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Rice (Oryza sativa L.) plays a vital role in ensuring food security in Malaysia, particularly 

in the granary areas such as MADA and KADA. These regions serve as significant rice-

producing areas, contributing substantially to the nation's rice production. The key role 

of potassium (K) fertilization is crucial in rice cultivation, impacting various 

physiological processes and contributing significantly to the quality and yield of rice 

crops in granary areas. Exploring alternative potassium sources, such as polyhalite, holds 

potential for improving Malaysian agriculture. 

 

 

The examination of δ13C and δ15N provides significant insights into the acquisition of 

resources and interactions among plants. This is because the natural abundance of 

carbon-13 and nitrogen-15 in plants reflects the isotopic composition of their carbon and 

nitrogen sources and plays a crucial role in advancing our understanding of various 

ecological and biological processes. However, the extent to which the intake of K affects 

the isotopic variance in rice has not been well studied.  

 

 

Therefore, this study aims to comprehensively investigate the effects of potassium (K) 

fertilizers on rice plant physiological parameters and yield performance. The primary 

objectives include assessing the impact of K fertilizer sources on stable carbon and 

nitrogen isotope values (specifically δ13C and δ15N) in rice tissues, examining the 

influence of K fertilizers on rice photosynthesis, and investigating the effects of K 

fertilizers on rice yield. Field tests in KADA and MADA regions and a rain shelter 

experiment were conducted to achieve these goals, providing valuable insights into 

agriculture and crop management. 

 

 

Rice plants were cultivated in the field and under a rain shelter with five treatments, 

which are T1 (no-K), T2 (Muriate of Potash), T3 (Sulphate of Potash), T4 (Polyhalite), 
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and T5 (conventional fertilizer). The fertilizers were applied 3, 15, 55, and 75 days after 

planting (DAP). Leaf photosynthesis and stomata conductance measurements were taken 

at 85 DAP and dried and reserved for carbon and nitrogen isotope analyses. Meanwhile, 

the rice yield was determined at 110 DAP during harvest. 

 

 

In this study, the rain shelter trials highlighted the positive influence of K fertilizers on 

rice yield, with Polyhalite consistently providing the highest yields under controlled 

conditions with 490.4 g/pot for KADA and 489.60 g/pot for MADA soils compared to 

other treatments. Overall, adding K fertilizer proved beneficial for rice plant health, tiller 

productivity, and grain yield, emphasizing the importance of potassium fertilization in 

enhancing overall rice productivity. While soil type does not significantly impact rice 

yield, MADA soil demonstrates a more conducive environment for photosynthesis and 

improved efficiency in water and nutrient absorption with a mean of 52.77 µmol CO2 

m-2 s-1 for rate of photosynthesis and 1.88 mmol m-2 s-1 for stomata conductance. 

Polyhalite, a potassium source, significantly boosted photosynthetic rates and stomata 

conductance. The findings also indicated that K fertilizer application could influence 

δ15N in plants, with variations observed in different treatments and environmental 

conditions. The comprehensive analysis of correlation coefficients highlighted complex 

interactions between rice yield, rate of photosynthesis, stomata conductance, and isotopic 

values, providing valuable insights for crop management and sustainable agricultural 

practices. In conclusion, the study emphasized the importance of K in enhancing rice 

productivity, influencing plant physiology, and contributing to the intricate dynamics of 

carbon and nitrogen isotopic signatures in plants. 
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Padi (Oryza sativa L.) memainkan peranan penting dalam memastikan jaminan makanan 

di Malaysia, terutamanya di kawasan-kawasan bendang seperti MADA dan KADA. 

Kawasan-kawasan ini berperanan besar dalam pengeluaran padi negara. Peranan utama 

baja kalium (K) adalah penting dalam penanaman padi, ia mempengaruhi pelbagai proses 

fisiologi dan memberi sumbangan yang signifikan kepada kualiti dan hasil tanaman padi 

di kawasan-kawasan bendang. Penerokaan sumber kalium alternatif, seperti polihalit, 

memiliki potensi untuk meningkatkan pertanian Malaysia. 

