850.

- Kaseva, M.E.; Mbuligwe, S.E. Potential of constructed wetland systems for treating tannery industrial wastewater. *Water Sci. Technol.* (2010), *61*, 1043–1052. [CrossRef]
- Katiyar D, Hemantaranjan A, Singh B. Application of plant growth promoting rhizobacteria in promising agriculture: an appraisal. J Plant Physiol Pathol. 2017; 4:1–8.
- Kaur, S.; Chowhan, N.; Sharma, P.; Rathee, S.; Singh, H.P.; Batish, D.R. β-Pinene alleviates arsenic (As)-induced oxidative stress by modulating enzymatic antioxidant activities in roots of *Oryza sativa*. Ecotoxicol. Environ. Saf. 2022, 229, 113080. [CrossRef]
- Kebede, G., Feyissa, F., Assefa, G., Mengistu, A., Minta, M., & Tsadik, T. (2016). Agronomic Performance and Nutritive Values of Napier Grass (*Pennisetum Purpureum* (L.) Schumach) Accessions in the Central Highland of Ethiopia. *International Journal of Development Research* 06:8717-8726.
- Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I. & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. *Journal of Geochemical Exploration* 182:247-268.
- Khalid, S.; Shahid, M.; Niazi, N.K.; Rafiq, M.; Bakhat, H.F.; Imran, M.; Abbas, T.; Bibi, I.; Dumat, C. Arsenic behavior in soil-plant system: Biogeochemical reactions and chemical speciation influences. *In Enhancing Cleanup of Environmental Pollutants*; Springer: Berlin, Germany, (2017b); pp. 97–140.
- Khan, M.S., Zaidi, A., Wani, P.A. & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils: A review. Lichtfouse, E. (pnyt.). *Organic Farming, Pest Control and Remediation of Soil Pollutants, Sustainable Agriculture Reviews 1*, hlm 319-350. Springer Science and Business Media B.V.
- Khleifat, K. M., Abboud, M., Laymun, M., Al-Sharafa, K., & Tarawneh, K. (2006). Effect of variation in copper sources and growth conditions on the copper uptake by bacterial hemoglobin gene (vgb) bearing *E. coli. Pakistan Journal of Biological Sciences*, *9*(11), 2022-2031.
- Klose, S., & Tabatabai, M. A. (2000). Urease activity of microbial biomass in soils as affected by cropping systems. *Biology and Fertility of Soils*, 31(3), 191-199.
- Kobya, M.; Soltani, R.D.C.; Omwene, P.I.; Khataee, A. A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. *Environ. Technol. Innov.* (2020), 17, 100519. [CrossRef]
- Kong, Z., Glick, B.R., (2017). The role of plant growth-promoting bacteria in metal phytoremediation. In: *Advances in Microbial Physiology*, Vol. 71. Elsevier, pp. 97–132.

- Kostal, J., Yang, R., Wu, C. H., Mulchandani, A., & Chen, W. (2004). Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Applied and Environmental Microbiology, 70(8), 4582-4587.
- Kubota, C. (1996). Physiology of plant production under controlled environment., growth analysis and yield components. Dlm. Salisbury, F.B. (pnyt.) *Units Symbols, and Terminology for Plant Physiology*, hlm. 115-119. Oxford University Press.
- Kumar, R., Bhardwaj, S., & Kaur, G. (2020). Toxicity of Arsenic and Molecular Mechanism in Plants. Metalloids in Plants: Advances and Future Prospects, 231-247.
- Kumar, S. A. N. J. O. Y., Chaudhuri, S., & Maiti, S. K. (2011). Soil Phosphatase Activity in Natural and Mined Soil–A Review. *Indian J. Environ. Prot*, 31(11).
- Kumar, S., Singh, R., Kumar, V., Rani, A., & Jain, R. (2017). Cannabis Sativa: A Plant Suitable for Phytoremediation and Bioenergy Production. In *Phytoremediation Potential of Bioenergy Plants* P. 269-285.
- Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular biology and evolution*, 35(6), 1547.
- Kurniawan, Y. & Santoso, H. (2009). Listrik sebagai ko-produk potensial bagi pabrik gula. *Jurnal Litbang Pertanian* 28(1): 23-28.
- Laha, A., Bhattacharyya, S., Bhattacharyya, K., Pal, S., & Guharoy. (2019). Arsenic-resistant plant growth-promoting bacterial strains in the contaminated soils of West Bengal, India. 6(2), 778–785.
- Laha, A., Bhattacharyya, S., Mandal, G. S., Roy, S. G., & Pal, S. (2018). Isolation and Characterization of Plant Growth Promoting Arsenic-resistant Bacteria and Possible Application in Bioremediation in West Bengal. *International Journal of Bioresource Science*, 5(1), 51-60.
- Laha, A., Bhattacharyya, S., Sengupta, S. *et al.* Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils. *Arch Microbiol* 203, 4677–4692 (2021).
- Laha, Aritri & Bhattacharyya, Somnath & Sengupta, Sudip & Bhattacharyya, Kallol & Guha Roy, Sanjoy. (2021). Study on *Burkholderia* sp: Arsenic Resistant Bacteria Isolated from Contaminated Soil. *Applied Ecology and Environmental Sciences*. 9. 144-148. 10.12691/aees-9-2-4.
- Lam, P., Richardson, B. & Wu, R. (2004). Introduction to ecotoxicology. Blackwell Publishing.

- Landis, W.G. & Yu, M. (1995). *Introduction to environmental toxicology, impact of chemicals upon ecological systems*. Lewis Publisher, CRC Press, Inc.
- Lebeau, T., Braud, A. & Jezequel, K. (2008). Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. *Environmental Pollution* 153: 497-522.
- Lee, C.; Fletcher, T.D.; Sun, G. Nitrogen removal in constructed wetland systems. *Eng. Life Sci.* 2009, 9, 11–22. [CrossRef]
- Lee, C.N.; Fukumoto, G.K.; Thorne, M.S.; Stevenson, M.H.; Nakahata, M.; Ogoshi, R.M. Bana Grass (*Pennisetum purpureum*): A Possible Forage for Ruminants in Hawai 'i; University of Hawai 'i: Honolulu, HI, USA, (2016).
- Lekić, M., Crnogorac, L., Pantelic, U. & Nikić, Z. (2017). Possibility of application of phytoremediation in mining. 6th International symposium, mining and environmental protection,21-24 June 2017. Vrdnik, Serbia. 2017: 355-360.
- Li, C.J.; Wan, M.H.; Dong, Y.; Men, Z.Y.; Lin, Y.; Wu, D.Y.; Kong, H.N. Treating surface water with low nutrients concentration by mixed substrates constructed wetlands. *J. Environ. Sci. Health.* (2011), 46, 771–776. [CrossRef]
- Li, H.F., Gray, C., Mico, C., Zhao, F.J. & McGrath, S.P. (2009). Phytotoxicity and bioavailability of cobalt to plants in a range of soils. *Chemosphere* 75(7): 979-986.
- Li, K., Ramakrishna, W., 2011. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J. Hazard Mater. 189, 531–539. https://doi.org/10.1016/j.jhazmat.2011.02.075.
- Li, Q., Xu, X., Cui, H., Pang, J., Wei, Z., Sun, Z., & Zhai, J. (2012). Comparison of two adsorbents for the removal of pentavalent arsenic from aqueous solutions. *Journal of environmental management*, 98, 98-106.
- Lihong, W. & Guilan, D. (2009). Effect of external and internal phosphate status on arsenic toxicity and accumulation in rice seedlings. *Journal of Environmental Sciences* 21: 346–351.
- Lin, H.T., Wang, M.C. & Li, G.G. (2004). Complexation of arsenate with humic substance in water extract compost. *Chemosphere* 56: 1105-112.
- Lin, J.; Harichund, C. Isolation and characterization of heavy metal removing bacterial bioflocculants. *Afr. J. Microbiol. Res.* (2011), 5, 599–607.
- Liu, X., Shen, Y., Lou, L., Ding, C. & Cai, Q. (2009). Copper tolerance of the biomass crops Elephant grass (*Pennisetum purpureum* Schumach), Vetiver grass (*Vetiveria zizanioides*) and the upland reed (*Phragmites australis*) in soil culture. *Biotechnology Advances* 27(5):633-640.

