
 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6888 

 

COMPARATIVE ANALYSIS AND HOW EFFICIENT DEEP 
LEARNING METHODS OF MALWARE DETECTION  

 

FIRAS SHIHAB AHMED 1, NORWATI MUSTAPHA 2, 

 NOR FAZLIDA MOHD SANI HEAD3, RAIHANI MOHAMED4 

 
1Faculty of Computer Science and Information Technology, University Putra Malaysia, Selangor, Malaysia 

2Associate Professor, Department of Computer Science, Faculty of Computer Science and Information 

Technology, University Putra Malaysia, Malaysia 
3Associate Professor, Department of Computer Science, Faculty of Computer Science and Information 

Technology, University Putra Malaysia, Malaysia 

         4Senior Lecturer, Department of Computer Science, Faculty of Computer Science and Information 

Technology, University Putra Malaysia, Malaysia 

E-mail:  1firasshahab48@gmail.com , 2norwati@upm.edu.my, 3 fazlida@upm.edu.my, 4 

raihanimohamed@upm.edu.my 

 

ID 55351 Submission  Editorial Screening Conditional Acceptance  Final Revision Acceptance  
16-08-2024 17-08-2024 11-09-2024 30-09-2024 

 
ABSTRACT 

 
Due to the massive interconnectivity among Internet devices in the Internet of Things (IoT), this led to 
security challenges in confronting attacks by malware. Detecting malware attacks in the IoT environment is 
considered a crucial matter that constitutes a challenge for researchers to contribute an accurate method to 
build a protection system capable of providing security for existing applications in the IoT environment.  
Today, most of the current research explores deep-learning methods for malware detection. This paper 
presents an approach that includes analysis to compare the performance of deep learning methods based on 
opcode in detecting malware in IoT. Four deep learning methods which include Recurrent Neural Networks 
(RNN), Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and Gated Recurrent 
Unit (GRU) are evaluated and compared for accuracy, precision, recall, and F-measure. The idea of this study 
is based on pre-processing and feature selection by identifying outlier values inside opcodes using the 
Interquartile range (IQR) technique. Then, the Recursive Feature Elimination (RFE) method has been applied 
to determine the important features and the suitable hyperparameters to reduce memory space. There are two 
data sets used in this study to evaluate the performance of the deep learning methods. The first dataset is 
generated by an IoT-based application with two classes which is considered smaller size than the second 
dataset which comprises nine different classes. The experimental results showed that the performance of the 
LSTM method outperformed compared to the other methods which were based on methods for measuring 
performance and reliability such as accuracy, precision, recall, and F-measure for both data sets. Moreover, 
used result of receiver operating characteristic (ROC) curves and precision-recall (PR) curves confirm that 
LSTM is the best method to detect malware. These results will be used as reference results to address the 
weaknesses of each deep learning method. 
 
Keywords: Malware Detection, Deep Learning, , AI Methods, Efficiency  
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1. INTRODUCTION  
 

The Internet of Things (IoT) is defined as a large 
network of things associated with each other through 
different sensing devices in a vast range of 
applications [1, 2]  Due to its continuous services 
over the Internet, IoT devices generate a tremendous 
amount of different sensory data over time, this led 
to security challenges in confronting attacks by 
malware [3, 4]. Therefore malware detection is a 
fundamental matter in IoT-based applications. The 
main issue in detecting malware is ineffective when 
using the signature method to identify code that is 
suspected of security changes [5]. For this reason, 
many researchers have explored and proposed many 
techniques and methods to detect malware in 
different attack vectors [6].  
 
In the process of detecting malware, many relied on 
traditional machine learning methods to find 
appropriate solutions, such as [7-9], this research 
focused on discovering this malware that is based on 
portable executable files (PE) that run on operating 
systems as the Windows operating system was 
widely used. Machine learning offers various 
methods and models that aid in providing adequate 
protection systems among IoT-based Moreover, 
machine learning methods require additional time 
and effort to extract the basic features for detecting 
malware.  
 
