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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

PHYTOREMEDIATION OF ARSENIC IN CONSTRUCTED WETLAND 

USING Pennisetum purpureum Schumach. AND PLANT GROWTH-

PROMOTING RHIZOBACTERIA 

By 

MD. EKHLASUR RAHMAN

July 2023 

Chairman :   Mohd Izuan Effendi bin Halmi, PhD 

Faculty :   Agriculture 

Nowadays there are many types of technologies to restore contaminated areas with 

heavy metals. One of the technologies that belong to a green technology is the 

remediation of soil and groundwater contaminated with heavy metals using plants and 

plant growth-promoting rhizobacteria (PGPR). This technology is known as PGPR-

assisted phytoremediation in the world. Among the advantages of phytoremediation are 

a cost-effective, environmentally friendly and it can be used as an alternative for 

bioenergy. The research was conducted to search for potential plants which can be used 

in phytoremediation mainly for inorganic arsenic in arsenate form [As(V)]. The 

objectives of this study were to determine the maximum concentration of As that could 

be taken up by Pennisetum purpureum in phytoremediation, to identify the role of 

rhizobacteria in the root of P. purpureum which can enhance phytoremediation process, 

to determine the mechanisms of As uptake and bioaccumulation by P. purpureum and 

to optimize the As phytoremediation process using pilot reed beds. As phytotoxicity 

test, rhizobacteria isolation, molecular identification of rhizobacteria, qualitative and 

quantitative screening of the rhizobacterial isolates for As-tolerance, determination of 

different plant growth-promoting traits, As phytoremediation in pilot reed beds, 

determination of different enzyme activity in pilot reed beds and the optimization of 

phytoremediation process were included in this study. Results of rhizobacteria isolation 

showed that two gram-positive and seven gram-negative rhizobacteria that resistant to 

As. Almost all rhizobacteria (nine) through molecular identification showed excellent 

performance on As tolerance and different plant growth-promoting activity. Among 

them Bacillus australimaris showed the highest performance on As-tolerant and 

different plant growth-promoting activity. Based on SEM-EDX and TEM-EDX 

analysis showed that there was a difference between B. australimaris in control and 

exposed with As. P. purpureum was able to survive up to 40 mg kg-1 As concentration 

for 77 days of exposure at the time of advanced phytotoxicity test. The amount of 

bioaccumulation of As in entire P. purpureum on 77 days reached 2,323.22 ± 74.34 mg 
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kg-1 dry weight with bioaccumulation factor 0.23 ± 0.006, translocation factor 0.87 ± 

0.028, percentages of translocation 42.92 ± 1.2 and calorie value of P. purpureum 

16,841.32 ± 199.10 J g-1. Results on phytoremediation of As in non-aerated pilot reed 

beds showed that the highest amount of As bioaccumulation by P. purpureum that 

occurred in the As concentration of 39 mg kg-1 at a retention time of 42 days was 

5,733.28 ± 68.80 mg kg-1 dry weight. The addition of aeration in pilot reed beds could 

enhance toxic effect of As on P. purpureum although the accumulation of As increased. 

Optimization results on the phytoremediation process with concentration of 39 mg kg-1 

As showed that addition of nine rhizobacteria consortium and NPKS fertilizer could 

alleviate the As toxic effect and increase the biomass of P. purpureum, however the 

total As bioaccumulation ability increased and its highest uptake was 6,944.48 ± 69.44 

mg kg-1 dry weight. Results of SEM-EDX analysis of fresh roots, stems and leaves of 

P. purpureum revealed significant differences in the context on the effect of As on plant

tissue and uptake of As between control and different treatments. In conclusion, P.

purpureum is an As hyperaccumulator plant but it is sensitive to high concentration of

As and the addition of PGPR consortium has enhanced both the growth of P.

purpureum and the As accumulation. These results suggest that PGPR-assisted

phytoremediation of As in constructed wetland can be used in As phytoremediation in

agricultural polluted areas and anthropogenically polluted environments due to its high

capability to uptake and bioaccumulation of As.

