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July 2023

Chairman : Mohd lzuan Effendi bin Halmi, PhD
Faculty . Agriculture

Nowadays there are many types of technologies to restore contaminated areas with
heavy metals. One of the technologies that belong to a green technology is the
remediation of soil and groundwater contaminated with heavy metals using plants and
plant growth-promoting rhizobacteria (PGPR). This technology is known as PGPR-
assisted phytoremediation in the world. Among the advantages of phytoremediation are
a cost-effective, environmentally friendly and it can be used as an alternative for
bioenergy. The research was conducted to search for potential plants which can be used
in phytoremediation mainly for inorganic arsenic in arsenate form [As(V)]. The
objectives of this study were to determine the maximum concentration of As that could
be taken up by Pennisetum purpureum in phytoremediation, to identify the role of
rhizobacteria in the root of P. purpureum which can enhance phytoremediation process,
to determine the mechanisms of As uptake and bioaccumulation by P. purpureum and
to optimize the As phytoremediation process using pilot reed beds. As phytotoxicity
test, rhizobacteria isolation, molecular identification of rhizobacteria, qualitative and
quantitative screening of the rhizobacterial isolates for As-tolerance, determination of
different plant growth-promoting traits, As phytoremediation in pilot reed beds,
determination of different enzyme activity in pilot reed beds and the optimization of
phytoremediation process were included in this study. Results of rhizobacteria isolation
showed that two gram-positive and seven gram-negative rhizobacteria that resistant to
As. Almost all rhizobacteria (nine) through molecular identification showed excellent
performance on As tolerance and different plant growth-promoting activity. Among
them Bacillus australimaris showed the highest performance on As-tolerant and
different plant growth-promoting activity. Based on SEM-EDX and TEM-EDX
analysis showed that there was a difference between B. australimaris in control and
exposed with As. P. purpureum was able to survive up to 40 mg kg™ As concentration
for 77 days of exposure at the time of advanced phytotoxicity test. The amount of
bioaccumulation of As in entire P. purpureum on 77 days reached 2,323.22 + 74.34 mg



kg™ dry weight with bioaccumulation factor 0.23 + 0.006, translocation factor 0.87 +
0.028, percentages of translocation 42.92 + 1.2 and calorie value of P. purpureum
16,841.32 + 199.10 J g*. Results on phytoremediation of As in non-aerated pilot reed
beds showed that the highest amount of As bioaccumulation by P. purpureum that
occurred in the As concentration of 39 mg kg at a retention time of 42 days was
5,733.28 + 68.80 mg kg™ dry weight. The addition of aeration in pilot reed beds could
enhance toxic effect of As on P. purpureum although the accumulation of As increased.
Optimization results on the phytoremediation process with concentration of 39 mg kg
As showed that addition of nine rhizobacteria consortium and NPKS fertilizer could
alleviate the As toxic effect and increase the biomass of P. purpureum, however the
total As bioaccumulation ability increased and its highest uptake was 6,944.48 + 69.44
mg kg dry weight. Results of SEM-EDX analysis of fresh roots, stems and leaves of
P. purpureum revealed significant differences in the context on the effect of As on plant
tissue and uptake of As between control and different treatments. In conclusion, P.
purpureum is an As hyperaccumulator plant but it is sensitive to high concentration of
As and the addition of PGPR consortium has enhanced both the growth of P.
purpureum and the As accumulation. These results suggest that PGPR-assisted
phytoremediation of As in constructed wetland can be used in As phytoremediation in
agricultural polluted areas and anthropogenically polluted environments due to its high
capability to uptake and bioaccumulation of As.

Keywords: Phytoremediation, Arsenic, Constructed wetland, Pennisetum purpureum,
Plant growth-promoting rhizobacteria

SDG: GOAL 3: Good health and well-being, GOAL 6: Clean water and sanitation
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Julai 2023

