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Rice is an important food source and is the third-largest consumed grain 
worldwide. However, the production of rice under continuous flooding (CF) 
paddy fields is a primary anthropogenic source of methane (CH4) gas, one of the 
major greenhouse gases (GHG) that contributes to global warming. Alternate 
wetting and drying (AWD) and mid-season drainage (MD) are two alternative 
irrigation regimes for rice paddies that can potentially reduce CH4 emissions from 
rice cultivation. The principle behind these two irrigation regimes is water level in 
the soil will be lowered, and the soil will be exposed to oxygen, shifting the soil 
to an aerobic state and hence retarding the production of CH4 by soil 
methanogens. However, exposing the soil to oxygen may increase nitrous oxide 
(N2O) emissions, another significant GHG more potent than CH4. The present 
study was carried out to measure and compare GHG emissions of rice planted 
under CF, AWD, and MD practices, the soil microbial diversity and abundance 
of each irrigation practice, and its effect on rice plant physiology and grain yield. 
Rice (Oryza sativa var. MR297) was transplanted into 15 tanks, assigned equally 
to the three treatments: AWD, MD, and CF, and arranged in a randomized 
complete block design. The soil used in this study was taken from a rice field in 
Pendang, Kedah. Emissions of GHG were measured weekly using static 
chambers, and the sampled air was analyzed for CH4 and N2O concentrations 
using gas chromatography. Soils were sampled on the 58th and 96th day after 
transplant (DAT) from each treatment to assess their microbial diversity and 
abundance using 16S rRNA microbiome sequencing. Rice plant height, leaf 
area, and greenness were measured weekly, while 1000-grain weight and total 
plant biomass dry matter were measured after harvest. Leaf photosynthesis 
rates were measured during the rice plant's reproductive, flowering, and ripening 



© C
OPYRIG

HT U
PM

ii 

 

stages to measure plant water stress and water use efficiency. Leaf samples 
were analyzed for δ13C isotope composition to determine water stress in plants. 
This study found that rice plants under alternative irrigation regimes do not 
undergo plant water stress due to water scarcity. The photosynthesis rate shows 
a similar pattern between the treatments, and the carbon isotope composition 
shows a negative value under CF, MD, and AWD on the 78th and 96th DAT. The 
CH4 emissions from CF, AWD, and MD were 70.24, 30.75, and 15.93 g CH4 m−2 
for CF, AWD, and MD, respectively. The methane emissions from MD and AWD 
were 77.07% and 57.81% lower, respectively, then CH4 emissions from CF. On 
the other hand, MD and AWD did not emit N2O fluxes throughout the planting 
period. Methanogenic microbes were found abundant in the CF soil samples, 
while methanotroph microbes were abundant in CF and MD soil samples. CF, 
MD, and AWD presented 82.74, 86.59, and 67.02 kg m-2 of grain yield, with no 
significant differences between the treatments. Besides, alternative irrigation 
regimes do not affect rice plant height, leaf area, and greenness index between 
the treatments. The present study demonstrated that alternative irrigation 
regimes when applied to Malaysian rice soil planted with Malaysian rice variety 
did not cause any reduced crop performance and yield, at the same time, were 
proven to reduce emissions of GHG. 
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Fakulti: Pertanian 