- Llamas, A., Ullrich, C. I. & Sanz, A. (2008). Ni⁺² toxicity in rice: effect on membrane functionality and plant water content. *Plant Physiology and Biochemistry* 46: 905 -910.
- Lou, L.Q., Z.H. Ye and M.H. Wong, (2009). A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, *Pteris vittata* L. and non-accumulator, *P. semipinnata* L.: A hydroponic study. *J. Hazard. Mater.*, 171: 436-442.
- Lowe, A.J.; Thorpe, W.; Teale, A.; Hanson, J. Characterisation of germplasm accessions of Napier grass (*Pennisetum purpureum* and *P. purpureum*× *P. glaucum* hybrids) and comparison with farm clones using RAPD. *Genet. Resour. Crop Evol.* (2003), 50, 121–132. [CrossRef]
- Lu, G., Tian, H., Wang, Z., Li, H., Mallavarapu, M., & He, W. (2019). The distribution of arsenic fractions and alkaline phosphatase activities in different soil aggregates following four months As (V) ageing. *Chemosphere*, 236, 124355.
- Lu, W.B., Kao, W.C., Shi, J.J. & Chang, J.S. (2008). Exploring multi-metal biosorption by indigenous metal-hyperresistant *Enterobacter* sp. J1 using experimental design methodologies. *Journal of Hazardous Materials* 153: 372-381.
- Lugtenberg, B., Kamilova, F., (2009). Plant-growth-promoting rhizobacteria. *Annu. Rev. Microbiol.* 63, 541–556.
- Lyubun, Y. V., Pleshakova, E. V., Mkandawire, M., & Turkovskaya, O. V. (2013). Diverse effects of arsenic on selected enzyme activities in soil–plant–microbe interactions. *Journal of hazardous materials*, 262, 685-690.
- Ma, C., Ming, H., Lin, C., Naidu, R. & Bolan, N. (2016). Phytoextraction of heavy metal from tailing waste using Napier grass. *Catena* 136: 74-83.
- Ma, C., Naidu, R., Liu, F., Lin, C., Ming, H., (2012). Influence of hybrid giant Napier grass on salt and nutrient distributions with depth in a saline soil. *Biodegradation* 23, 907–916.
- Ma, L.; Liang, J.; Liu, Y.; Zhang, Y.; Ma, P.; Pan, Z.; Jiang, W. Production of a bioflocculant from Enterobacter sp. P3 using brewery wastewater as substrate and its application in fracturing flowback water treatment. *Environ. Sci. Pollut. Res.* (2020), 27, 18242–18253. [CrossRef] [PubMed]
- Ma, Y., Oliveira, R.S., Freitas, H., Zhang, C., (2016a). Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. *Front. Plant Sci.* 7, 918.
- Ma, Y., Prasad, M.N.V., Rajkumar, M. and Freitas, H. (2011). Plant growth promoting rhi-zobacteria and endophytes accelerate phytoremediation of metalliferous soils, *Biotech. Adv.*, 29: 248–258.

- Ma, Y., Rajkumar, M., Zhang, C., Freitas, H., (2016b). Beneficial role of bacterial endophytes in heavy metal phytoremediation. *J. Environ. Manag.* 174, 14–25.
- Ma, Y., Rajkumar, M., Zhang, C., Freitas, H., (2016c). Inoculation of *Brassica oxyrrhina* with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. *J. Hazard Mater.* 320, 36–44.
- Madigan, M.T., Martinko, J.M., Stahl, D. & Clarck, D.P. (2012). Brock biology of microorganism. Edisi ke-13. San Francisco, Benjamin Cummings.
- Magar, L. B., Rayamajhee, B., Khadka, S., Karki, G., Thapa, A., Yasir, M., ... & Poudel, P. (2022). Detection of Bacillus Species with Arsenic Resistance and Plant Growth Promoting Efficacy from Agricultural Soils of Nepal. *Scientifica*, 2022.
- Mah, T.F.C., O'Toole, G.A. (2001). Mechanisms of biofilm resistance to antimicrobial agents, *Trends Microbiol.*, 9: 34–39.
- Maheshwari, D.K., Dheeman, S., Agarwa, M., (2015). Phytohormone-producing Pgpr for Sustainable Agriculture. Springer international publishing, *bacterial metabolites in sustainable agroecosystem*, pp. 87–103. ISSN 2352-4758 (electronic).
- Maitera, O.N., Ogugbuaja, V.O. & Barminas, J.T. (2010). An assessment of the organic pollution indicator levels of River Benue in Adamawa State, Nigeria. *Journal of Environmental Chemistry and Ecotoxicology* 2(7): 110-116.
- Majumder, S., Powell, M. A., Biswas, P. K., & Banik, P. (2022). The impact of Arsenic induced stress on soil enzyme activity in different rice agroecosystems. *Environmental Technology & Innovation*, 26, 102282.
- Malahubban, M., Abd Jalil, N. Z., Zakry, F. A. A., Kamaludeen, J., Hassan, M. N., & Saupi, N. (2021). Some nutritional properties of Taiwan Napier grass leaves (*Pennisetum purpureum*) harvested at different time. *Journal of Phytology*, 13, 72-74.
- Malekzadeh F, Farazman A, Ghafouria H, Shamat M, Levin M, Colwell RR (2002). Uranium accumulation by bacterium isolated from electroplating effluent. *World J. Microbiol. Biotechnol.* 18: 295-300.
- Malik, R.N., Husain, S.Z., Nazir, I., (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. *Pakistan J. Bot.* 42 (1), 291–301.
- Mallick, I., et al., (2018). Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (Pgpb) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. *Sci. Total Environ.* 610, 1239–1250.

- Marchal, M., Briandet, R., Halter, D., Koechler, S., DuBow, M.S., Lett, M.C., et al., (2011). Subinhibitory arsenite concentrations lead to population dispersal in *Thiomonas* sp. PLoS One 6 (8), 633e23181.
- Marchal, M., Briandet, R., Koechler, S., Kammerer, B., Bertin, P.N., 627 (2010). Effect of arsenite on swimming motility delays surface 628 colonization in *Herminiimonas arsenicoxydans. Microbiology* 156 629(8), 2336–2342.
- Marin, A., Pezeshki, S. Masscheleyn, P. & Choi, H. (1993). Effect of dymethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. *Journal of Plant Nutrition* 16: 865–880.
- Marques, A.P., et al., (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42 (8), 1229–1235.
- Martel, E.; De Nay, D.; Siljak-Yakoviev, S.; Brown, S.; Sarr, A. Genome size variation and basic chromosome number in Pearl millet and fourteen related *Pennisetum* species. *J. Hered.* (1997), 88, 139–143. [CrossRef]
- Massoud, M.B., Sakouhi, L., Karmous, I., Zhu, Y., El Ferjani, E., Sheehan, D., Chaoui, A., (2018). Protective role of exogenous phytohormones on redox status in pea seedlings under copper stress. *J. Plant Physiol.* 221, 51–61.
- Mehmood, T.; Bibi, I.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Wang, H.; Ok, Y.S.; Sarkar, B.; Javed, M.T.; Murtaza, G. Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. J. Geochem. Explor. 2017, 178, 83–91.
- Melo, E.E.C., Costa, E.T.S., Guilherme, L.R.G., Faquin, V. & Nascimento, C.W.A. (2009). Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. *Journal of Hazardous Materials* 168(1): 479-483.
- Mirza, N., Pervez, A., Mahmood, Q., Shah, M.M., Shafqat, M.M., (2011). Ecological restoration of arsenic contaminated soil by *Arundo donax L. Ecol. Eng.* 37, 1949–1956.
- Mishra, S.; Alfeld, M.; Sobotka, R.; Andresen, E.; Falkenberg, G.; Küpper, H. Analysis of sublethal arsenic toxicity to *Ceratophyllum demersum*: Subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J. Exp. Bot. 2016, 67, 4639–4646. [CrossRef]
- Miteva, E. & Merakchiyska, M. (2002). Response of chloroplast and photosynthetic mechanisms of bean plant to excess arsenic in soil. *Bulgarian Journal of Agriculture Science* 8: 151-156.
- Mitra A, Sreedharan SM, Singh R (2021) Concrete Crack Restoration Using Bacterially Induced Calcium Metabolism. *Indian J Microbiol* 61:229-233.