Currently, deep learning methods have been relied 
upon to solve many problems such as extracting 
important features and selecting features with 
minimal feature extraction efforts, in addition to 
their ability to deal with the high dimensions of the 
dataset [10]. However, the problem lies in working 
with high-dimensional or very large data, because 
the data has not been processed sufficiently for deep 
learning methods to be able to detect malware more 
efficiently [11, 12].  
 
 
2.      PROBLEM STATEMENT  

One of the most important problems and challenges 
facing researchers in building a malware detection 
model is the suitability of the detection model 
designed using one of the deep learning methods and 
its suitability to the size and type of data used, as 
there are no fixed criteria for choosing one of the 
deep learning methods to detect malware except 
through trial and error to determine the suitability of 
the detection model. By identifying the weaknesses 
of each method and showing the extent of its impact 

and improvement in performance after data 
processing, this study clarified the extent of the 
response of each method through the performance 
measurement tools that were explained in Tables (2-
7). Therefore, this study came to determine some 
criteria through an analytical study of these methods 
after using two different groups in terms of size and 
work environment and the extent to which the 
accuracy rate of these methods is affected by the 
stages of data processing before using them. 
Therefore, this study is considered a contributing 
factor in determining the suitability of the deep 
learning methods model to detect malware and what 
should be taken into account in determining the 
appropriate method. 
 
Because there is a gap in providing adequate 
protection for IoT applications, this research 
provides a comparative analysis of deep learning 
methods for detecting malicious software based on 
opcode sequences in the IoT environment-based 
applications and in the Windows environment. The 
analysis will compare four deep learning methods, 
which are  RNN, LSTM, CNN, and GRU. The 
analysis is imperative to serve as benchmark 
performance for all malware detection methods 
focusing on opcodes. The rest of this paper is 
organized as follows. Section 2 reviews the related 
works on malware detection based on deep learning 
methods. Section 3 presents the supervised learning 
methodology used to perform malware detection 
along with the dataset evaluation metrics. Section 4 
discusses the experimental results and finally, 
Section 5 concludes the paper. 
 
 
3. RELATED WORKS 

 The diversity of malware has made the process of 
detecting and controlling it extremely difficult. The 
term malware represents many types of malicious 
software, for example, ransomware, viruses, 
spyware, and many other types. The literature has 
shown an increase of deep learning methods being 
explored in malware detection.  
 
Research by [13] provides a general and 
comprehensive overview of malware that runs on the 
Android system and gives an idea of the most 
common types of malware. The LSTM model was 
used by examining the structure of system actions, 
calls, or other active communication (API), which 
were created from Android applications, the LSTM 
algorithm is well suited for modelling sequential 
information, making it a potential tool for 
identifying malware that reveals subtle 
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communication patterns over time. The performance 
results achieved were 96.65% accuracy, 93.04% 
precision, 96.53% recall, and 94.07% F1 score.  
 
The LSTM algorithms were also proposed by [14] 
together with the Markov model to detect malware 
in the IoT by identifying anomalies in the network 
which is not practically possible for simple edge-
based computing devices. The idea of removing 
outlier values before inputting them into the 
proposed model results in 92.48% accuracy. 
 
[15] Address of outliers and noise in the data set for 
malware in the Internet of Things environment 
(IoT). A new approach was proposed that combines 
the cornetropy model and the deep learning model 
CNN to deal with a complex data set due to outliers 
and noise of the features used in the detection model 
since CNN is skilled in learning hierarchical features 
from big data.  
 
Similar work by [16] proposed a multi-channel CNN 
algorithm to detect malware in IoT with the other 
two deep-learning algorithms LSTM, and RNN to 
discriminate against extracted system calls and 
opcode sequences for dwarf files. The work of the 
CNN algorithm is based on two channels connected 
in parallel, whereby each channel takes a sequence 
of the opcodes as input while the other channel 
works with system calls. The main motivation of the 
work is to deal with a larger number of features at 
the same time using a single model. To achieve this 
type of model only by implementing a multi-channel 
architecture based on deep learning algorithms. The 
results of this research have shown that CNN 
outperforms the remaining considered techniques by 
achieving a high accuracy of 99.8%.  
 