Padi merupakan sumber makanan yang penting dan merupakan bijirin ketiga 
terbesar dari segi penggunaannya di seluruh dunia. Walau bagaimanapun, 
penanaman padi sawah secara terendam (CF) merupakan antara punca 
penghasilan gas metana (CH4) dari aktiviti pertanian. Metana merupakan salah 
satu gas rumah hijau (GHG) yang menyumbang kepada pemanasan global. 
Pengairan dan pengeringan secara berganti (AWD) dan pengeringan 
pertengahan musim (MD) adalah dua sistem pengairan alternatif sawah padi 
yang berpotensi untuk mengurangkan pelepasan CH4 dari aktiviti penanaman 
padi. Prinsip di sebalik kedua-dua rejim pengairan ini ialah paras air dalam tanah 
akan diturunkan, meningkatkan pengudaraan tanah dan menjadikan tanah 
berada dalam keadaan aerobik seterusnya merencat penghasilan CH4 oleh 
mikrob metanogen dalam tanah. Walau bagaimanapun, pengudaraan tanah 
juga berpotensi meningkat pelepasan gas nitrous oksida (N2O), yang 
merupakan satu lagi GHG yang lebih kuat kesannya terhadap pemanasan global 
berbanding CH4. Kajian ini dijalankan untuk mengukur dan membandingkan 
pelepasan GHG dari penanaman padi dengan kaedah pengairan CF, AWD dan 
MD, kepelbagaian dan kelimpahan mikrob tanah, kesan sistem pengairan yang 
dinyatakan terhadap fisiologi tanaman padi dan hasil padi. Semaian anak pokok 
padi (Oryza sativa var. MR297) telah dipindahkan ke dalam 15 tangki yang 
dibahagi sama rata kepada tiga jenis tiga rawatan: AWD, MD dan CF dan 
disusun secara reka bentuk blok rawak yang lengkap. Tanah yang digunakan 
diambil dari sawah padi di Pendang, Kedah. Pelepasan GHG diukur setiap 
minggu menggunakan kebuk statik dan sampel udara dianalisis untuk mengukur 
kepekatan CH4 dan N2O menggunakan kromatografi gas. Sampel tanah telah 
diambil pada hari ke-58 dan ke-96 selepas pemindahan anak pokok (DAT) dari 
setiap rawatan bagi penentuan kepelbagaian dan kelimpahan mikrob 
menggunakan susunan mikrobiom 16S rRNA. Ketinggian pokok padi, luas daun 
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dan kehijauan daun diukur mingguan manakala berat 1000-butir, dan berat 
kering biojisim tumbuhan diukur selepas penuaian. Kadar fotosintesis daun 
diukur semasa pokok padi berada pada peringkat pembiakan, pembungaan dan 
matang untuk mengukur tegasan air tumbuhan dan kecekapan penggunaan air. 
Sampel daun juga dianalisis untuk menentukan komposisi isotop δ13C untuk 
menentukan tegasan air dalam tumbuhan. Kajian ini mendapati pokok padi di 
bawah sistem pengairan alternatif tidak mengalami tekanan air kerana 
kekurangan air. Kadar fotosintesis menunjukkan corak yang sama antara 
rawatan, dan komposisi isotop karbon menunjukkan nilai negatif di bawah CF, 
MD, dan AWD hari ke-78 dan ke-96 DAT. Jumlah pelepasan CH4 daripada CF, 
AWD, dan MD ialah 70.24, 30.75, dan 15.93 g CH4 m−2 untuk CF, AWD dan MD, 
masing-masing dimana, MD dan AWD adalah 77.07% dan 57.81% lebih rendah 
daripada pelepasan CH4 daripada CF. Sebaliknya, MD dan AWD tidak 
mengeluarkan fluks N2O sepanjang tempoh penanaman. Mikrob metanogenik 
didapati banyak dalam sampel tanah CF, manakala mikrob metanotrof banyak 
terdapat dalam sampel tanah CF dan MD. CF, MD, dan AWD mendapati 82.74, 
86.59, dan 67.02 kg m-2 hasil tanaman, tanpa perbezaan yang ketara antara 
rawatan. Selain itu, rejim pengairan alternatif tidak menjejaskan ketinggian 
pokok padi, luas daun, dan indeks kehijauan antara rawatan. Kajian ini 
menunjukkan bahawa rejim pengairan alternatif apabila digunakan pada tanah 
padi Malaysia yang ditanam dengan varieti padi Malaysia tidak menyebabkan 
prestasi tanaman berkurangan dan hasil, pada masa yang sama, terbukti dapat 
mengurangkan pelepasan GHG. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background of the study 
 

1.1.1 Introduction 
 

Rice (Oryza sativa) is one of the most important crops in the world. More than 
half of the world’s population consume rice daily, leading to a global consumption 
of about 486.62 Mt between 2018 to 2019 (FAO, 2008). To fulfil the high demand 
for rice, as of 2017, there are 167.25 million ha of rice paddy fields currently 
under production worldwide, most of which are located in the Asia Pacific region 
(FAO, 2008). 
 

Asia’s population is growing and is expected to reach the peak of its population 
density before declining towards the end of this century (UN DESA, 2022). Since 
rice is the staple food for Asians, the demand for rice in this continent will 
continue to rise along with the growing population (Figure 1.1). 
 