Keywords: Phytoremediation, Arsenic, Constructed wetland, Pennisetum purpureum, 

Plant growth-promoting rhizobacteria 

SDG: GOAL 3: Good health and well-being, GOAL 6: Clean water and sanitation 



© C
OPYRIG

HT U
PM

iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

FITOREMEDIASI ARSENIK DI TANAH BENCAH YANG DIBINA 

MENGGUNAKAN Pennisetum purpureum Schumach. DAN RHIZOBAKTERIA 

PENGALAK TUMBESARAN 

Oleh 

MD. EKHLASUR RAHMAN

Julai 2023 

Pengerusi :   Mohd Izuan Effendi bin Halmi, PhD 

Fakulti :   Pertanian 

Kini terdapat banyak jenis teknologi untuk memulihkan kawasan yang tercemar 

dengan logam berat. Salah satu teknologi yang tergolong dalam teknologi hijau ialah 

pembaikan tanah dan air bawah tanah yang tercemar dengan logam berat menggunakan 

tumbuhan dan rhizobakteria penggalak tumbesaran tumbuhan (PGPR). Teknologi ini 

dikenali sebagai PGPR dibantu oleh fitoremediasi di dunia. Antara kelebihan 

fitoremediasi ialah kos efektif, mesra alam dan ia boleh digunakan sebagai alternatif 

untuk biotenaga. Penyelidikan ini dijalankan untuk mencari tumbuhan berpotensi yang 

boleh digunakan dalam fitoremediasi terutamanya untuk arsenik tak organik dalam 

bentuk arsenat [As(V)]. Objektif kajian ini adalah untuk menentukan kepekatan 

maksimum As yang boleh diambil oleh Pennisetum purpureum dalam fitoremediasi, 

untuk mengenal pasti peranan rhizobakteria dalam akar P. purpureum yang boleh 

meningkatkan proses fitoremediasi, untuk menentukan mekanisme arsenik (As) 

pengambilan dan bioakumulasi oleh P. purpureum dan untuk mengoptimumkan proses 

fitoremediasi As menggunakan pilot rid bed. Ujian kefitotoksikan, pengasingan 

rhizobakteria, pengenalpastian molekular rhizobakteria, saringan kualitatif dan 

kuantitatif bagi pengasingan rhizobakteria untuk toleransi As, penentuan ciri-ciri 

penggalak pertumbuhan tumbuhan yang berbeza, fitoremediasi dalam pilot rid bed, 

penentuan aktiviti enzim yang berbeza dalam rid bed dan pengoptimuman proses 

fitoremediasi turut dijalankan dalam kajian ini. Keputusan pengasingan rhizobakteria 

menunjukkan dua gram positif dan tujuh gram negatif rhizobakteria yang mempunyai 

rintangan kepada As. Hampir semua rhizobakteria (sembilan) melalui pengenalpastian 

molekul menunjukkan prestasi cemerlang pada toleransi As dan aktiviti yang 

menggalakkan pertumbuhan tumbuhan yang berbeza. Antaranya Bacillus australimaris 

menunjukkan prestasi tertinggi. Berdasarkan analisis SEM-EDX dan TEM-EDX 

menunjukkan terdapat perbezaan antara B. australimaris dalam kawalan dan terdedah 

dengan As. P. purpureum mampu bertahan sehingga 40 mg kg-1 As kepekatan selama 

77 hari pendedahan pada masa ujian fitotoksisiti lanjutan. Jumlah bioakumulasi As 
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dalam keseluruhan P. purpureum pada 77 hari mencapai 2,323.22 ± 74.34 mg kg-1 berat 

kering dengan faktor bioakumulasi 0.23 ± 0.006, faktor translokasi 0.87 ± 0.028, 

peratusan nilai translokasi 42.92 kalori dan purpureum. 16,841.32 ± 199.10 J g-1. 