Another study to detect new and unknown malware 
through detecting network anomalies is [17]. It is not 
enough to compare current anomalies with the 
expected normal range because most current 
methods have low rates of detecting new or 
unknown types of attacks. Therefore, this study 
proposed a model that predicts the parameter values 
of network sensors and control units in systems by 
integrating a one-dimensional convolutional neural 
network (1D_CNN) and GRU to identify the 
temporal and spatial correlation for the sensors, and 
control units. The method is based on calculating 
deviation and statistical analysis to achieve anomaly 
detection in control systems. The results have shown 
precision and recall of this method are 99% and 85% 
respectively with an average F1 score is 91%.  
 

Botnet attacks in the IoT environment have raised 
major security concerns. Therefore, [18] presents an 
approach to detect malware of botnet attacks by 
selecting features within edge environments. 
Harnessing Chi-square analyses, and Redundant 
Feature Elimination (RFE) are some techniques used 
strategically to find meaningful subsets of features. 
GRU and machine learning models were used to 
evaluate 19 classifiers. Preliminary results 
confirmed the potential of the Gated recurrent unit 
(GRU) model, especially when coupled with 
intrinsic feature selection based on Lasso method.  
 
[19] Presents a new approach to detecting malware 
in the Internet of Things (IoT) environment by using 
deep-world methods such as LSTM and CNN. The 
proposed approach consists of three steps. In the first 
step, the data set is pre-processed using scaling, 
normalization, and noise removal. In the second 
step, features are identified using a single fast 
encoder followed by an ensemble classifier based on 
LSTM and CNN to detect malware and finally 
evaluate the results. The results showed that the 
proposed methods outperformed the benchmark 
methods on standard data sets with an average 
accuracy of 99.5%. 
 
 
4.    MATERIALS AND METHOD  
The malware classification process based on 
sequence opcode features with deep learning as 
shown in Figure 1. The process of classifying 
malware will be carried out on two different opcode 
datasets whereby the first dataset will be classified 
into two class labels and the second dataset will be 
classified into nine different types of malwares there 
are sub-sections will be detail out the datasets, pre-
processing and feature selection, model validation, 
algorithms, and evaluation metrics. 
 
4.1 Dataset 
This study focuses on deep learning methods to 
detect malware in the Internet of Things (IoT) 
environment and in the Windows system 
environment. For the purpose, there are two datasets 
used in experiments. The first dataset is generated by 
IoT-based application that comprises 552 malware 
samples with two different classes. With the 
Raspberry Pie II, it is worth noting that AMD 
processors have been widely used in cloud-edge 
devices, thus qualifying the Raspberry Pi II as a IoT 
cloud-edge device. The dataset used in this research 
was obtained from the Debian Linux package 
repositories from https://pkgs.org/. The second 
dataset is provided by Microsoft in a Windows 
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environment which was obtained from 
https://www.kaggle.com/competitions/malware- 
Classification/data?select=trainLabels.csv. It is the 
malicious code families which divided in nine 
categories with 10,869 malware samples. 
 
4.2  Pre-Processing and Feature Selection 
 In creating a dataset that can be used as input to deep 
learning algorithms, the Object-Dumb tool was used 
to decompile all samples to extract Opcode 
sequences in each sample. After that, the Opcode 
sequences will be processed with various pre-
processing steps that include normalizing, centering, 
and scaling. 
 