- Mittal S, Johri BN (2007). Assessment of Rhizobacterial diversity of *Triticum aestivum* and *Eleusine coracana* from Northern Region of India. *Current Sci.* 93 (11): 1530-1537.
- Mohammed, I. Y., Abakr, Y. A., & Mokaya, R. (2019). Biofuel and Valuable Products Recovery from Napier Grass PreProcessing: Process Design and Economic Analysis. *Journal of Environmental Chemical Engineering* 7(2):102962.
- Mohammed, I. Y., Abakr, Y. A., Kazi, F. K., Yusup, S., Alshareef, I. & Chin, S. A. (2015). Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. *Energies* 8(5): 3403-3417.
- Mohd, S.; Shukla, J.; Kushwaha, A.S.; Mandrah, K.; Shankar, J.; Arjaria, N.; Saxena, P.N.; Narayan, R.; Roy, S.K.; Kumar, M. Endophytic fungi *Piriformospora indica* mediated protection of host from arsenic toxicity. Front. Microbiol. 2017, 8, 754. [CrossRef]
- Mondal, N. K., Dey, U., Ghosh, S., & Datta, J. K. (2015). Soil enzyme activity under arsenic-stressed area of Purbasthali, West Bengal, India. *Archives of Agronomy and Soil Science*, 61(1), 73-87.
- Morais, R.F.D.; Souza, B.J.D.; Leite, J.M.; Soares, L.H.D.B.; Alves, B.J.R.; Boddey, R.M.; Urquiaga, S. Elephant grass genotypes for bioenergy production by direct biomass combustion. *Pesqui. Agropecu. Bras.* (2009), 44, 133–140. [CrossRef]
- Motesharezadeh, B., Kamal-poor, S., Alikhani, H.A., Zarei, M., Azimi, S., (2017). Investigating the effects of plant growth promoting bacteria and Glomus Mosseae on cadmium phytoremediation by *Eucalyptus camaldulensis* L. *Pollution* 3, 575–588.
- Mukherjee, P., Mitra, A., & Roy, M. (2019). *Halomonas* rhizobacteria of *Avicennia* marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. *Frontiers in microbiology*, 10, 1207.
- Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. *FEMS Microbiol Rev* 26 311-325.
- Muller, D., Médigue, C., Koechler, S., Barbe, V., Barakat, M., Talla, E., et al., (2007). A tale of two oxidation states, bacterial colonization of arsenic-rich environments. *PLoS Genet.* 3 (4), e53.
- Myers, M.; Myers, L.; Okey, R. The use of oxidation- reduction potential as a means of controlling effluent ammonia concentration in an extended aeration activated sludge system. *Water Environment Foundation*. (2006). Available online: www.environmental-expert.com/Files/5306/articles/13831/465.pdf (accessed on 5 January 2012).

- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley Sons: Hoboken, NJ, USA, (2009).
- Nagata, K.; Mino, H.; Yoshida, S. Usefulness and limit of Gram staining smear examination. Rinsho Byori (2010), 58, 490–497. [PubMed]
- Nath, S.; Panda, P.; Mishra, S.; Dey, M.; Choudhury, S.; Sahoo, L.; Panda, S.K. Arsenic stress in rice: Redox consequences and regulation by iron. *Plant Physiol. Biochem.* (2014), 80, 203–210. [CrossRef] [PubMed]
- Ndegwa, P.M, Wang, L. & Vaddella, V.K. (2007). Potential strategies for process control and monitoring of stabilization of dairy wastewaters in batch aerobic treatment systems. *Process Biochemistry* 42: 1272–1278.
- Negawo, A. T., Teshome, A., Kumar, A., Hanson, J., & Jones, C. S. (2017). Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. *Agronomy*, 7(2), 28.
- Nelson, D.W., and D. Huber. (2001). Nitrification inhibitors for corn production. National Corn Handbook-55. Available at http://www.extension.iastate.edu/Publications/NCH55.pdf (accessed and verified 6 June 2007).
- Nguvo KJ, Gao X. Weapons hidden underneath: bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. J Plant Disea and Prot. 2019; 126:177–90.
- Niazi, N.K.; Bibi, I.; Fatimah, A.; Shahid, M.; Javed, M.T.; Wang, H.; Ok, Y.S.; Bashir, S.; Murtaza, B.; Saqib, Z.A. Phosphate-assisted phytoremediation of arsenic by *Brassica napus* and *Brassica juncea*: Morphological and physiological response. Int. J. Phytoremed. 2017, 19, 670–678.
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Burton, E.D.; Wang, H.; Shaheen, S.M.; Rinklebe, J.; Lüttge, A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. *Environ. Pollut.* (2018), 232, 31–41. [CrossRef] [PubMed]
- Nicholson, H.C. (2002). Arsenic in plants important to two Yukon first nations: impacts of gold mining and reclamation practices. *MERG* (*Mining Environment Research Group*) reports. www.geology.gov.yk.ca/pdf/MPERG_2002_4/pdf [4 Julai 2011].
- Nie, L., Shah, S., Burd, G.I., Dixon, D.G. & Glick, B.R. (2002). Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. *Plant Physiology and Biochemisty* 40: 355–361.

- Nkosi, N. C., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., & Pullabhotla, R. V. (2021). Isolation, Identification and Characterization of Bioflocculant-Producing Bacteria from Activated Sludge of Vulindlela Wastewater Treatment Plant. Applied Microbiology, 1(3), 586-606.
- Nonnoi, F., Chinnaswamy, A., García de la Torre, V.S., De la Pena, T.C., Lucas, M.M., Pueyo, J.J., (2012). Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (*Medicago* spp. and *Trifolium* spp.) growing in mercury- contaminated soils. *Appl. Soil Ecol.* 61, 49–59.
- Oden, K.L., T.B. Gladysheva and B.P. Rosen, (1994). Arsenate reduction mediated by the plasmid- encoded ArsC protein is coupled to glutathione. *Mol. Microbiol.*, 12: 301-306.
- OECD Guideline for Testing of Chemicals 208. (1984). Terrestrial Plants, Growth Test. http://www.oecd.org/dataoecd/18/0/1948285.pdf [11 Mei 2009].
- OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. In *OECD Guidelines for the Testing of Chemicals, Section 2*; *OECD Publishing*: Paris, France, (2006).
- Okaiyeto, K.; Nwodo, U.U.; Okoli, A.S.; Leonard, L.V.L.; Okoh, A.I. Studies on bioflocculant production by *Bacillus* sp. AEMREG7. *Pol. J. Environ. Stud.* (2016), 25, 241–250. [CrossRef]
- Oliveira, M. L. F., Daher, R. E. F., de Amara Gravina, G., da Silva, V. B., Rodrigues, E. V. O., Shimoya, A., do Amaral Junior, A. T., da Silva Menezes, B. R. & dos Santos Rocha, A. (2014). Pre-breeding of elephant grass for energy purposes and biomass analysis in Campos dos Goytacazes-RJ, Brazil. *African Journal of Agricultural Research* 9(36):2743-2758.
- Omondi, D. O., & Navalia, A. C. (2020). Constructed wetlands in wastewater treatment and challenges of emerging resistant genes filtration and reloading. In *Inland Waters-Dynamics and Ecology*. IntechOpen.
- Onken, B.M., and Adriano, D.C. (1997). Arsenic availability in soil with time under saturated and sub saturated conditions. *Soil Sci. Soc. Am. J.* 61, 746.
- Onyia, P. C., Ozoko, D. C., & Ifediegwu, S. I. (2021). Phytoremediation of arsenic-contaminated soils by arsenic hyperaccumulating plants in selected areas of Enugu State, Southeastern, Nigeria. *Geology, Ecology, and Landscapes*, 5(4), 308-319.
- Orodho, A. B. (2006). The role and importance of Napier grass in the smallholder dairy industry in Kenya. Food and Agriculture Organization, Rome, Italy.
- Osmana, N. A., Roslana, A. M., Ibrahima, M. F., & Hassana, M. A. (2020). Potential use of *Pennisetum purpureum* for phytoremediation and bioenergy production: A mini review. *Asia-Pac. J. Mol. Biol. Biotechnol*, 28, 14-26.