Keputusan fitoremediasi As dalam pilot rid yang tidak berudara menunjukkan jumlah 

bioakumulasi As tertinggi oleh P. purpureum yang berlaku dalam kepekatan As 39 mg 

kg-1 pada masa pengekalan 42 hari ialah 5,733.28 ± 68.80 mg kg-1 berat kering. 

Penambahan pengudaraan dalam pilot rid bed boleh meningkatkan kesan toksik As 

pada P. purpureum walaupun pengumpulan As meningkat. Hasil pengoptimuman 

terhadap proses fitoremediasi dengan kepekatan 39 mg kg-1 Seperti yang menunjukkan 

bahawa penambahan sembilan konsortium rhizobakteria dan baja NPKS dapat 

mengurangkan kesan toksik As dan meningkatkan biojisim P. purpureum, namun 

jumlah keupayaan bioakumulasi As meningkat dan pengambilan tertinggi ialah 

6,944.48 ± 69.44 mg kg-1 berat kering. Keputusan analisis SEM-EDX akar, batang dan 

daun segar P. purpureum mendedahkan perbezaan yang ketara dalam konteks kesan As 

pada tisu tumbuhan dan pengambilan As antara kawalan dan rawatan yang berbeza. 

Kesimpulannya, P. purpureum adalah tumbuhan hiperakumulator As tetapi ia sensitif 

kepada As dan penambahan konsortium PGPR telah meningkatkan kedua-dua 

pertumbuhan P. purpureum dan pengumpulan As. Keputusan ini menunjukkan bahawa 

fitoremediasi As dibantu PGPR dalam tanah lembap yang dibina boleh digunakan 

dalam fitoremediasi As dalam kepekatan rendah seperti kawasan tercemar pertanian 

dan kawasan perindustrian kerana keupayaannya yang tinggi untuk menyerap dan 

bioakumulasi As.  

Kata kunci: Fitoremediasi, Arsenik, Tanah bencah yang dibina, Pennisetum 

purpureum, Rhizobakteria pengalak tumbesaran 

SDG: GOAL 3: Kesihatan dan kesejahteraan yang baik, GOAL 6: Air bersih dan 

sanitasi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research background 

 

 

Arsenic (As) is a hazardous, cancer-causing, as well as widespread metalloid in the 

ecosystem. Owing to industrial usage, the total global arsenic production was 

anticipated to reach 8.61 million tons (Statista, 2023). As polluted soil, sludge, as well 

as sediment are the primary factors to the arsenic pollution of drinkable water, aquifers, 

as well as the food cycle. Arsenite (As (III)) as well as arsenate (As (V)) are the main 

abundant types of arsenic in environment (Pillewan et al., 2014). It is reported to 

reduce crop production in plants and prolonged contact to arsenic at levels more than 

50 mg L-1 can cause a wide array of diseases in humans, including different types of 

cancers, premature delivery, stillbirth, and spontaneous abortion (Beniwal, Yadav and 

Ramakrishna 2023). More than 140 million inhabitants in seventy countries are 

reportedly impacted through arsenic contamination, according to a United Nations 

Children’s Fund (UNICEF) report in 2007. Due to this issue, there is growing 

awareness in using various treatment methods to get rid of arsenic from polluted water. 

Although it is well recognized that traditional designed treatment methods are 

expensive and have issues with sludge formation and disposal. It is crucial to discover 

onsite, decentralized, as well as ecologically safe treatment processes that are reliable, 

have little need for maintenance, and are inexpensive to operate. 

 

 

Constructed wetlands are a reliable and economically viable natural process that have 

been helpful in eliminating a variety of contaminants, including arsenic (Ayangbenro 

and Babalola, 2017). Constructed wetlands (CWs) are artificial processes that have 

been created to utilize the natural processes incorporating the plants, soils, as well as 

related microbial populations of wetlands to help purify wastewater (Hammer, 2020). 