Pengerusi : Mohd lzuan Effendi bin Halmi, PhD
Fakulti . Pertanian

Kini terdapat banyak jenis teknologi untuk memulihkan kawasan yang tercemar
dengan logam berat. Salah satu teknologi yang tergolong dalam teknologi hijau ialah
pembaikan tanah dan air bawah tanah yang tercemar dengan logam berat menggunakan
tumbuhan dan rhizobakteria penggalak tumbesaran tumbuhan (PGPR). Teknologi ini
dikenali sebagai PGPR dibantu oleh fitoremediasi di dunia. Antara kelebihan
fitoremediasi ialah kos efektif, mesra alam dan ia boleh digunakan sebagai alternatif
untuk biotenaga. Penyelidikan ini dijalankan untuk mencari tumbuhan berpotensi yang
boleh digunakan dalam fitoremediasi terutamanya untuk arsenik tak organik dalam
bentuk arsenat [As(V)]. Objektif kajian ini adalah untuk menentukan kepekatan
maksimum As yang boleh diambil oleh Pennisetum purpureum dalam fitoremediasi,
untuk mengenal pasti peranan rhizobakteria dalam akar P. purpureum yang boleh
meningkatkan proses fitoremediasi, untuk menentukan mekanisme arsenik (As)
pengambilan dan bioakumulasi oleh P. purpureum dan untuk mengoptimumkan proses
fitoremediasi As menggunakan pilot rid bed. Ujian kefitotoksikan, pengasingan
rhizobakteria, pengenalpastian molekular rhizobakteria, saringan kualitatif dan
kuantitatif bagi pengasingan rhizobakteria untuk toleransi As, penentuan ciri-ciri
penggalak pertumbuhan tumbuhan yang berbeza, fitoremediasi dalam pilot rid bed,
penentuan aktiviti enzim yang berbeza dalam rid bed dan pengoptimuman proses
fitoremediasi turut dijalankan dalam kajian ini. Keputusan pengasingan rhizobakteria
menunjukkan dua gram positif dan tujuh gram negatif rhizobakteria yang mempunyai
rintangan kepada As. Hampir semua rhizobakteria (sembilan) melalui pengenalpastian
molekul menunjukkan prestasi cemerlang pada toleransi As dan aktiviti yang
menggalakkan pertumbuhan tumbuhan yang berbeza. Antaranya Bacillus australimaris
menunjukkan prestasi tertinggi. Berdasarkan analisis SEM-EDX dan TEM-EDX
menunjukkan terdapat perbezaan antara B. australimaris dalam kawalan dan terdedah
dengan As. P. purpureum mampu bertahan sehingga 40 mg kg™ As kepekatan selama
77 hari pendedahan pada masa ujian fitotoksisiti lanjutan. Jumlah bioakumulasi As



dalam keseluruhan P. purpureum pada 77 hari mencapai 2,323.22 + 74.34 mg kg™ berat
kering dengan faktor bioakumulasi 0.23 + 0.006, faktor translokasi 0.87 + 0.028,
peratusan nilai translokasi 42.92 kalori dan purpureum. 16,841.32 + 199.10 J g
Keputusan fitoremediasi As dalam pilot rid yang tidak berudara menunjukkan jumlah
bioakumulasi As tertinggi oleh P. purpureum yang berlaku dalam kepekatan As 39 mg
kg! pada masa pengekalan 42 hari ialah 5,733.28 + 68.80 mg kg™ berat kering.
Penambahan pengudaraan dalam pilot rid bed boleh meningkatkan kesan toksik As
pada P. purpureum walaupun pengumpulan As meningkat. Hasil pengoptimuman
terhadap proses fitoremediasi dengan kepekatan 39 mg kg™ Seperti yang menunjukkan
bahawa penambahan sembilan konsortium rhizobakteria dan baja NPKS dapat
mengurangkan kesan toksik As dan meningkatkan biojisim P. purpureum, namun
jumlah keupayaan bioakumulasi As meningkat dan pengambilan tertinggi ialah
6,944.48 + 69.44 mg kg* berat kering. Keputusan analisis SEM-EDX akar, batang dan
daun segar P. purpureum mendedahkan perbezaan yang ketara dalam konteks kesan As
pada tisu tumbuhan dan pengambilan As antara kawalan dan rawatan yang berbeza.
Kesimpulannya, P. purpureum adalah tumbuhan hiperakumulator As tetapi ia sensitif
kepada As dan penambahan konsortium PGPR telah meningkatkan kedua-dua
pertumbuhan P. purpureum dan pengumpulan As. Keputusan ini menunjukkan bahawa
fitoremediasi As dibantu PGPR dalam tanah lembap yang dibina boleh digunakan
dalam fitoremediasi As dalam kepekatan rendah seperti kawasan tercemar pertanian
dan kawasan perindustrian kerana keupayaannya yang tinggi untuk menyerap dan
bioakumulasi As.