- Oves, M., Khan, M.S., Zaidi, A., (2013). Chromium reducing and plant growth promoting novel strain *Pseudomonas aeruginosa* OSG41 enhance chickpea growth in chromium amended soils. *Eur. J. Soil Biol.* 56, 72–83.
- Padmavathiamma, P.K. & Li, L.Y. (2007). Phytoremediation technology: hyperaccumulation metals in plants. *Water Air Soil Pollution* 184: 105-126.
- Pandey, C.; Augustine, R.; Panthri, M.; Zia, I.; Bisht, N.C.; Gupta, M. Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: A comparison of two *Brassica* cultivars. *Plant Physiol. Biochem.* (2017), 111, 144–154. [CrossRef] [PubMed]
- Pandey, N., & Keshavkant, S. (2019). Characterization of arsenic resistant plant-growth promoting indigenous soil bacteria isolated from Center-East regions of India. *Journal of basic microbiology*, 59(8), 807-819.
- Panhwar, Q.A., Jusop, S., Naher, U.A., Othman, R., Razi, M.I., (2013). Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. *Sci. World J.* 1–10.
- Park, H.J., Jin, G. and Nakhleh, L. (2010). Bootstrap-based support of HGT Inferred by maximum parsimony. *BMC Evolutionary Biology*, 10(1), 1-11.
- Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathom-Aree, W., Aizawa, T., Behrens, R. L., & Lumyong, S. (2020). Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in *Bacillus drentensis* BP17 using pineapple peel. *PloS one*, 15(3), e0230443.
- Penrose D.M. & Glick B.R. (2001). Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting bacteria. *Canadian Journal of Microbiology* 47: 368-372.
- Perez, L., Flores, M., Avalos, J., San Miguel, L., Resto, O., & Fonseca, L. F. (2003, April). Comparative study of the growth curves of *B. Subtilis, K. Pneumoniae*, *C. Xerosis*, and *E. Coli* bacteria using nanometric silicon particles as a bacteriological sensor. In *Nanotechnology* (Vol. 5118, pp. 494-501). SPIE.
- Perronnet, K., Schwartz, C., Gerard, E. & Morel, J.J. (2000). Availability of cadmium and zinc accumulated in the leaves of *Thlaspi caerulescens* incorporated into soil. *Plant. Soil* 227: 257-263.
- Peshut, P.J.; Morrison, R.J.; Barbara, A.; Brooks, B.A. Arsenic speciation in marine fish and shellfish from American Samoa. *Chemosphere* (2008), 71, 484. [CrossRef]
- Peterson, P.J., CA. Girling, Benson L. M., And Z. R. (1981). Arsenic. Dlm. Lepp, W. (pnyt,). Effect of heavy metal pollution on plants, effects of trace metals on plant function, hlm. 299-323. *Applied Science Publisher*, London.

- Pigna, M., Cozzolino, V., Giandonato Caporale, A., Mora, M.L., Di Meo, V., Jara, A.A. & Violante. A. (2010). Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. *Journal of Soil Science and Plant Nutrition* 10(4): 428-442.
- Pillewan P, Mukherjee S, Meher AK, Rayalu S, Bansiwal A. (2014). Removal of arsenic (III) and arsenic (V) using copper exchange zeolitea. *Environ Prog Sustainable Energy*. 33(4):1274–1282.
- Plank, C.O, (1992). Plant Analysis Procedures for the Southern Region of the United States, Southern Cooperative Series Bulletin #368 www.cropsoil.uga.edu/~oplank/sera368.pdf [20 July 2009].
- Podgorski, J. E., Eqani, S. A. M. A. S., Khanam, T., Ullah, R., Shen, H., and Berg, M. (2017). Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci. Adv. 3: e1700935. doi: 10.1126/sciadv.1700935.
- Poudel, P., Nepal, A., Magar, R. R., Rauniyar, P., & Magar, L. B. (2019). Screening of potent arsenic resistant and plant growth promoting *Bacillus* species from the soil of Terai region of Nepal. *Tribhuvan University Journal of Microbiology*, 6, 1-9.
- Poynton, C.Y., Huang, J.W., Blaylock, M.J, Kochian, L.V. & Elless, M.P. (2004). Mechanisms of arsenic hyperaccumulation in *Pteris* species: root As influx and translocation. *Planta* 219: 1080-1088.
- Pradhan, M.; Biswas, C. Modeling and Analysis of Process Parameters on Surface Roughness in EDM of AISI D2 Tool Steel by RSM Approach. *Int. J. Mech. Mechatron. Eng.* (2009), 3, 1132–1137.
- Prescott LM, Harley JP, Klein DA (2002). *Microbiology*. Fifth Edition. The McGraw-Hill Companies.
- Purbajanti, E.; Anwar, S.; Wydiati, F.K. Drought stress effect on morphology characters, water use efficiency, growth and yield of guinea and Napier grasses. *Int. Res. J. Plant Sci.* (2012), 3, 47.
- Quaghebeur, M. & Rengel, Z. (2003). The distribution of arsenate and arsenite in shoots and roots of *Holcus lanatus* is influenced by arsenic tolerance and arsenate and phosphate supply. *Plant Physiology* 132: 1600-1609.
- Quaghebeur, M. & Rengel, Z. (2005). Arsenic speciation governs arsenic uptake and transport in terrestrial plant. *Microchimica Acta* 151:141-152.
- Quevauviller, P.H. (1998). Methodologies in soil and sediment fractionation studies, single and sequential extraction procedures. *Royal Society of Chemistry*, UK.
- Ra, K.; Shiotsu, F.; Abe, J.; Morita, S. Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production. *Biomass Bioenergy* (2012), 37, 330–334. [CrossRef]

- Rafique, M., Haque, K., Hussain, T., Amna, C., Javed, H., (2017). Biochemical Talk in the Rhizoshperic Microbial Community for Phytoremediation. Nova Science Publishers, NY, ISBN 978-1-53611-047-0.
- Rahman, M. E., Bin Halmi, M. I. E., Bin Abd Samad, M. Y., Uddin, M. K., Mahmud, K., Abd Shukor, M. Y., ... & Shamsuzzaman, S. M. (2020). Design, operation and optimization of constructed wetland for removal of pollutant. *International Journal of Environmental Research and Public Health*, 17(22), 8339.
- Rahman, M. M., Ishii, Y., Niimi, M. & Kawamura, O. (2008). Effect of salinity stress on dry matter yield and oxalate content in napiergrass (*Pennisetum purpureum* Schumach). *Asian Australasian Journal of Animal Sciences* 21(11): 1599-1603.
- Rajaofera MJN, Wang Y, Jatoi ZA, Jin P, Cui H, Lin C, Miao W. *Bacillus atrophaeus* HAB-5 secretion metabolites preventing occurrence of systemic diseases in tobacco plant. European J Plant Pathol. 2020; 156:159–72.
- Rajkumar, M., Ae, N., Prasad, M.N.V., Freitas, H., (2010). Potential of siderophore producing bacteria for improving heavy metal phytoextraction. *Trends Biotechnol.* 28, 142–149.
- Rathnayake IVN, Megharaj M, Bolan N, Naidu R (2009). Tolerance of heavy metals by gram positive soil bacteria. *World Acad. Sci. Eng. Technol.* 53.
- Rekab, K. & Shaikh, M. (2005). Statistical design of experiments with engineering applications. CRC Press, Taylor and Francis Group, Boca Raton, FL.
- Relwani, L.L.; Nakat, R.V.; Kandale, D.Y. Intercropping of four *leuceana* cultivars with three grasses. *Leuceana Res. Rep.* (1982), 3, 41.
- Rengsirikul, K.; Ishii, Y.; Kangvansaichol, K.; Sripichitt, P.; Punsuvon, V.; Vaithanomsat, P.; Nakamanee, G.; Tudsri, S. Biomass yield, chemical composition and potential ethanol yields of eight cultivars of Napier grass (*Pennisetum purpureum* Schumach.) harvested 3-monthly in central Thailand. *J. Sustain. Bioenergy Syst.* (2013), 3, 107. [CrossRef]
- Rijavec, T., Lapanje, A., (2016). Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. *Front. Microbiol.* 7, 1785.
- Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., et al. (2013). Groundwater arsenic contamination throughout China. Science 341, 866–868. doi: 10.1126/science.1237484.
- Rombke, J. & Moltmann, J.F. (1996). *Applied ecotoxicology*. Lewis Publisher, CRC Press, Inc.