Arsenic and other metals and metalloids might be effectively removed by this 

technique (Buddhawong et al., 2005). Different types of plants have been found useful 

for phytoremediation of heavy metals in the CWs such as Pennisetum purpureum, 

Scirpus grossus, Ludwigia octovalvis, Melastoma malabathricum etc. (Rahman et al., 

2020). Napier grass (Pennisetum purpureum) is a perennial grass, has lately gained 

international interest as a process for bioremediation of heavy metals (Zhang et al., 

2010). Juel, Dey & Akash 2018 studied Napier grass (P. purpureum) and Indian 

mustard (Brassica juncea) plants grew well on tannery waste and gathered large levels 

of heavy metals in various areas of the plant. Yun and Ali, 2019 directed a research on 

Pennisetum purpureum (elephant grass) for phytoremediation of cadmium. They 

discovered that the maximum cadmium ion elimination percentages for both untreated 

as well as treated P. purpureum were 92% and 98%, respectively. Although, Napier 

grass is efficient in removing toxic heavy metal and nutrients. However, the capability 

and efficiencies of Napier grass in removing arsenic in constructed wetland is not 

much reported in the literature.  
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Recently, the probable synergies between phytoremediation including bioenergy 

generation have been progressively studied (Kumar et al., 2017). By using the biomass 

that is collected during the phytoremediation operation, it is possible to create 

renewable bioenergy, like biogas, while simultaneously removing hazardous toxins as 

well as improving the condition of the soil (Hunce et al., 2019). As 100% of the 

biomass is being used, this is also one of the zero-waste management concepts 

(Osmana et al., 2020). Due to P. purpureum has been extensively investigated and may 

be used as a feedstock for the manufacture of biofuels, its effectiveness for bioenergy 

generation cannot be disputed in this aspect (Takara and Khanal, 2015; Mohammed et 

al., 2019). Many investigations have been done on the process of making ethanol from 

P. purpureum. According to Bensah et al. (2015), when compared to other biomass 

kinds investigated, P. purpureum had the greatest ethanol generation of 65.1% 

(bamboo wood, rubber wood, Siam weed, including coconut husk). Theoretically, the 

highest ethanol output is 35%. Research proved that this plant is a good resource for 

biofuel generation (Osmana et al., 2020). Napier grass obtained as a by-product after 

removing of arsenic in constructed wetland and then its substantial cellulose level 

allowed for the production of biofuels (Takara and Khanal, 2015). Its abundant 

cellulose may be used as a reservoir of carbon in the synthesis of biofuels like ethanol 

as well as butanol (He et al., 2017).  

 

 

Previously, there are various methods used to get rid of that pollution from the 

environment. Amongst the approaches, phytoremediation is a green and an awful lot 

convincing device for clean-up of arsenic. Nevertheless, the implementation of 

phytoremediation in polluted places is constrained by dual major issues as for example 

i) Slow and steady expansion rate at stronger heavy metals polluted places and ii) 

Systemic absorption of heavy metals. This situation will be minimized and hasten the 

phytoremediation effectiveness by integrating the latent rhizobacteria as a 

complementary method. For this reason, to remove arsenic from environment 

rhizobacteria assisted phytoremediation of arsenic in Constructed wetland (CW) are 

very important at this moment. Plant growth promoting rhizobacteria (PGPR) assisted 

phytoremediation in CW is a system utilized to eliminate ecological pollutants from 

the environment and utilized the biological mechanisms inherent in microbes and 

plants eradicated harmful contaminants and restored the ecosystem to its original state 

(Ayangbenro and Babalola, 2017). Additionally, constructed wetlands are designed to 

mimic natural chemical, microbiological, and physical methods. The process is 

dependent on 3 factors: contact with soil microorganisms or rhizobacteria, chemical as 

well as physical properties of the reed bed, along with the identity of the plant itself.  

 

 

PGPR is a set of bacteria that can be obtained in the rhizosphere (Ahmad et al., 2008). 