 
Figure 1: Malware Classification Process 

 

 

(a) First dataset 
 

The Python code was used to convert this sequence 
file into an Excel file before splitting it into a training 
and testing set. In addition, other two techniques 
have been used which are Recursive Feature 
Elimination (RFE) and Interquartile range (IQR) 
techniques. The RFE as a feature selection method is 
used to create a subgroup of the dataset that contains 
themost important features to prevent an overfitting 
issue during processing and build a model capable of 
classification with high accuracy. It is based on 
determining the weights of the features in the data 
set, which reflect the importance of each feature in 
the group. Figure 2 represents the process of RFE in 
this study that deals with a dataset in the Internet of 
Things environment and the Windows system, 
which contains large and high-dimensional and 
numerous outliers that affect the performance of the 
model for malware classification. Figure 3 shows the 
ranking features of the first dataset and the second 
set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The process of Recursive Feature Elimination 
(RFE) 
 

(b) Second dataset 
Figure 3: Ranking features of (a) first 

dataset (b) second dataset
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QR has been applied to identify outlier values inside 
features (opcode). It measures the statistical 
dispersion of the data values as a measure of overall 
distribution. IQR is equivalent to the difference 
between the first quartile (Q1) i.e. 25% and the third 
quartile (Q3) i.e. 75% respectively. Outliers' data are 
measured by measuring the lower and upper limits, 
meaning any data point that is below the lower limit 
or outside the upper limit is considered extreme as 
shown in Figure 4. 

 

 
 

Figure 4: The Interquartile Range (IQR) 

 
Outliers present in both datasets can be visualized 
using Boxplots as shown in Figure 5 for the first and 
second datasets.  

 

 

(a) First dataset 

 
(b) First dataset (cont’d) 

 

(c) Frist dataset (cont’d) 

(d) Second dataset 

(e) Second dataset (cont’d) 

Figure 5: Boxplot of outliers in the first dataset 
(a-c) and second dataset (d-e) 

Figure 6 shows an example of removing the outliers 
from one of the feature eip by setting the threshold 
to detect outliers using the filtering conditions above 
the limits. 

4.3 Model Validation   
 
The cross-validation k-fold is a method for 
performance validating of the deep learning 
methods, where the dataset is split into k-fold each 
iteration using one fold as testing data and the 
remaining folds as training data [20]  As a result, the 
procedure is repeated until every dataset has been 
assessed. The results are typically repeated along 
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with the values' mean scores. In this study, malware 
classification was performed based on the cross-
validation (k-fold) method for training and testing as 
shown this Figure 7, where a 10-fold cross-
validation was set up. Here, using one fold for 
testing, and the rest of the fold nine of data are used 
for training, and the process is repeated until it 
reaches 10 fold. 
 

count 10868.000000 
mean 121.681450 
std 235.653595 
min 0.000000 
25% 39.000000 
50% 76.000000 
75% 127.000000 
max 9139.000000 
Name: eip, type: float64 
 
The placement marks column: 
 75th quartile: 127.0 
 25th quartile: 39.0 
  IQR of (eip) = 88.0 

Figure 6: Example of removing outliers from feature eip 

As mentioned above, the features that have high 
degrees of importance in the datasets were selected 
by applying the RFE technique and then determining 
outliers and removing them by IQR technique. This 
process was performed on the datasets before 
applying deep learning algorithms to detect 
malware. 
 
4.4 Algorithms  

Four deep learning algorithms are used in the 
comparative experiments, which are Recurrent 
Neural Networks (RNN), Long Short-Term 
Memory (LSTM), Gated Recurrent Unit (GRU), 
and Convolutional Neural Network (CNN). All 
algorithms were implemented using the Anaconda 
Navigator, TensorFlow, Scikit-learn: Machine 
learning, Jupyter Notebook, and tools in Python. 

 

 
 
 

 
Figure 7: Validation methodology 

 
 
4.4.1 Recurrent Neural Networks (RNN)  
 
Recurrent Neural Networks RNN is an extension of 
a neural network with feed-forward and is called 
recurrent because it performs the same task with 
each element of the sequence while relying on the 
output of previous calculations. There is also another 
way to Recurrent Neural Networks RNN it has a 
memory that obtains information about what has 
been calculated so far. The algorithm is powerful in 
modelling sequences through the presence of 
periodic connections [21]. 
 