- Romero-Freire, A., Sierra-Aragón, M., Ortiz-Bernad, I., & Martín-Peinado, F. J. (2014). Toxicity of arsenic in relation to soil properties: implications to regulatory purposes. *Journal of Soils and Sediments*, 14(5), 968-979.
- Roose, T. (2000). Mathematical Model of Plant Nutrient Uptake. Tesis Ph.D. Linacre College
- Rosas-Castor, J.; Guzmán-Mar, J.; Hernández-Ramírez, A.; Garza-González, M.; Hinojosa-Reyes, L. Arsenic accumulation in maize crop (*Zea mays*): A review. Sci. Total Environ. 2014, 488, 176–187.
- Rosen, B.P. (2002). Biochemistry of arsenic detoxification, FEBS Lett., 529: 86–92.
- Ross, S. M. & Kaye, K.J. (1994). The meaning of metal toxicity in soil-plant systems. Pp. 153-188. Dalam: Ross S. M. (Pnyt.) *Toxic Metals in Soil-Plant Systems*. John Wiley and Sons, New York.
- Saeed, T.; Afrin, R.; Muyeed, A.A.; Sun, G. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. *Chemosphere* (2012), 88, 1065–1073. [CrossRef]
- Saeid, A., Prochownik, E., Dobrowolska-Iwanek, J., (2018). Phosphorus solubilization by *Bacillus* species. Molecules 23, 2897.
- Saffari, M., Fathi, H., Mohajery, G., Emadi, M., Moazallahi, M. & Goudarzi, M. (2008). Phytoremediation of the arsenic contaminated soils by different fern species in northern of Iran. *American-Eurasian Journal of Agriculture and Environmental Science* 4(6): 783-788.
- Sahoo, K. K., Arakha, M., Sarkar, P., & Jha, S. (2016). Enhancement of properties of recycled coarse aggregate concrete using bacteria. *International journal of smart and nano materials*, 7(1), 22-38.
- Sahoo, P. K., Kim, K., Powell, M. A. & Equeenuddin, S. M. (2016). Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. *International Journal of Coal Science & Technology* 3(3):267-283.
- Salunkhe, R. B., Patil, C. D., Salunke, B. K., Rosas-García, N. M. and Patil, S. V. (2013). Effect of wax degrading bacteria on life cycle of the pink hibiscus mealybug, *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae). *BioControl*, 58(4), 535-542.
- Sandhi, A.; Yu, C.; Rahman, M.M.; Amin, M.N. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. *Environ. Sci. Pollut. Res. Int.* 2022, 29, 51354–51366. [CrossRef] [PubMed]

- Sandhu, J.S.; Kumar, D.; Yadav, V.K.; Singh, T.; Sah, R.P.; Radhakrishna, A. Recent trends in breeding of tropical grass and forage species. *In Proceedings of the 23rd International Grassland Congress*, New Delhi, India, 20–24 November (2015);
- Santosa, B. (1995). Pengaruh Kandungan Air Tanah dan Pemupukan terhadap Penyerapan Nitrogen Tanaman Tebu Lahan Kering Varietas F 154. Fakultas Pertanian Universitas Brawijaya Malang.
- Saqib, M.; Mumtaz, M.W.; Mahmood, A.; Abdullah, M.I. Optimized biodiesel production and environmental assessment of produced biodiesel. *Biotechnol. Bioprocess Eng.* (2012), 17, 617–623. [CrossRef]
- Sauge-Merle, S., Cuiné, S., Carrier, P., Lecomte-Pradines, C., Luu, D. T., & Peltier, G. (2003). Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. *Applied and Environmental Microbiology*, 69(1), 490-494.
- Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. *Analytical Biochemistry*, 160(1), 47-56.
- Sekabira, K., Oryem-Origa, H., Mutumba, G., Kakudidi, E., Basamba, T.A., (2011). Heavy metal phytoremediation by *Commelina benghalensis* (L) and *Cynodon dactylon* (L) growing in urban stream sediments. *Int. J. Plant Physiol. Biochem.* 3, 133–142.
- Shabnam, N.; Kim, M.; Kim, H. Iron (III) oxide nanoparticles alleviate arsenic induced stunting in *Vigna radiata*. Ecotoxicol. Environ. Saf. 2019, 183, 109496. [CrossRef]
- Shahid, M.; Dumat, C.; Pourrut, B.; Abbas, G.; Shahid, N.; Pinelli, E. Role of metal speciation in lead-induced oxidative stress to *Vicia faba* roots. *Russ. J. Plant Physiol.* (2015a), 62, 448–454. [CrossRef]
- Shahid, M.; Khalid, S.; Saleem, M. Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environ. Geochem. Health 2022, 44, 487–496.
- Shakoor MB, Riaz M, Niazi NK, Ali S, Rizwan M, Arif MS, Arif M. Recent advances in arsenic accumulation in rice. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas J, editors. *Advances in rice research for abiotic stress tolerance. Woodhead Publishing*; (2019). https://doi.org/10.1016/B978-0-12- 814332-2.00018-6.
- Shakya, S., Pradhan, B., Smith, L., Shrestha, J., & Tuladhar, S. (2012). Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. *Journal of Environmental Management*, 95, S250-S255.

- Shamim, M.Z.; Pandey, A. Effects of arsenic toxicity on morphological characters in black gram (*Vigna mungo* L.) during early growth stage. Cell. Mol. Biol. 2017, 63, 38–43. [CrossRef]
- Sharma VK, Sohn M. Aquatic arsenic: toxicity, speciation, transformations, and remediation. *Environ Int* (2009); 35:743–59.
- Sheng, G.P., Yu, H.Q., Yue, Z.B., (2005). Production of extracellular polymeric substances from *Rhodopseudomonas acidophila* in the presence of toxic substances. *Appl. Microbiol. Biotechnol.* 69 (2), 216–222.
- Sheppard, S.C. (1992). Summary of phytotoxicity levels of soil arsenic. *Water, Air, and Soil Pollution* 64: 539-550.
- Shilev, S., Fernandez, A., Benlloch, M., Sancho, E.D. (2006). Sunflower growth and tolerance to arsenic is increased by the rhizopheric bacteria *Pseudomonas fluorescens*. Dlm: Morel JL, Echevarria G, Goncharova N. (Pnyt.), Phytoremediation of Metal-Contaminated Soils, NATO Sciences Series, IV: *Earth and Environ, Sci.* 68: 315-318.
- Silva, S., 2012. Aluminium toxicity targets in plants. *J. Bot.* (2012) https://doi.org/10.1155/2012/219462, 1–8.
- Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., et al., (1981). Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in *Escherichia coli* and *Staphylococcus aureus*. *J. Bacteriol*. 146 (3), 983–996.
- Singh, A.P.; Dixit, G.; Kumar, A.; Mishra, S.; Singh, P.K.; Dwivedi, S.; Trivedi, P.K.; Chakrabarty, D.; Mallick, S.; Pandey, V.; et al. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front. Plant Sci. 2016, 6, 1272. [CrossRef]
- Singh, B.P.; Singh, H.P.; Obeng, E. Elephant grass. In *Biofuel Crops: Production, Physiology and Genetics*; Singh, B.P., Ed.; CAB International: Fort Valley State University, Fort Valley, GA, USA, (2013); pp. 271–291.
- Singh, N. and Ma, L. (2006). Arsenic speciation and arsenic and phosphate distribution in arsenic hyper accumulator *Pteris vittata* L. and non-hyper accumulator *Pteris ensiformis* L. *Environ. Pollut.*, 141: 238–246.
- Singh, R. P., & Jha, P. N. (2016). A halotolerant bacterium *Bacillus licheniformis* HSW-16 augments induced systemic tolerance to salt stress in wheat plant (*Triticum aestivum*). *Frontiers in Plant Science*, 7(1890), doi: 10.3389/fpls.2016.01890
- Singh, S. B., & Srivastava, P. K. (2020). Bioavailability of arsenic in agricultural soils under the influence of different soil properties. *SN Applied Sciences*, 2(2), 1-16.