Soil rhizobacteria may also have a direct influence on metal dissolvability through 

affecting the speciation of heavy metals in the root zone, as well as metal 

bioavailability through modifying their chemical characteristics (Jing et al., 2007). Due 

to the absence of beneficial microorganisms, polluted soils are frequently lacking in 

nutrients. Nevertheless, such soils may be rendered nutrient-rich through introducing 

metal-resistant microorganisms, particularly PGPR, which not only offer critical 

nutrients to plants, but also enable plants to extract heavy metals, which can then be 

used in agricultural production or phytoremediation of polluted soil.  
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The interactions between plant and rhizobacteria have widely been applied in farming 

activities by providing plant with nitrogen sources and thus stimulate plant growth. 

This relationship has been applied in heavy metal contaminated soils to enhance soil 

fertility and to increase bioavailability of the metals through nitrogen fixation along 

with generation of the plant growth promoting factors like generation of carboxylic 

acid, solubilize insoluble phosphate, siderophores, indole acetic acid including 1-

aminocyclopropane-1-carboxylate deaminase. However, the mechanisms of PGPR 

from Napier grass in assisting arsenic (As) uptake has never been studied. Therefore, in 

this study, PGPR will be isolated and characterized from Napier grass rhizosphere 

environment in constructed wetland. The functions and mechanisms of isolated 

rhizobacteria to enhance arsenic uptake will be investigated. 

 

 

1.2 Problem statement 

 

 

Amongst the Potentially toxic elements (PTEs), Arsenic (As) was identified as one of 

the most extremely hazardous as well as cancer causing chemicals (Niazi et al., 2017; 

Mehmood et al., 2017). Arsenic along with its components were classified as a 

category 1 human carcinogens by the US Environmental Protection Agency 

including the International Agency for Research on Cancer (Niazi et al., 2018). As 

species are harmful to the humans, animals and plant varieties (Quaghebeur and 

Rengel, 2005). As poisoning in both groundwater including soil has considered a major 

health along with ecological issue around the globe, particularly in South as well as 

Southeast Asia (Podgorski et al., 2017; Beniwal, Yadav and Ramakrishna 2023). As 

levels in drinkable water in certain emerging countries, such as Bangladesh, India, as 

well as China, surpass requirements for human health safety, resulting in significant 

toxicity including probably death (Srivastava et al., 2012).  

 

 

Previously, there are various methods used to remediate arsenic from the environment. 

These include physical, chemical and biological methods. These are overpriced, 

environmentally not so safe and inadequate in performance but we need to find out 

such method which is being aesthetically pleasing, sustainable, environmentally 

friendly, easy to operate and economically viable. So, an importance has been averted 

towards the development of another technologies, like PGPR assisted 

phytoremediation, which uses various living organisms and plants for the elimination 

of toxic metals and covers all the aforesaid side. Besides, by removing arsenic from the 

soil, it will be possible to protect the health of the soil; crops will be conserved from 

the phytotoxic effect of arsenic; production of crops will be enhanced as well as 

prevent the entry of arsenic in our food chain. Continuation of this study will make it 

possible to grow arsenic free crops in healthy soil. As a result, overall ecosystem will 

be protected and food security will be ensured.  

 

 

There have been very few studies on the elimination of heavy metals including various 

pollutants utilizing exclusively P. purpureum, but no research has been done yet on 

arsenic removal in constructed wetland utilizing P. purpureum and plant growth 

promoting rhizobacteria that were the novelty of my research.  
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1.3 Objectives 

1. To determine the maximum concentration of As that P. purpureum can

survive and assess the capability of As uptake through preliminary and

advanced phytotoxicity test for phytoremediation application.

2. To isolate, screen, identify and characterize the As resistant PGPR from P.

purpureum and determine their capability for biosorption of As.

3. To design, operate and assess the capability of arsenic uptake with different

rate of aeration in CW using P. purpureum and PGPR.

4. To optimize some factors (As loading, retention time including rate of

aeration) and determine the effects of applying PGPR consortium, NPKS

fertilizers as well as PGPR consortium including NPKS fertilizers together on

the growth of P. purpureum and phytoextraction of As in CW.
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