 
It use X = (x_1,x_(2……….,),x_T) to represent the, 
input vector sequence. The hidden vector sequence              
H = (h_1,h_(2……….,),h_T) and output vector 
sequence    Y= (y_1,y_(2……….,),y_T) are calculated 
with t belongs to [1,T] as shown in Equations 1 and  
2: 
  ℎ௧ୀ  ఙ (ௐೣ೓  ௑೟   ା ௐ೓೓  ௛೟షభ  ା ௕೓ )   (1) 

  𝑦௧ୀ  ௐ೓ೖ  ௛೟   ା  ௕೤                          (2) 

 
Where W and b is the weight matrix and bias term, 
𝑋௧ is the input vector at time t, ht-1 is the state at time 
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t-1, is a nonlinearity activation function as shown in 
Figure 8. 
 

 
 

Figure 8: Recurrent Neural Networks RNN [21]  

 
4.4.2 Long Short-Term Memory (LSTM) 
 
The goal for discovering the LSTM algorithm in 
1997 is to solve the vanishing gradient problem in 
RNN algorithm. So the structure of the LSTM 
algorithm was built from three gates to address this 
problem: the input gate, the forgetting gate, and the 
output gate.  
 
The value cell task is to remember random periods 
and also organize the three gates for the flow of 
information into and out of the cell and trace the 
relationships between elements of the input 
sequence as a new value flows into the cell. As for 
the forget gate, it controls the extent to which values 
are kept in the cell. The process of storing 
information takes place through cells, and memory 
is processed through gates as shown in Figure 9 [21, 
22]. 

Figure 9: Long Short-Term Memory (LSTM) 

Forget Gate 
 
The task of the forgetting gate is to identify 
information that is no longer useful in the process of 
training the model. It is done by feeding the gate with 
inputs xt (input at a given time) and ht-1 (output of the 
previous cell) by multiplying them using the weight 
matrices, and then the bias 𝑏𝑓 is added. Through the 
activation function σ, the result is passed to give a 
binary output. If the cell state is 0, the information 
will be forgotten, but if the value is 1, the 

information will be kept for use in the future, the 
forget equation as shown in Equation 3: 
 
𝑓௧ୀ  𝜎( 𝑊௙[ℎ௧ିଵ,𝑥௧] +  𝑏௙)             (3)        

Where: 

 𝑊௙ represents the weight matrix associated with 
the forget gate. 

 𝑊௙[ℎ௧ିଵ,𝑥௧] denotes the concatenation of the 
current input and the previous hidden state. 

 𝑏௙ is the bias with the forget gate. 
 σ is the sigmoid activation function. 

 
Input Gate 
 
The information is organized and the values that will be 
remembered are filtered similarly to the forget gate 
using the inputs ht-1 and xt. After that, a vector will be 
created using the tanh function, which gives outputs 
from -1 to +1, containing all possible values ht-1 and xt. 
Finally, the vector and regularized values are multiplied 
to obtain useful information. The input gate equation is 
as shown in Equations 4 and 5: 
 
𝑖௧ =  𝜎 ( 𝑊௜  [ ℎ௧ିଵ , 𝑥௧  ] +  𝑏௜)                     (4) 

Ĉ௧ =  𝑡𝑎𝑛ℎ ( 𝑊௖  [ ℎ௧ିଵ , 𝑥௧  ] +  𝑏௖)              (5) 
 
 

The previous state is multiplied by 𝑓௧ Ĉ௧ିଵ ignoring 
the previously selected information and direction, 
and then inserted 𝑖௧  Ĉt where this represents the 
updated candidate values adjusted for the amount we 
chose to update each state value as shown in 
Equation 6: 
 
Ĉ௧ =   𝑓௧  𝐶௧ିଵ +  𝑖௧  Ĉ௧                                 (6) 
 
 
Output Gate 
 
The task of the output gate is to extract information 
from the state of the cell that is useful in the training 
process to present it as output to this gate. The vector 
is created by applying the tanh function to the cell. 
After that, the sigmoid function organizes the 
information and filters it for the values that should 
be used (ht-1 and xt). In the final stage, the vector 
values and the structured values are multiplied and 
then they are sent as outputs and inputs to the cell 
that will be the next. The equation of this gate will 
be as shown in Equation 7: 
 