 

 

Nisbah metabolit Karbon (C) kepada metabolit Nitrogen (N) dalam sel, yang dirujuk 

sebagai keseimbangan C/N, juga penting untuk pengawalan pertumbuhan dan 

perkembangan tumbuhan. Oleh itu, pengukuran isotop yang dikaitkan dengan sumber 

tumbuhan kritikal, seperti karbon dan nitrogen, telah membantu memperdalam 

pemahaman ekologi tentang pemerolehan sumber tumbuhan dan interaksi tumbuhan. Ini 

kerana kelimpahan semula jadi karbon-13 dan nitrogen-15 dalam tumbuhan 

mencerminkan komposisi isotop sumber karbon dan nitrogen serta memainkan peranan 

penting dalam meningkatkan pemahaman tentang pelbagai proses ekologi dan biologi 

tumbuhan. Namun, sejauh mana pengambilan kalium (K) mempengaruhi variasi isotop 

dalam padi masih belum dikaji dengan baik. 

 

 

Oleh itu, kajian ini bertujuan untuk menyelidik secara komprehensif kesan baja kalium 

(K) ke atas parameter fisiologi tanaman padi dan prestasi hasil padi. Objektif utama 

termasuk menilai impak sumber baja K ke atas nilai isotop karbon dan nitrogen yang 

stabil (khususnya δ13C dan δ15N) dalam tisu padi, mengkaji pengaruh baja K terhadap 

fotosintesis padi, dan menyiasat kesan baja K terhadap hasil padi. Ujian lapangan di 

kawasan KADA dan MADA, berserta eksperimen di dalam rumah lindungan hujan, 
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telah dijalankan untuk mencapai objektif ini untuk memberikan pandangan berharga 

dalam bidang pertanian dan pengurusan tanaman. 

 

 

Padi ditanam di lapangan dan di dalam rumah lindungan hujan dengan lima rawatan, 

iaitu T1 (tanpa K), T2 (Muriate of Potash), T3 (Sulphate of Potash), T4 (Polyhalite), dan 

T5 (baja konvensional). Baja telah diberikan kepada tanaman pada 3, 15, 55, dan 75 hari 

selepas tanam (HST). Ukuran fotosintesis daun dan pengukuran konduktiviti stomatal 

diambil pada 85 (HST) dan kemudiannya dikeringkan serta dikhaskan untuk analisis 

isotop karbon dan nitrogen. Sementara itu, hasil padi ditentukan pada 110 (HST) semasa 

menuai. 

 

 

Dalam kajian ini, eksperimen di dalam rumah lindungan hujan menonjolkan pengaruh 

positif baja K ke atas hasil padi, dengan Polyhalite secara konsisten memberikan hasil 

tertinggi di bawah keadaan terkawal dengan 490.4 g/pot untuk tanah KADA dan 489.60 

g/pot untuk tanah MADA berbanding rawatan lain. Secara keseluruhan, penambahan 

baja K terbukti bermanfaat bagi kesihatan tanaman padi, produktiviti anakan padi, dan 

hasil bijirin, menekankan kepentingan penanaman kalium dalam meningkatkan 

produktiviti padi secara keseluruhan. Walaupun jenis tanah tidak memberi kesan yang 

signifikan kepada hasil padi, tanah MADA menunjukkan persekitaran yang lebih 

kondusif untuk fotosintesis dan penyerapan air serta nutrien yang lebih baik dengan 

purata 52.77 µmol CO2 m² s⁻¹ untuk kadar fotosintesis dan 1.88 mmol m² s⁻¹ untuk 

konduktan stomata. Polyhalite, sebagai sumber kalium, secara signifikan meningkatkan 

kadar fotosintesis dan konduktan stomata. Penemuan juga menunjukkan bahawa 

penggunaan baja K boleh mempengaruhi δ15N dalam tumbuhan, dengan variasi yang 

diperhatikan dalam rawatan dan keadaan alam sekitar yang berbeza. Analisis menyeluruh 

bagi pekali korelasi menonjolkan interaksi yang kompleks antara hasil padi, kadar 

fotosintesis, konduktan stomata, dan nilai isotopik, memberikan pemahaman berharga 

untuk pengurusan tanaman dan amalan pertanian lestari. Kesimpulannya, kajian ini 

menekankan kepentingan K dalam meningkatkan produktiviti padi, mempengaruhi 

fisiologi tanaman, dan menyumbang kepada dinamika rumit nisbah isotopik karbon dan 

nitrogen dalam tumbuhan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

 

Rice (Oryza sativa L.), a staple crop globally, is crucial for food security and agricultural 

sustainability. Malaysia, a leading global importer of rice, faces the challenge of meeting 

the yearly domestic rice demand exceeding 1000 metric tonnes. Potassium (K) is an 

essential macronutrient that influences plant well-being, strength, and ability to 

withstand biological and environmental challenges. It plays a significant role in 

controlling stomatal conductance, increasing photosynthesis, osmotic adjustment, 

enzymatic processes, protein synthesis, and preserving ionic balance in plant cells. 