Kata kunci: Fitoremediasi, Arsenik, Tanah bencah yang dibina, Pennisetum
purpureum, Rhizobakteria pengalak tumbesaran

SDG: GOAL 3: Kesihatan dan kesejahteraan yang baik, GOAL 6: Air bersih dan
sanitasi
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CHAPTER 1

INTRODUCTION

1.1 Research background

Arsenic (As) is a hazardous, cancer-causing, as well as widespread metalloid in the
ecosystem. Owing to industrial usage, the total global arsenic production was
anticipated to reach 8.61 million tons (Statista, 2023). As polluted soil, sludge, as well
as sediment are the primary factors to the arsenic pollution of drinkable water, aquifers,
as well as the food cycle. Arsenite (As (I11)) as well as arsenate (As (V)) are the main
abundant types of arsenic in environment (Pillewan et al., 2014). It is reported to
reduce crop production in plants and prolonged contact to arsenic at levels more than
50 mg L? can cause a wide array of diseases in humans, including different types of
cancers, premature delivery, stillbirth, and spontaneous abortion (Beniwal, Yadav and
Ramakrishna 2023). More than 140 million inhabitants in seventy countries are
reportedly impacted through arsenic contamination, according to a United Nations
Children’s Fund (UNICEF) report in 2007. Due to this issue, there is growing
awareness in using various treatment methods to get rid of arsenic from polluted water.
Although it is well recognized that traditional designed treatment methods are
expensive and have issues with sludge formation and disposal. It is crucial to discover
onsite, decentralized, as well as ecologically safe treatment processes that are reliable,
have little need for maintenance, and are inexpensive to operate.

Constructed wetlands are a reliable and economically viable natural process that have
been helpful in eliminating a variety of contaminants, including arsenic (Ayangbenro
and Babalola, 2017). Constructed wetlands (CWSs) are artificial processes that have
been created to utilize the natural processes incorporating the plants, soils, as well as
related microbial populations of wetlands to help purify wastewater (Hammer, 2020).
Arsenic and other metals and metalloids might be effectively removed by this
technique (Buddhawong et al., 2005). Different types of plants have been found useful
for phytoremediation of heavy metals in the CWs such as Pennisetum purpureum,
Scirpus grossus, Ludwigia octovalvis, Melastoma malabathricum etc. (Rahman et al.,
2020). Napier grass (Pennisetum purpureum) is a perennial grass, has lately gained
international interest as a process for bioremediation of heavy metals (Zhang et al.,
2010). Juel, Dey & Akash 2018 studied Napier grass (P. purpureum) and Indian
mustard (Brassica juncea) plants grew well on tannery waste and gathered large levels
of heavy metals in various areas of the plant. Yun and Ali, 2019 directed a research on
Pennisetum purpureum (elephant grass) for phytoremediation of cadmium. They
discovered that the maximum cadmium ion elimination percentages for both untreated
as well as treated P. purpureum were 92% and 98%, respectively. Although, Napier
grass is efficient in removing toxic heavy metal and nutrients. However, the capability
and efficiencies of Napier grass in removing arsenic in constructed wetland is not
much reported in the literature.



Recently, the probable synergies between phytoremediation including bioenergy
generation have been progressively studied (Kumar et al., 2017). By using the biomass
that is collected during the phytoremediation operation, it is possible to create
renewable bioenergy, like biogas, while simultaneously removing hazardous toxins as
well as improving the condition of the soil (Hunce et al., 2019). As 100% of the
biomass is being used, this is also one of the zero-waste management concepts
(Osmana et al., 2020). Due to P. purpureum has been extensively investigated and may
be used as a feedstock for the manufacture of biofuels, its effectiveness for bioenergy
generation cannot be disputed in this aspect (Takara and Khanal, 2015; Mohammed et
al., 2019). Many investigations have been done on the process of making ethanol from
P. purpureum. According to Bensah et al. (2015), when compared to other biomass
kinds investigated, P. purpureum had the greatest ethanol generation of 65.1%
(bamboo wood, rubber wood, Siam weed, including coconut husk). Theoretically, the
highest ethanol output is 35%. Research proved that this plant is a good resource for
biofuel generation (Osmana et al., 2020). Napier grass obtained as a by-product after
removing of arsenic in constructed wetland and then its substantial cellulose level
allowed for the production of biofuels (Takara and Khanal, 2015). Its abundant
cellulose may be used as a reservoir of carbon in the synthesis of biofuels like ethanol
as well as butanol (He et al., 2017).

Previously, there are various methods used to get rid of that pollution from the
environment. Amongst the approaches, phytoremediation is a green and an awful lot
convincing device for clean-up of arsenic. Nevertheless, the implementation of
phytoremediation in polluted places is constrained by dual major issues as for example
i) Slow and steady expansion rate at stronger heavy metals polluted places and ii)
Systemic absorption of heavy metals. This situation will be minimized and hasten the
phytoremediation effectiveness by integrating the latent rhizobacteria as a
complementary method. For this reason, to remove arsenic from environment
rhizobacteria assisted phytoremediation of arsenic in Constructed wetland (CW) are
very important at this moment. Plant growth promoting rhizobacteria (PGPR) assisted
phytoremediation in CW is a system utilized to eliminate ecological pollutants from
the environment and utilized the biological mechanisms inherent in microbes and
plants eradicated harmful contaminants and restored the ecosystem to its original state
(Ayangbenro and Babalola, 2017). Additionally, constructed wetlands are designed to
mimic natural chemical, microbiological, and physical methods. The process is
dependent on 3 factors: contact with soil microorganisms or rhizobacteria, chemical as
well as physical properties of the reed bed, along with the identity of the plant itself.