  𝛰௧ =  𝜎(𝑊ை . [ℎ௧ିଵ , 𝑥௧] +  𝑏இ)                       (7) 
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4.4.3 Gated Recurrent Unit (GRU) 
 
The Gated Recurrent Unit GRU algorithm is an 
updated version of the LSTM algorithm and is a bit 
more dramatic. In this algorithm, the forget gate and 
the input gate are combined to become one gate 
called the update gate. Along with making various 
modifications, it mixes the hidden state and the cell 
state. The resulting model, which is clearer than 
traditional LSTM models, The equations of GRU is 
shown in Equation 8 to Equation 11: 
 
Update Gate: zt = σ(Wz * [ht-1, xt])                            (8) 
Reset Gate: rt = σ(Wr * [ht-1, xt])                               (9) 
Hidden State: ht̃ = tanh(W * [rt ⊙ ht-1, xt])               (10) 
Final Hidden State: ht = (1 - zt)⊙ ht-1 + zt ⊙ht̃              (11) 
 

 
Here, σ represents the sigmoid function, tanh is the 
hyperbolic tangent function, Wz, Wr, and W are 
parameter matrices, ht-1 is the previous hidden state, 
xt is the current input, ⊙ represents element-wise 
multiplication, and ht is the current hidden state as 
shown in Figure 10. 

 
 
 
 
 
 
 
 
 
 

Figure 10: Gated Recurrent Unit (GRU) 

 
 
4.4.4 The Convolutional Neural Network (CNN) 
 
CNN algorithm is considered a deep learning 
method that is widely used in analyzing visual 
images, where the (CNN) structure uses a special 
technique called Convolution instead of relying only 
on matrix multiplications like traditional neural 
networks. This algorithm uses the process of 
convolution, where it performs a process, which 
combines two functions to show how one changes 
the shape of the other. The input (x) for each layer in 
the CNN model has three dimensions, height, width, 
and depth, where the height (m) is equal to the width. 
In addition, the depth is indicated by the channel 
number. The convolutional layer calculates a dot 
product between its inputs and the weights, as in the 
Equation 12, which is similar to NLP, but the inputs 

are small-scale regions of the initial image volume. 
The nonlinearity or activation function is then 
applied to the output of the convolutional layer as 
shown in Figure 11 [23, 24]. 
 

  ℎ௞ = 𝑓(𝑊௞ ∗  𝜒 +  𝑏௞)                                    (12) 

  Where: 𝑊௞=weight, 𝑏௞= bias, ℎ௞ =maps, k = 
generating feature 
 
 
4.5 Evaluation Metrics 

 
The evaluation and percentage metrics are based on 
the confusion matrix as shown in Table 1, where the 
rows in the matrix represent instances of the actual 
class and each column represents instances of the 
expected class. It is created through the results 
extracted from the malware classification. The 
correct predictions are the number of values 
distributed for each category, taking into account the 
total expected results after classification. Through 
this table, TP means that the instance was correctly 
predicted to be benign and that it was predicted to be 
benign. TN means that the instance was correctly 
predicted to be malware and that it was predicted to 
be malware. FP means that the instance predicted as 
malware was incorrectly predicted as benign FN 
means the instance predicted as benign was 
incorrectly predicted as malware. so through the 
confusion matrix, we can extract evaluation metrics 
to give insight into the performance of the detection 
model, where these metrics determine the accuracy 
and validity of the training model to detect malware 
by the following functions[5]. 
 
 

Table 1: Confusion matrix 

 

                                 Predicted 
Actual           Positive class (Benign)  Negative class (Malware) 
Positive class    True Positive (TP)         False Negative (FN)                                                             
Negative class   False Positive (FP)        True Negative (TN) 

                
 
• Accuracy: Accuracy is the number of correct 
predictions from all predictions made. It can be 
calculated using Equation 13. 
 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்௉ା

்௉ା்ேାி௉ାிே
             (13) 
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• Precision:  Precision measures the percentage of 
expected malware that is correctly classified as 
malware and the formula is shown in Equation 14. 
 