 

 

Stable isotope analysis, specifically targeting δ13C (carbon isotopes) and δ15N (nitrogen 

isotopes), has become an effective methodology for understanding plant resource 

acquisition and interactions. This study aims to fill a gap in current knowledge by 

examining the impact of various potassium fertilizer sources on rice growth, yield, and 

isotopic ratio. The experimental design involves rice plants treated with five different 

treatments, including T1 (absence of K), T2 (Muriate of Potash), T3 (Sulphate of Potash), 

T4 (Polyhalite), and T5 (conventional fertilizer). 

 

 

The experiments were conducted in the field and under a rain shelter. The MR219 were 

planted in Malaysia's two largest granary areas (KADA and MADA). These areas are 

significant in the rice industry and contribute to the country's overall production. This 

study also explains the selection of these regions for the field trial sites due to their 

strategic importance in agricultural research and their valuable insights into optimizing 

rice production and nutrient management practices. Additionally, including a rain shelter 

experiment addresses the challenges of conducting field trials and creates a controlled 

environment for studying the effects of potassium fertilizers on rice growth. The rain 

shelter provided a consistent and controlled space where important environmental factors 

could be managed, leading to more accurate and reliable data collection.  

 

 

1.1.1 The World Rice Situation 

 

 

In 2017, the United Nations estimated the worldwide population to be 7.5 billion, with 

Asia contributing the largest share; regionally, Asia has the world's greatest population 

(Figure 1.1). While rice is a staple in the majority of Asian nations, the region uses more 

than 80% of the global supply. It is anticipated that rice demand will increase in the 

future. Rice consumption is already high, and this tendency is anticipated to continue as 

© C
OPYRIG

HT U
PM



2 

 

the population increases. Most of the world’s rice production and consumption is 

concerted in Asia. 

 

 

 
Figure 1.1: Total Population estimates by Region, the Year 1950 – 2100 (Billion)  

(Source: Khazanah Research Institute, 2019) 

 

 

1.1.2 Malaysia Rice Production 

 

 

Located in Southeast Asia, Malaysia encounters an equatorial environment distinguished 

by elevated temperatures (averaging from 21 to 32 °C) and humidity (with an annual 

precipitation of approximately 2500 mm) during the entirety of the year (Tan et al., 2020; 

Suhaila et al., 2012). In the significant granary areas, rice farmers typically engage in 

two planting cycles annually: the off-season cycle, which spans from March to July, and 

the main season cycle, which occurs from August to February. The primary season aligns 

with the northeast monsoon, leading to substantial precipitation and elevated atmospheric 

moisture levels. On the other hand, it has been observed that during the off-season, there 

is a decrease in air humidity and a reduction in rainfall (Firdaus et al., 2014). 

 

 

Rice is Malaysia's third most widely planted crop, after oil palm and rubber. In 2020, 

644,859 ha of its land was planted with rice. In 2021, the area was 647,859 ha, of which 

525.984 ha were in Peninsular Malaysia, with the remaining in Sabah and Sarawak 

(Khazanah Research Institute, 2019). 

 

 

Most of the irrigated rice areas in Peninsular Malaysia are in the ten designated granary 

areas (Figure 1.2), totaling approximately 416,415 ha. Granary areas refer to major 

irrigation schemes (areas greater than 4,000 ha) and are recognized by the government 

in the National Agricultural Policy as the main rice-producing areas. There are rice 

planting area of 10 granary areas in Peninsular Malaysia, namely MADA, KADA, IADA 
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KERIAN, IADA BLS, IADA Pulau Pinang, IADA Seberang Perak, IADA KETARA 

and IADA Kemasin-Semerak, IADA Pekan, and IADA Rompin since 2017 until 2021 is 

shown in Table 1.1. 

 

 

 
Figure 1.2: Distribution Map of Rice Production Areas in Peninsular Malaysia 

(Source: Khazanah Research Institute, 2019)  

 

 

Domestic rice production in Malaysia relies heavily on ten important granary locations. 