PGPR is a set of bacteria that can be obtained in the rhizosphere (Ahmad et al., 2008).
Soil rhizobacteria may also have a direct influence on metal dissolvability through
affecting the speciation of heavy metals in the root zone, as well as metal
bioavailability through modifying their chemical characteristics (Jing et al., 2007). Due
to the absence of beneficial microorganisms, polluted soils are frequently lacking in
nutrients. Nevertheless, such soils may be rendered nutrient-rich through introducing
metal-resistant microorganisms, particularly PGPR, which not only offer critical
nutrients to plants, but also enable plants to extract heavy metals, which can then be
used in agricultural production or phytoremediation of polluted soil.



The interactions between plant and rhizobacteria have widely been applied in farming
activities by providing plant with nitrogen sources and thus stimulate plant growth.
This relationship has been applied in heavy metal contaminated soils to enhance soil
fertility and to increase bioavailability of the metals through nitrogen fixation along
with generation of the plant growth promoting factors like generation of carboxylic
acid, solubilize insoluble phosphate, siderophores, indole acetic acid including 1-
aminocyclopropane-1-carboxylate deaminase. However, the mechanisms of PGPR
from Napier grass in assisting arsenic (As) uptake has never been studied. Therefore, in
this study, PGPR will be isolated and characterized from Napier grass rhizosphere
environment in constructed wetland. The functions and mechanisms of isolated
rhizobacteria to enhance arsenic uptake will be investigated.

1.2 Problem statement

Amongst the Potentially toxic elements (PTESs), Arsenic (As) was identified as one of
the most extremely hazardous as well as cancer causing chemicals (Niazi et al., 2017;
Mehmood et al., 2017). Arsenic along with its components were classified as a
category 1 human carcinogens by the US Environmental Protection Agency
including the International Agency for Research on Cancer (Niazi et al., 2018). As
species are harmful to the humans, animals and plant varieties (Quaghebeur and
Rengel, 2005). As poisoning in both groundwater including soil has considered a major
health along with ecological issue around the globe, particularly in South as well as
Southeast Asia (Podgorski et al., 2017; Beniwal, Yadav and Ramakrishna 2023). As
levels in drinkable water in certain emerging countries, such as Bangladesh, India, as
well as China, surpass requirements for human health safety, resulting in significant
toxicity including probably death (Srivastava et al., 2012).

Previously, there are various methods used to remediate arsenic from the environment.
These include physical, chemical and biological methods. These are overpriced,
environmentally not so safe and inadequate in performance but we need to find out
such method which is being aesthetically pleasing, sustainable, environmentally
friendly, easy to operate and economically viable. So, an importance has been averted
towards the development of another technologies, like PGPR assisted
phytoremediation, which uses various living organisms and plants for the elimination
of toxic metals and covers all the aforesaid side. Besides, by removing arsenic from the
soil, it will be possible to protect the health of the soil; crops will be conserved from
the phytotoxic effect of arsenic; production of crops will be enhanced as well as
prevent the entry of arsenic in our food chain. Continuation of this study will make it
possible to grow arsenic free crops in healthy soil. As a result, overall ecosystem will
be protected and food security will be ensured.

There have been very few studies on the elimination of heavy metals including various
pollutants utilizing exclusively P. purpureum, but no research has been done yet on
arsenic removal in constructed wetland utilizing P. purpureum and plant growth
promoting rhizobacteria that were the novelty of my research.
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Objectives

To determine the maximum concentration of As that P. purpureum can
survive and assess the capability of As uptake through preliminary and
advanced phytotoxicity test for phytoremediation application.

To isolate, screen, identify and characterize the As resistant PGPR from P.
purpureum and determine their capability for biosorption of As.

To design, operate and assess the capability of arsenic uptake with different
rate of aeration in CW using P. purpureum and PGPR.

To optimize some factors (As loading, retention time including rate of
aeration) and determine the effects of applying PGPR consortium, NPKS
fertilizers as well as PGPR consortium including NPKS fertilizers together on
the growth of P. purpureum and phytoextraction of As in CW.
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