Figure 1.1: Asia’s population and rice production from 1965 to 2018. 
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Rice paddy is unique in its field practice, where the rice fields are irrigated by 
flooding the field. Paddy rice can flourish in a flooded field due to the presence 
of a tissue named aerenchyma (Yamauchi et al., 2013). Aerenchyma is the gas 
space that is formed by inducing dead cells inside of the roots. It transports 
oxygen from leaves to roots, making it crucial tissue to ensure the crop's 
survivability in flooded conditions. Since rice paddy is able to withstand flooded 
conditions, it helps farmers in controlling non-aquatic weeds (MARDI, 2008). It 
reduces the competition between weeds and rice for nutrient supply.  
 

The commercial water management practice in the paddy field is continuous 
flooding up to 7-10 days before harvest (IRRI, 2020). After transplanting of 
seedlings, paddy fields were flooded at 5 cm, then gradually increased to 10 cm 
depending on plant height (IRRI, 2020).  
 

Malaysia is one of the countries that practices flooded rice cultivation for lowland 
rice fields. The main paddy production areas in Malaysia are granary areas 
(Figure 1.2) (DOA, 2022). 
 

 
Figure 1.2: Granary area in Peninsular Malaysia 
(Source: Soil Management Division, Department of Agriculture Malaysia, 2022) 
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Rice production in 2021 was 2,428,893 Mt from 647,859 ha of planted area 
(Figure 1.3). This production has increased by 3.1% compared to 2020. 
However, Malaysia still depends on imported rice as annual rice production is 
unable to supply the demand for rice to all people. National Agrofood Policy 2.0 
(DAN 2.0) stated that the national food system needs to be strengthened, 
especially to deal with the global crisis. 
 

 
Figure 1.3: Total planted area and rice production in Malaysian rice 
cultivation 
(Source: Malaysia Agriculture Department, 2022) 
 

1.1.3 Greenhouse gas (GHG) production in rice cultivation 
 

Rice is primarily grown in flooded fields. Water prevents oxygen from accessing 
the soil, creating anaerobic conditions where oxygen is not available inside 
paddy soil. Anaerobic conditions appear in an area where oxygen utilization 
surpasses the diffusion by the oxygen into the soil profile (P.W Inglett et al., 
2006). This condition fosters the growth of methanogens bacteria that produce 
methane. The longer the flooding lasts, the more methanogens accumulate 
(WRI, 2014). The CH4 emissions emitted from rice cultivation are produced 
during flooded conditions through these three processes which are; CH4 
production by methanogens under anaerobic conditions, oxidation by 
methanotrophs in the aerobic soil zone, and transportation of the CH4 to the 
atmosphere (Figure 1.4). Methanotrophs convert the organic matter in rice soil 
into CO2 and CH4 (Kallistova et al., 2014). 
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Figure 1.4: Formation of CH4 in paddy soils by methanotrophs 
(Source: Gu et al., 2022) 
 

Even with a low atmospheric concentration, CH4 is more potent than carbon 
dioxide (CO2) (IPCC, 2007). Methane can trap more heat due to its higher global 
warming potential (GWP) than CO2, which is 28 to 34 times more on a weight 
basis (IPCC, 2013). This significantly impacts the environment as heat 
entrapment in the atmosphere leads to climate change. Thus, CH4 emissions 
should be minimized. 
 

However, dying paddy fields create aerobic conditions where oxygen is available 
inside paddy soil, which could release nitrous oxide gas into the atmosphere. 
Nitrous oxide is another potent greenhouse gas (Wang et al., 2020) formed 
predominantly in soils through the two biological mechanisms of nitrification and 
denitrification (Hou et al., 2012). Nitrification in soils is carried out by aerobic, 
ammonia-oxidizing bacteria (AOB), which create nitrate from ammonium in the 
soil but can also emit some nitrous oxide. Compared to CO2, N2O is 
approximately 265 times more potent (IPCC, 2013). Human activities such as 
agriculture, fuel combustion, industry, and waste are responsible for 40% of total 
N2O emissions worldwide (IPCC, 2021). 
 

Greenhouse gas emissions caused by the agricultural sector were reported to 
have increased by 1.1% annually from 2005 to 2010 (Tubiello et al., 2013). If no 
climate action is taken, the GHG emitted from the agriculture sector will keep 
increasing annually. In order to reduce agricultural impacts on climate change, 
we have to start opting for sustainable agriculture. These greenhouse gasses 
need to be reduced to an acceptable rate to minimize their environmental 
impacts. 
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1.1.4 Alternative irrigation regimes 
 

Yuan et al. (2018) stated that flooded paddy fields have been identified as one 
of the major culprits in producing methane (CH4) which is a potent greenhouse 
gas (GHG). One of the ways to minimize CH4 emissions in paddy fields is by 
practicing proper water management (Gu et al., 2022). Aeration of the soil does 
not only reduce CH4 emissions, but it also reduces water usage (Wang et al., 
2020).  
 