- Sirisha, K., Kumar, C. G., Ramakrishna, K. V. S. and Gunda, S. K. (2017). Phenazine-1-carboxamide, an Extrolite Produced by *Pseudomonas aeruginosa* Strain (CGK-KS-1) Isolated from Ladakh and India, and its Evaluation Against Various *Xanthomonas* spp. *Microbiology and Biotechnology Letters*, 45(3), 209-217.
- Smith, E., Naidu, R., and Alston, A.M. (1998). Arsenic in the Soil Environment: A Review. Samford Valley, Australia: Australian Academic Press. Available at: www.arsenic.lk/ content/Effects/Environmental_effects/Soil02/Soil02.pdf (accessed March 17, 2009).
- Sodhi, K.K.; Kumar, M.; Agrawal, P.K.; Singh, D.K. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. *Environ. Technol. Innov.* (2019), 16, 100462. [CrossRef]
- Song, H.L.; Nakano, K.; Taniguchi, T.; Nomura, M.; Nishimura, O. Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. *Bioresour. Technol.* (2009), 100, 2945–2951. [CrossRef]
- Song, J., Zhao, F.J., McGrath, S.P. & Lou, Y.M. (2006). Influence of soil properties and aging on arsenic phytotoxicity. *Environmental Toxicology and Chemistry* 25(6): 1663-1670.
- Soto, J., Ortiz, J., Herrera, H., Fuentes, A., Almonacid, L., Charles, T. C., & Arriagada, C. (2019). Enhanced arsenic tolerance in *Triticum aestivum* inoculated with arsenic-resistant and plant growth promoter microorganisms from a heavy metal-polluted soil. *Microorganisms*, 7(9), 348.
- Souri, Z., Karimi, N., Norouzi, L., & Ma, X. (2020). Elucidating the physiological mechanisms underlying enhanced arsenic hyperaccumulation by glutathione modified superparamagnetic iron oxide nanoparticles in *Isatis cappadocica*. *Ecotoxicology and Environmental Safety*, 206, 111336.
- Sridokchan, W., Markich, S. & Visoottiviseth, P. (2005). Arsenic tolerance, accumulation and elemental distribution in twelve ferns: a screening study. *Australian Journal of Ecotoxicology* 11: 101-110.
- Srivastava, M., Ma, L.Q., and Santos, J.A.G. (2006). Three new arsenic hyperaccumulating fern. *Sci. Total Environ*. 364, 24.
- Srivastava, S., Suprasanna, P., and D'Souza, S. F. (2012). Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int. J. Phytorem. 14, 506–517. doi: 10.1080/15226514.2011.604690.
- Srivastava, S.; Sinha, P.; Sharma, Y.K. Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in *Vigna mungo* in presence of arsenic. J. Plant Nutr. 2017, 40, 298–306. [CrossRef]

- Stanišić M.S, Ljubiša M.I, Manojlovic, D.D. & Dojcinovic, B.P. (2011b). A comparison of sample extraction procedures for the determination of cations in soil by IC and ICP-AES. *Central European Journal of Chemistry* 9(3): 481-491.
- Stanišić M.S, Ljubiša M.I., Milica C.S. & Aleksandar, R.D. (2011a). A comparison of sample extraction procedures for the determination of inorganic anions in soil by ion chromatography. *Journal the Serbian. Chemical. Society* 76(5): 769-780.
- Statista 2023. The total global production of arsenic up to 2022 Retrieved on: 24th March, 2023, from: https://www.statista.com/statistics/797505/arsenic-worldwide-production/.
- Stefanakis, A.I.; Tsihrintzis, V.A. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilotscale vertical flow constructed wetlands. *Chem. Eng. J.* (2012), 181, 416–430. [CrossRef]
- Stoodley, P., Cargo, R., Rupp, C.J., Wilson, S., Klapper, I., (2002). Biofilm material properties as related to shear-induced deformation and detachment phenomena. *J. Ind. Microbiol. Biotechnol.* 29 (6), 361–367.
- Suhendrayatama, "Heavy Metal Bioremoval by Microorganism; a Literature Study," [Online], Available: http://www.istecs.org/Publication/japan/010211. (2001). [Accessed: 30-Jul-2018].
- Sun, S.K.; Chen, Y.; Che, J.; Konishi, N.; Tang, Z.; Miller, A.J.; Ma, J.F.; Zhao, F.J. Decreasing arsenic accumulation in rice by overexpressing OsNIP 1;1 and OsNIP 3;3 through disrupting arsenite radial transport in roots. New Phytol. 2018, 219, 641–653. [CrossRef] [PubMed]
- Sun, Y., Zhou, Q., Wang, L., Liu, W., (2009). Cadmium tolerance and accumulation characteristics of *Bidens pilosa* L. as a potential Cd-hyperaccumulator. *J. Hazard Mater.* 161, 808–814. https://doi.org/10.1016/j.jhazmat.2008.04.030.
- Sutherland, I.W., (2001). Biofilm exopolysaccharides: a strong and sticky framework. *Microbiology* 147 (1), 3–9.
- Swofford, D. L., Thorne, J. L., Felsenstein, J. and Wiegmann, B. M. (1996). The topology-dependent permutation test for monophyly does not test for monophyly. *Systematic Biology*, 45(4), 575-579.
- Szogi, A.A.; Hunt, P.G.; Sadler, E.J.; Evans, D.E. Characterization of oxidation-reduction processes in constructed wetlands for swine wastewater treatment. *Appl. Eng. Agric.* (2004), 20, 189. [CrossRef]
- Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. *Soil Biology and Biochemistry*, 1(4), 301-307.

- Tabatabai, M. A., & Bremner, J. M. (1970). Arylsulfatase activity of soils. Paper presented at the *Soil Science Society of America*, Madison, WI.
- Takara, D. and Khanal, S. K. (2015). Characterizing Compositional Changes of Napier Grass at Different Stages of Growth for Biofuel and Biobased Products *Potential. Bioresource Technology* 188:103-108.
- Takeuchi, M., Kawahata, H., Gupta, L. P., Kita, N., Morishita, Y., Ono, Y., & Komai, T. (2007). Arsenic resistance and removal by marine and non-marine bacteria. *Journal of biotechnology*, 127(3), 434-442.
- Talaro, K.P. (2008). *Foundation of Microbiology*. 6th Ed. McGraw-Hill. New York, NY, pp. 244-245.
- Tan, K.Z., Radziah, O., Halimi, M. S., Khairuddin, A. R., Habib, S. H. & Shamsuddin Z. H. (2014). Isolation and characterization of rhizobia and plant growth promoting rhizobacteria and their effects on the growth of rice seedlings. American Journal of Agricultural and Biological Sciences, 9(3), 342-360.
- Tangahu, B.V., 2013. Phytotoxicity of wastewater containing lead (Pb) effects *Scirpus grossus*. Int. J. Phytoremediation 37–41. https://doi.org/10.1080/15226514.2012.736437.
- Tangahu, B.V., Abdullah, S.R.S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M., 2014. Biosorption of Lead (Pb) by Three *Bacillus* Species (*Bacillus Cereus*, *Bacillus Pumilus* and *Bacillus Subtilis*) Isolated from *Scirpus grossus*. From Sources to Solut, pp. 215–220. https://doi.org/10.1007/978-981-4560-70-2_40.
- Taran M, Fateh R, Rezaei S, Gholi MK (2019) Isolation of arsenic accumulating bacteria from garbage leachates for possible application in bioremediation. *Iran J Microbial* 11:60-66.
- Tashan, H., Harighi, B., Rostamzadeh, J., & Azizi, A. (2021). Characterization of arsenic-resistant endophytic bacteria from alfalfa and chickpea plants. *Frontiers in Plant Science*, 1466.
- Temminghoff, E.E.J.M. & Houba, V.J.G. 2004. *Plant analysis procedures*. Edisi ke-2. Kluwer, the Netherlands.
- Tenney, M. W., & Stumm, W. (1965). Chemical flocculation of microorganisms in biological waste treatment. *Journal (Water Pollution Control Federation)*, 1370-1388.
- Titah HS, Abdulah SRS, Anuar N, Idris M, Basri H, Mukhlisin M (2010). Preliminary phytotoxicity study against *Ludwigia octovalvis* and isolation of rhizobacteria for arsenic phytoremediation. *Proceeding of 9th International Annual Symposium on Sustainability Science and Management*, UMTAS, University Malaysia Terengganu, Malaysia.