The country produced 2.7 million metric tonnes of rice in 2017, where granary lands 

produced a total of 2.0 million MT or 74.1% of the total paddy yield for that year. Muda 

Agricultural Development Authority (MADA) in Malaysia's Northern Peninsular 

produced approximately 38.8% of the country's total paddy production and is known as 

the "Rice Bowl," followed by Kemubu Agricultural Development Authority (KADA) at 

9.1% and Integrated Agricultural Development Area (IADA) Barat Laut Selangor (BLS) 

at 8.1% (DOA, 2022). These granary regions have varied levels of agricultural output 

due to differences in their locations (various environmental conditions) and soil 

management. 
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Table 1.1: The Rice Planting Area for Granary Areas in Malaysia 

No 

Year 2017 2018 2019 2020 2021e 

 

Locations 

 

Planted Area (ha) 

 

1 
 

MADA 
 

201,259 210,324 201,338 201,306 210,347 

2 

 

KADA 
 

54,067 53,710 50.348 52,164 52,589 

3 

 

IADA, 

Kerian 
 

41.898 41,898 41,898 38,578 36,994 

4 

 

IADA Barat, 

Laut              Selangor 
 

36,708 36,868 36,602 36,004 35,885 

5 

 

IADA 

P.Pinang 
 

25,564 25,564 25.564 24,210 24,210 

6 

 

IADA 

Seberang Perak 
 

27,735 27,735 27,334 26,296 26,296 

7 
 

IADA KETARA 
 

9,752 9.752 9,752 9,752 9,752 

8 

 

IADA 

Kemasin,                 Semerak 
 

7,129 6.902 7,564 8,129 8,401 

9 

 

IADA 

Pekan 
 

6,832 6,429 6,634 4,764 7,446 

10 

 

IADA 

Rompin 
 

5,101 5,071 5,108 5,158 5,272 

(Source: DOA, 2022) 

 

 

Table 1.2 shows that the national average yield is approximately 4000 kg/ha, with yields 

surpassing 5000 kg/ha in regions such as IADA Pulau Pinang, IADA Ketara, and 

MADA. Conversely, granaries such as IADA Pekan and Batang Lupar are low-yield 

producers, with yields of less than 3000 kg/ha (DOA, 2022). 
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Table 1.2: The Average Yield of Rice for Granary Areas in Malaysia 

No 

Year 2017 2018 2019 2020 2021e 

Locations 

 

Average Yield (kg/ha)  

 

1 
 

MADA 
 

4,841 5,111 4,933 4,833 4,192 

2 
 

KADA 
 

4,448 4,695 4,032 4,621 4,874 

3 

 

IADA, 

Kerian 
 

4,087 3,957 3,584 3,223 3,830 

4 

 

IADA Barat, 

Laut              Selangor 
 

4,510 4,731 4,756 4,431 4,337 

5 

 

IADA 

P.Pinang 
 

5,737 5,228 5,012 5,022 5,655 

6 

 

IADA 

Seberang            Perak 
 

 

3,180 

 

3,417 

 

2,923 

 

2,774 

 

2,613 

7 
 

IADA KETARA 
 

5,172 5,349 5,162 5,407 5,218 

8 

 

IADA 

Kemasin,                Semerak 
 

3,779 4,079 3,733 3,666 3,656 

9 

 

IADA 

Pekan 
 

1,506 2,673 2,637 2,707 1,860 

10 

 

IADA 

Rompin 
 

3,338 2,910 2,373 4,156 4,610 

11 

 

IADA  

Kota Belud 
 

2,511 3,112 2,908 2,914 3,540 

12 

 

IADA  

Batang Lupar 
 

2,009 2,492 2,754 2,599 2,847 

(Source: DOA, 2022) 
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1.1.3 Potassium (K) Fertilizer 

 

 

Potassium (K) is an essential nutrient for plants. Plants absorb K+, which is found in 

soils and fertilizers like potassium chloride (KCl), potassium nitrate (KNO3), potassium 

sulfate (K2SO4), and potassium carbonate (K2CO3). With a few exceptions, KCl, or 

muriate of potash, is the most affordable and widely utilized form for agronomic crops 

(Kafkafi et al., 2001). Although more expensive, other forms, such as K2SO4 and KNO3, 

are utilized for some crops sensitive to chloride (Cl). 

 

 

In addition, Jin et al. (2011) found that plants absorb more K than any other mineral 

element (except for nitrogen), and K is the nutrient that most frequently inhibits plant 

growth and crop yields. Additionally, increased K application has been demonstrated to 

increase photosynthetic rate, plant development, yield, and drought resistance in diverse 

crops (Egilla et al., 2005; Pervez et al., 2001).  