Alternate wetting and drying (AWD) is one of the water management techniques 
that can potentially reduce CH4 emissions in paddy fields (Allen JM and Sander 
BO, 2019). AWD controls water usage and supplies it intermittently to paddy 
fields. Another water management technique that may potentially reduce CH4 
emission is mid-season drainage (MD) (Liu et al., 2019). MD supplies water to 
crops throughout the planting except for about seven days toward the end of the 
tillering stage.  
 

Both of these techniques may contribute to increased nitrous oxide (N2O) 
emissions. Nitrous oxide is produced from soils under aerobic conditions, which 
are favorable environmental conditions for nitrifying and denitrifying bacteria that 
produce N2O (Li et al., 2018).  
 

Moreover, alternative irrigation techniques reducing water irrigation in paddy 
fields may cause plant water stress due to water scarcity. Rice plants are 
susceptible to water drought, which is the most severe and significant constraint 
for rice production in the rainfed ecosystem (Pandey & Shukla, 2015).  
 

1.2 Problem statement 
 

Rice flourishes in a flooded field. However, flooding of rice fields contributes to 
emissions of CH4. Methane emission can be controlled by implementing a dry 
period in the field, but it may increase emissions of N2O, another greenhouse 
gas with a higher GWP than CH4. Changing soil conditions from an anaerobic to 
aerobic state results in changing soil microbiomes responsible for producing 
GHG emissions. Anaerobic conditions activated methanogenic microbes in 
paddy soil to respond and produce methane gas as their product. While aerobic 
conditions activated methanotroph microbes that utilize methane as carbon and 
energy source. 
 

In addition, implementing alternative irrigation regimes where irrigation is 
controlled may impact paddy growth due to the paddy experiencing water stress. 
Water stress is abiotic stress due to water scarcity, and this could affect the 
physiological and morphological characteristics of rice plants, such as stunted 
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rice plants, wilting, senescence, and others. Plant water stress will result in low 
photosynthesis rate and grain yield. 
 

Respectively, this study determined the effectiveness of alternative irrigation 
regimes in reducing GHG emissions without affecting paddy growth and grain 
yield. 
 

1.3 Scope of research 
 

The scopes of this study were determined as follows. 
 

Malaysia's rice is cultivated in lowland and upland; this study focuses on lowland 
paddy cultivation. This study was performed in a rain shelter for only one season 
of the planting cycle. In this study, tap water was the only water source used to 
irrigate the tanks and was measured daily. Farmers practiced direct seeding and 
transplanting seedling systems at the real paddy field, but in this study, the 
transplanted seedling was used in the tank. This study uses the rice cultivar 
MR297 from MARDI, which specializes in Karah diseases and gives a high yield.  
 

The GHG gas emissions were released all the time throughout the planting 
stage. Due to time constraints and the lack of human resources, this study is 
limited to taking the gas sample only once a week from 0900 to 1000. Besides 
that, 16s rRNA sequencing was assigned to identify the anaerobic methanogenic 
microbes and aerobic nitrifying microbes. Due to the financial constraint, this 
study only focuses on two batches on the 58th DAT, after practicing MD 
treatments, and on the 96th DAT, after the flowering stage. 
 

This study focuses on water management's effectiveness in reducing GHG 
emissions without affecting paddy growth and grain yield. This study will show 
how water management affects GHG emissions due to the microbial activities 
inside the paddy soil.  
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1.4 Objectives 
 

The purpose of this study are: 
 

1. to determine the plant physiological effects during water stress on both 
alternative irrigation regimes compared to CF. 

 
2. to determine the methane and nitrous oxide emissions under CF, AWD 

and MD practices. 
 

3. to determine the soil microbial diversity and abundance that contribute 
to methane and nitrous oxide emissions under CF, AWD and MD 
practices using 16S rRNA microbiome communities sequencing. 
 

4. to determine plant growth and rice yield on both alternate irrigation 
regimes compared to CF. 
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