- Titah, H. S., Abdullah, S. R. S., Anuar, N., Idris, M., Basri, H., & Mukhlisin, M. (2011). Isolation and screening of arsenic resistant rhizobacteria of *Ludwigia octovalvis*. *African Journal of Biotechnology*, *10*(81), 18695-18703.
- Titah, H. S., Abdullah, S. R. S., Idris, M., Anuar, N., Basri, H., Mukhlisin, M., ... & Kurniawan, S. B. (2018). Arsenic resistance and biosorption by isolated rhizobacteria from the roots of *Ludwigia octovalvis*. *International journal of microbiology*, 2018.
- Titah, H. S., Abdullah, S. R. S., Mushrifah, I., Anuar, N., Basri, H., & Mukhlisin, M. (2013). Arsenic toxicity on *Ludwigia octovalvis* in spiked sand. *Bulletin of environmental contamination and toxicology*, 90(6), 714-719.
- Titah, H. S., Abdullah, S. R. S., Mushrifah, I., Anuar, N., Basri, H., & Mukhlisin, M. (2013). Effect of applying rhizobacteria and fertilizer on the growth of *Ludwigia octovalvis* for arsenic uptake and accumulation in phytoremediation. *Ecological Engineering*, 58, 303-313.
- Titah, H. S., Rozaimah, S., Abdullah, S., Idris, M., Anuar, N., Basri, H., and Mukhlisin, M. (2012). Arsenic Range Finding Phytotoxicity Test Against Ludwigia octovalvis as First Step in Phytoremediation. Research Journal of Environmental Toxicology, 6: 151-159. DOI: 10.3923/rjet.2012.151.159.
- Titah, H.S.; Abdullah, S.R.S.; Mushrifah, I.; Anuar, N.; Basri, H.; Mukhlisin, M. Phytotoxicity and uptake of arsenic by *Ludwigia octovalvis* in a pilot reed bed system. *Environ. Eng. Sci.* (2014), 31, 71–79. [CrossRef]
- Titah, H.S.; Abdullah, S.R.S.; Mushrifah, I.; Anuar, N.; Basri, H.; Mukhlisin, M. Optimization of arsenic phytoremediation by *Ludwigia octovalvis* in pilot reed bed system using response surface methodology. In *from Sources to Solution*; *Springer*: New York, NY, USA, (2014a); pp. 251–255.
- Titah, H.S.; Halmi, M.I.E.B.; Abdullah, S.R.S.; Hasan, H.A.; Idris, M.; Anuar, N. Statistical optimization of the phytoremediation of arsenic by *Ludwigia octovalvis*-in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN). *Int. J. Phytoremediation* (2018), 20, 721–729. [CrossRef] [PubMed]
- Tiwari, S., Sarangi, B. K., & Pandey, R. A. (2014). Efficacy of three different plant species for arsenic phytoextraction from hydroponic system. *Environmental Engineering Research*, 19(2), 145-149.
- Toet, S.; Logtestijn, R.S.P.V.; Kampf, R.; Schreijer, M.; Verhoeven, J.T.A. The effect of hydraulic retention time on the removal of pollutants from sewage treatment plant effluent in a surface-flow wetland system. *Wetlands* (2005), 25, 375–391. [CrossRef]
- Tortora, G.J., Funke, B.R. and Chase, C.L. (2006). *Microbiology*: An Introduction. 9th Ed. Pearson Education San Francisco, CA. pp. 69-176.

- Totok, A.D.H. & Rahayu, A.Y. (2004). Analysis of physiology efficiency of nitrogen absorption, growth, and yield of several new soybean cultivars with drought stress and biofertilizer application. *Agrosains* 6(2): 70-74.
- Tsai, K.J., Hsu, C.M. and Rosen, B.P. (1997). Efflux mechanisms of resistance to cadmium, arsenic and antimony in prokaryotes and eukaryotes, Zool. Stud., 36: 1–16.
- Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. *Current Opinion in Biotechnology*, 20(6), 659-667.
- Tu, C. & Ma, L.Q. (2003). Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator *Pteris vittata* L. *Plant and Soil* 249: 373-382.
- U. S. Environmental Protection Agency (EPA), "Introduction to Phytoremediation," National Risk Management Research Laboratory, EPA/600/R-99/107, (2000).
- Ujang, F. A., Roslan, A. M., Osman, N. A., Norman, A., Idris, J., Farid, M. A. A., ... & Hassan, M. A. (2021). Removal behavior of residual pollutants from biologically treated palm oil mill effluent by *Pennisetum purpureum* in constructed wetland. *Scientific reports*, 11(1), 1-12.
- Ullah, A., Heng, S., Munis, M.F.H., Fahad, S., Yang, X., (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. *Environ. Exp. Bot.* 117, 28–40.
- Ummay, A., Khalid, R., Hayat, R., (2015). Soil Bacteria and Phytohormones for Sustainable Crop Production. *Springer* International Publisher, pp. 87–103. Bacterial metabolites in sustainable agroecosystem.
- UNICEF. (2007). The state of the world's children 2008: Child survival (Vol. 8). Unicef.
- Upadhyay MK, Yadav P, Shukla A, Srivastava S (2018) Utilizing the potential of microorganisms for managing arsenic contamination: a feasible and sustainable approach. *Front Environ Sci* 6:24.
- USEPA. (1996b). SW 846: Method 3050B Acid Digestion of Sediments, Sludge and Soils, Rev. 2.
- Utamy, R.F.; Ishii, Y.; Idota, S.; Harada, N.; Fukuyama, K. Adaptability of dwarf Napier grass under cut and carry and grazing sysytems for smallholder beef farmers in southern Kyhushu, Japan. *J. Warm Reg. Soc. Anim. Jpn.* (2011), 54, 87–98.
- Valverde, A., Gonzalez-Tirante, M., Medina-Sierra. M. & Santa-Regina, I. (2011). Diversity and community structure of culturable arsenic-resistant bacteria across a soil arsenic gradient at an abandoned tungsten-tin mining area. *Chemosphere* 85: 129–134.

- Van Halem, D., Heijman, S. G. J., Amy, G. L., & van Dijk, J. C. (2009). Subsurface arsenic removal for small-scale application in developing countries. *Desalination*, 248(1-3), 241-248.
- Várallyay, S.; Bódi, É.; Garousi, F.; Veres, S.; Kovács, B. Effect of arsenic on dry weight and relative chlorophyll content in greeningmaize and sunflower tissues. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 167–169. [CrossRef]
- Vassilev, S. V., & Vassileva, C. G. (1997). Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations. *Fuel Processing Technology*, 51(1-2), 19-45.
- Vaughan, G.T., (1993). The environmental chemistry and fate of arsenical pestisides in cattle tick dip sites and banana land plantations. CSIRO Divison of Coal Industry, Center for Advanced Analytical Chemistry, Melbourne, Australia.
- Verbruggen, N., Hermans, C. & Schat, H. (2009). Mechanism to cope with arsenic or cadmium excess in plant. *Current Opinion in Plant Biology* 12: 1-9.
- Vijay, D., Srivastava, M.K., Gupta, C.K., Malaviya, D.R., Roy, M.M., Mahanta, S.K., Singh, J.B., Maity, A., Ghosh, P.K., Eds.; *Range Management Society of India*: Jhansi, India, (2015); pp. 337–348.
- vlab.amrita.edu.,(2011).MotilityTest.https://vlab.amrita.edu/?sub=3&brch=73&sim=69 7&cnt=2 (Accessed on 16 May 2017).
- Vorontsov, I.I., Minasov, G., Brunzelle, J.S., Shuvalova, L., Kiryukhina, O., Collart, F.R., et al., (2007). Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Prot. Sci. 16 (11), 2483–2490.
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. *Environ. Sci. Technol.* (2011), 45, 61–69. [CrossRef]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. *Ecol. Eng.* (2013), 61, 582–592. [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. *Hydrobiologia* (2011), 674, 133–156. [CrossRef]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. *Water Res.* (2013), 47, 4795–4811. [CrossRef]
- Walitang, D. I., Kim, K., Madhaiyan, M., Kim, Y. K., Kang, Y., & Sa, T. (2017). Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. *BMC Microbiology*, 17(1), 209.

- Wang, G.L., Que, F., Xu, Z.S., Wang, F., Xiong, A.S., (2015). Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. *BMC plant boil* 15, 290.
- Wang, H.B., Wong, M.H., Lan, C.Y., Baker, A.J.M., Qin, Y.R., Shu, W.S., Chen, G.Z. & Ye, Z.H. (2007). Uptake and accumulation of arsenic by 11 Petris taxa from southern China. *Environmental Pollution* 145: 225-233.
- Wang, J., Zhao, F., Meharg, A.A., Raab, A., Feldmann, J. & McGrath, P.S. (2002). Mechanism of arsenic hyperaccumulation in *Pteris vittata*, uptake kinetics, interaction with phosphate and arsenic speciation. *Plant Physiology* 130: 1552-1561.
- Wang, Q., Xiong, D., Ahao, P., Yu, X., Tu, B. & Wang, G. (2011). Effect of applying on arsenic-resistant and plan growth-promoting rhizobacterium to enhanced aoil arsenic phytoremediation by *Populus deitoides* LH05-17. *Journal of Applied Microbiology*. 111(5): 1065-1074.
- Wang, R.; Korboulewsky, N.; Prudent, P.; Domeizel, M.; Rolando, C.; Bonin, G. Feasibility of using an organic substrate in a wetland system treating sewage sludge: Impact of plant species. *Bioresour. Technol.* (2010), 101, 51–57. [CrossRef]
- Wang, S. and X. Zhao, (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. *J. Environ. Manage.*, 90: 2367-2376.
- Wang, S., Teng, S., Fan, M., (2010). In: Sarkar, Santosh Kumar (Ed.), Interaction between Heavy Metals and Aerobic Granular Sludge. *Environmental Management*, Sciyo, Croatia, pp. 173–188.
- Wangchuk, K.; Rai, K.; Nirola, H.; Dendup, C.; Mongar, D. Forage growth, yield and quality responses of Napier hybrid grass cultivars to three cutting intervals in the Himalayan foothills. *Trop. Grassl. Forrajes Trop.* (2015), 3, 142–150. [CrossRef]
- Wani, P.A. & Khan, M.S. (2010). *Bacillus* species enhance growth paramaters of chickpea (*Cicer arietinum* L.) in chromium stressed soil. *Food and Chemical Toxicology*. 48: 3262-3267.
- Wani, P.A., Khan, M.S., Zaidi, A., (2008b). Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. *Arch. Environ. Contam. Toxicol.* 55, 33–42.
- Warrington, P. D. (1994). *Collecting and preserving aquatic plants*. Water Quality Branch, Ministry of Environment, Lands and Parks.
- Williams, M.J.; Hanna, W.W. Performance and nutritive quality of dwarf and semidwarf Elephant grass genotypes in the south-eastern USA. Trop. Grassl. (1995), 29, 122–127.

- Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. *Water Res.* (2014), 57, 40–55. [CrossRef]
- Xiao-ke, C., Hua-lin, L., Yu-bo, H., Peng, L. & Shu-ting, D. (2012). Arsenic Distribution, Species, And Its Effect on Maize Growth Treated with Arsenate. *Journal of Integrative Agriculture* 11(3): 416-423.
- Xiong, T.; Dumat, C.; Pierart, A.; Shahid, M.; Kang, Y.; Li, N.; Bertoni, G.; Laplanche, C. Measurement of metal bio accessibility in vegetables to improve human exposure assessments: Field study of soil-plant-atmosphere transfers in urban areas, South China. *Environ. Geochem. Health* (2016), 38, 1283–1301. [CrossRef] [PubMed]
- Xu, J.Y.; Han, Y.H.; Chen, Y.; Zhu, L.J.; Ma, L.Q. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from Ashyperaccumulator *Pteris vittata*. *Chemosphere* (2016), 144, 1233–1240. [CrossRef]
- Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q., Zhang, R., (2019). *Bacillus velezensis* wall teichoic acids are required for biofilm formation and root colonization. *Appl. Environ. Microbiol.* 85, 02116–02118.
- Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK. Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol. 2017; 5:45–57.
- Yadav, S. K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. *South African Journal of Botany* 76(2):167-179.
- Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. *J Biosci Bioeng* 118:1-9.
- Yang HC, Fu HL, Lin YF, Rosen BP (2012) Pathways of arsenic uptake and efflux. In Current topics in membranes 69:325-358.
- Yang, P., Zhou, X.F., Wang, L.L., Li, Q.S., Zhou, T., Chen, Y.K., Zhao, Z.Y., He, B.Y., (2018). Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis. *Int. J. Environ. Res. Public Health* 15, 1330.
- Yang, Q., Tu, S., Wang G., Liao, X. & Yan, X. (2011). Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by *Pteris Vittata L. International Journal of Phytoremediation* 14: 89-99.
- Yang, Q., Tu, S., Wang, G., Liao, X., Yan, X., (2012). Effectiveness of applying arsenate reducing bacteria to enhanced arsenic removal from polluted soils by *Petris vittata* L. *Int. J. Phytoremediation* 14 (1), 88–89.

- Yao, M., Zeng, Q., Luo, P., Yang, G., Li, J., Sun, B., ... & Zhang, A. (2023). Assessing the health risks of coal-burning arsenic-induced skin damage: A 22-year follow-up study in Guizhou, China. *Science of The Total Environment*, 905, 167236.
- Ye, J., Yang, H.C., Rosen, B.P., Bhattacharjee, H., (2007). Crystal structure of the flavoprotein ArsH from *Sinorhizobium meliloti*. *FEBS Lett*. 581 (21), 3996–4000.
- Yogesh, K., Vamsi, K.K., Amol, B., Nikhil, G., Soham, T., Prasad, P., Girish, G., Mayank, G., Amol, J., Adarsh, M., Joshi, B. & Mishra, D. (2009). Study of pectinase production in submerged fermentation using different isolates of *Aspergillus Niger. International journal of microbiology research*, 1(2), 13.
- Youssef, G. A., El-Aassar, S. A., Berekaa, M., El-Shaer, M., & Stolz, J. (2009). Arsenate and selenate reduction by some facultative bacteria in the Nile Delta. *American-Eurasian Journal of Agriculture and Environmental Science*, 5(6), 847-855.
- Yu, K.C., Tsai, L.J., Chen, S.H. & Ho, ST. (2001). Chemical binding of heavy metals in anoxic river sediments. *Water Research* 35(17): 4086-4094.
- Yun, L. S., & Ali, A. (2019). Removal of Cadmium Ions from Synthetic Wastewater by using *Pennisetum purpureum* (Elephant Grass) as Low Cost Biodegradable Adsorbent (Biosorbent). Universiti Malaysia Terengganu *Journal of Undergraduate Research*, 1(1), 103-112.
- Zakaria, Z. A., Zakaria, Z., Surif, S., & Ahmad, W. A. (2007). Hexavalent chromium reduction by *Acinetobacter haemolyticus* isolated from heavy-metal contaminated wastewater. *Journal of hazardous materials*, 146(1-2), 30-38.
- Zalesny, J.A., Zalesny, Jr.R.S, Wiese, A.H., Sexton, B.T. & Hall, R.B. (2008). Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of *Populus* after irrigation with landfill leachate. *Journal of Sustainable Forestry* 27(3): 303-327.
- Zemanová, V., Pavlíková, D., Hnilička, F., & Pavlík, M. (2021). Arsenic toxicity-induced physiological and metabolic changes in the shoots of *Pteris cretica* and *Spinacia oleracea*. *Plants*, 10(10), 2009.
- Zemanová, V., Pavlíková, D., Novák, M., Dobrev, P. I., Matoušek, T., Motyka, V., & Pavlík, M. (2022). Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes. *Plant, Soil and Environment*.
- Zemanová, V.; Popov, M.; Pavlíková, D.; Kotrba, P.; Hniliˇcka, F.; Cesk ˇ á, J.; Pavlík, M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator *Pteris cretica* (L.) var. Albolineata. BMC Plant Biol. 2020, 20, 130. [CrossRef]

- Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. *Bioresource Technol* 101(6):2063–2066. doi: 10.1016/j.biortech.2009.11.065.
- Zhang, D.C.; Mörtelmaier, C.; Margesin, R. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. *Sci. Total Environ.* 2012, 421, 184–196. [CrossRef]
- Zhang, S.; Zhou, Q.; Xu, D.; He, F.; Cheng, S.; Liang, W.; Du, C.; Wu, Z. Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: Effects on water quality and zooplankton. *Pol. J. Environ. Stud.* (2010), 19, 1063–1070.
- Zhang, W., Cai, Y., Tu, C. & Ma, L.Q. (2002). Arsenic speciation and distribution in an arsenic hyperaccumulator plant. *Science of the Total Environment* 300: 167-177.
- Zhang, Z.-Q.; Bo, L.; Xia, S.-Q.; Wang, X.-J.; YANG, A.-M. Production and application of a novel bio flocculant by multiple microorganism consortia using brewery wastewater as carbon source. *J. Environ. Sci.* (2007), 19, 667–673. [CrossRef]
- Zhao, Q.; Tang, J.; Li, Z.Y.; Yang, W.; Duan, Y.C. The Influence of Soil Physico-Chemical Properties and Enzyme Activities on Soil Quality of Saline-Alkali Agroecosystems in Western Jilin Province, China. *Sustainability* (2018), 10, 15. [CrossRef]
- Zheng, J. H. (2014). Effects of Arsenic on Enzyme Activity in Mine Soil Microorganism. In *Advanced Materials Research* (Vol. 1010, pp. 96-100). Trans Tech Publications Ltd.
- Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., & Wei, L. (2020). Heavy metals make soil enzymes 3 times weaker, says a soil scientist from RUDN University.
- Zvobgo, G.; Lwalaba JL, W.; Sagonda, T.; Mapodzeke, J.M.; Muhammad, N.; Shamsi, I.H.; Zhang, G.P. Alleviation of arsenic toxicity by phosphate is associated with its regulation of detoxification, defense, and transport gene expression in barley. J. Integr. Agric. 2019, 18, 381–394. [CrossRef]