 

 

Potassium (K) is the most numerous inorganic cation essential for plant growth (White 

and Karley, 2010). It is vital for expanding yield and improving quality (Oosterhuis et 

al., 2014). Potassium activates enzymes involved in, amongst other processes, protein 

synthesis, sugar transport, N and C metabolism, and photosynthesis. Potassium is also 

required for cell division, an essential aspect of plant development and function (Hepler 

et al., 2001). 

 

 

Many researches on the impact of K on plant development have been undertaken. 

Through these mechanisms, potassium governs stomatal opening and shutting, cell 

elongation, and other vital physiological functions. Due to its high mobility, K is 

essential for controlling cell osmotic pressure and balancing cations and anions in the 

cytoplasm of plants (Hu et al., 2016). Insufficient potassium levels can impair 

photosynthetic CO2 fixation and the transportation and utilization of assimilates 

(Hasanuzzaman et al., 2018). 

 

 

Other than that, the availability of K+ from soil or fertilizers depends on soil texture, 

moisture, pH, and other factors (Hasanuzzaman et al., 2018). As a macronutrient, K is 

usually used as a soil base. In addition to the preceding considerations, plant species' K+ 

uptake regulates K release from soil minerals or fertilizers. Barley (Hordeum vulgare L.), 

rice (Oryza sativa L.), and capsicum (Capsicum annuum L.) contain low-affinity and 

high-affinity transporters identified using molecular methods (Nieves et al., 2014). 

 

 

1.1.4 Natural Abundance of Isotopic Ratios 

 

 

The term "natural abundance" relates to the relative ratios of various isotopes of an 

element that are present in the environment. The natural occurrence of isotopic 

abundance in plants is attributed to isotopic fractionation processes that occur during 

various biological and environmental interactions. 
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Carbon is an essential element found in plants, serving as the foundational component of 

organic compounds. Carbon is naturally present in two stable isotopes, namely carbon-

12 (12C) and carbon-13 (13C). Plants actively uptake carbon dioxide (CO2) from the 

surrounding atmosphere during photosynthesis. Plants exhibit a preference for the lighter 

12C isotope over the slightly heavier 13C isotope when engaging in the process of 

photosynthesis. The discrimination occurs due to the variances in kinetic reactions 

involving the two isotopes. Consequently, the carbon in plant tissues undergoes 

enrichment at 12C compared to atmospheric CO2, resulting in a decreased δ13C value in 

plant biomass. 

 

 

Nitrogen is crucial for promoting optimal plant growth as it plays a fundamental role in 

forming proteins, nucleic acids, and other essential molecules. Nitrogen is present in two 

isotopic forms, namely nitrogen-14 (14N) and the comparatively heavier nitrogen-15 

(15N) isotopes. Plants exhibit a preference for incorporating the lighter 14N isotope 

when they uptake nitrogen from different sources. The degree of this preference may 

vary depending on the source of nitrogen. For example, using organic fertilizers or 

leguminous plants, which can fix atmospheric nitrogen, typically leads to plant tissues 

exhibiting lower δ15N values compared to those primarily reliant on inorganic nitrogen 

fertilizers. 

 

 

In a nutshell, the natural occurrence of isotopic ratios in plants can be attributed to the 

processes of isotopic fractionation that take place during photosynthesis and nitrogen 

uptake. This phenomenon plays a critical role in comprehending plant physiology, 

nutrient sources, and ecological interactions. Through analyzing δ13C and δ15N values in 

plant tissues, researchers can obtain valuable information about nutrient cycling, 

environmental conditions, and agricultural practices.  

 

 

1.2  Problem Statement 

 

 

The research problem discussed in this thesis arises from the vital role that potassium 

(K) plays in the growth and productivity of rice, which is a crucial crop for ensuring food 

security worldwide. Previous research has shown that potassium significantly impacts 

photosynthetic rates, plant growth, and rice production. When plants do not have enough 

potassium, it causes them to experience physiological stress (Wang et al., 2013). This 

stress affects how their stomata open and close, impacting their exchange of gases and 

their metabolic processes. This situation highlights the importance of investigating rice's 

isotopic ratio of carbon and nitrogen. By doing so, we can gain insights into how the 

availability of potassium affects these essential physiological processes. 

 

 

In addition, temperature and precipitation are essential factors that significantly influence 

the variation of plant carbon and nitrogen isotopes. In 2000, Robinson and colleagues 

suggested that by measuring the levels of carbon-13 (13C) and nitrogen-15 (15N) 

isotopes in plants, we can gain valuable information about how they react to 

environmental stressors such as nutrient deficiency. This insight applies to rice and other 

crops such as barley (Ellis et al., 2002) and quinoa (Hussain et al., 2018). Isotopic 

analysis has been used to study how these crops respond to stressful conditions (Trandel 
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et al., 2018). It is interesting that much research has been conducted on the variability of 

isotope in plants. However, there is a significant gap in our knowledge regarding 

understanding how the availability of nutrients, specifically potassium, affects this 

variation in isotopes. 

 

 

Furthermore, researchers in the past have conducted studies on carbon isotope 

discrimination in crops such as cotton, specifically concerning potassium deficiencies 

(Bednarz et al., 1998). These studies have emphasized the significance of potassium in 

the process of carbon metabolism. However, there is currently a lack of studies that 

quantitatively evaluate the degree of isotopic variation caused by potassium absorption 

in rice. 

 

 

The main issue that this thesis aims to tackle is the necessity of studying how carbon 

(δ13C) and nitrogen (δ15N) isotopic responses, as well as the total carbon (C) and nitrogen 

(N) content, photosynthesis rates, stomatal conductance, and rice yield, are affected by 

various potassium fertilizer treatments. This research aims to bridge the existing 

knowledge gap by examining how varying potassium sources affect the isotopic 

composition of rice, providing insights into its physiological responses and ultimately 

contributing to the enhancement of rice production in granary areas. 

 

 

1.3  Research Objectives  

 

 

Generally, this study aimed to determine the effect of potassium fertilizer on stable 

carbon and nitrogen isotopic ratios in rice. The specific objectives of the study are as 

follows:  

 

1. To determine the influences of different potassium fertilizer sources on the 

stable carbon and nitrogen isotope value in rice. 

2. To investigate the effect of different types of potassium fertilizer on the rate of 

photosynthesis in rice. 

3. To examine the effect of different types of potassium fertilizer on yield 

performance in rice. 

 

 

1.4  Significance of the Study 

 

 

First and foremost, it is important to acknowledge that rice is a crucial crop that serves 

as a staple food for over half of the world's population. This makes it essential to maintain 

food security. The study aims to understand how various K fertilizer sources affect the 

growth and yield of rice. This research is valuable in our efforts to improve rice 

production. This is especially important when the world population is growing and the 

need for rice is increasing. 

 

 

In addition, this research holds the potential to improve the use of fertilizers, which is a 

crucial part of sustainable agriculture. Potassium is an essential nutrient that plants need 
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for their growth. By studying how different sources of potassium fertilizer affect the 

growth of rice, we can find ways to use fertilizers more effectively and in a more targeted 

manner. This has the potential to increase crop yields and decrease the negative impact 

on the environment caused by excessive fertilizer use, all while benefiting the financial 

situation of farmers. 

 

 

The study examines how different K fertilizer treatments affect the carbon (δ13C) and 

nitrogen (δ15N) isotopic ratio in rice. This research could potentially lead to the 

development of rice varieties that are more resistant to environmental challenges such as 

nutrient deficiency. Ensuring that crops can thrive even in adverse conditions is crucial 

for maintaining agricultural sustainability. 

 

 

Moreover, this study is important because it helps us understand how potassium uptake 

affects the variation in isotopes in rice. It contributes to our knowledge of plant 

physiology and how nutrients interact with each other. The knowledge acquired can be 

applied not only to rice but also to other types of crops and ecosystems, resulting in 

additional benefits. 

 

 

The findings of this research are extremely valuable for farmers, agronomists, and 

policymakers. By analyzing the data, we can provide recommendations on which K 

fertilizer sources would be the best choice, ultimately resulting in better crop yields and 

improved food security. 

 

 

1.5  Organization of the Thesis 

 

 

This thesis is organized into five (5) chapters. The first (1) chapter begins with the 

introduction that includes the introduction of Malaysia’s rice production, types of 

fertilizer, problem statement, objectives, and significance of the study. The second (2) 

chapter consists of the literature reviews of past studies and information relevant to the 

study. The third (3) chapter includes an explanation of the research methodology, 

including sampling techniques, data collection methods, study area descriptions, and 

statistical data analysis. The fourth (4) chapter provides results of the descriptive 

analysis, analysis of variance (oneway ANOVA) and in-depth discussion of the findings 

is also discussed in this chapter. The last chapter, chapter five (5), consists of a summary 

of the study, recommendations, study limitations, suggestions for further study, and the 

overall conclusion of the study. 
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