   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

்௉

்௉ାி௉
                         (14) 

 
• Recall: recall or detection rates is the percentage of 
malware that was correctly predicted and it can be 
calculated using Equation 15. 

    𝑅𝑒𝑐𝑎𝑙𝑙 =  
்௉

்௉ାிே
                              (15) 

 
• F-Measure:  is the harmonic mean of precision and 
recall, and it is considered a very important measure 
for the success of the detection model when the 
layers are unbalanced in the information retrieval 
process, as precision measures the importance of the 
result, while recall measures the number of truly 
relevant results that were returned.  
The formula as given in Equation 16. 

            

  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
ଶ × ்௉

ଶ ×்௉ାி௉ାிே
           (16) 

 
Measuring Precision, recall, and F-measure is 
necessary because accuracy alone is insufficient and 
it can be misleading. The confusion matrix is a 
means of describing the breakdown of errors in the 
predictions for an unseen dataset. Precision and 
recall will give the exactness and completeness of 
the model respectively while the F-measure or F1-
score gives the balance [25]. 
 
 
 
 
 
 

 
 

5.  RESULTS AND DISCUSSION  

The experiments aimed to evaluate and compare the 
performance of four deep learning algorithms in 
detecting malware based on opcode features. Those 
algorithms are Recurrent Neural Networks (RNN), 
Long Short-Term Memory (LSTM), Convolutional 
Neural Networks, (CNN), and Recurrent Neural 
Networks (GRU). The idea of this research is based 
on pre-processing by removing the outliers with IQR 
and reducing the memory size of the features from 
64-bit to 8-bit by applying the Pandas equations.  
 
In addition, the RFE method is used as feature 
selection to improve the result significantly. 
Comparison experiments of different deep learning 
algorithms against two different datasets with and 
without pre-processing and feature selection were 
implemented.  
 
Tables 2 and 3 contain the full results of accuracy, 
precision, recall, and F-measure for each algorithm 
under study for the first dataset before and after 
applying the preprocessing and feature selection 
step. As noticed from Table 2, LSTM gives better 
performance compared to other algorithms with 94% 
accuracy, 0.94 precision, 0.94 recall, and 0.94 F-
measure. The modest performance achieved by  
 
 
GRU, RNN followed by CNN showed the lowest 
performance. In Table 3, it is noticed that there is an 
improvement in the performance after applying IQR 
and RFE methods in all algorithms and LSTM 
remains the best in terms of accuracy, precision-
recall, and F-measure with 97.06%, 0.97, 0.97 and 
0.97 respectively. Similarly, concerning the 
performance of the algorithms against the second 
dataset, it can be seen there is improvement in the 

Figure 11: Convolutional Neural Network (CNN) 
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Observed from the results in the tables, the low 
performance of the algorithms due to the large size 
of the training set without selection of important 
features, along with the presence of outliers led to 
poor performance of the Algorithms. At the same 
time, the very poor result shown by RNN is due to 
the inability of this algorithm to deal with large 
dataset that have long sequences 
  
Performance of all the methods before and after 
applying IQR and RFE methods and again LSTM 
still gives an excellent result as shown in Table 4 and 
Table 5.  
 

 

 

 
 
 

The results in Table 3 and Table 5 are analyzed based 
on Receiver Operating Characteristic (ROC) curve 
and Precision-Recall (PR) curve. They played a role 
in understanding the method of various systems in 
the presence of uncertainty. The Area under Curve 
(AUC) will be used as a summary of the model skill. 
The model skill will be compared with a no-skill 
classifier. A model with no skill is represented at the 
point (0.5, 0.5) for first dataset and different values 
of no skill for the second dataset. Table 6 and Table 
7 show the results of AUC for ROC and PR of four 
deep learning methods across the first and second 
datasets respectively. 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

Algorithm Epoch Batch size Accuracy 
 

Precision Recall F- Measure 

RNN 
 

100 65 78.38% 0.80 0.78 0.78 

GRU 
 

100 65 88.29% 0.90 0.90 0.88 

CNN 
 

100 65 34.34% 0.92 0.34 0.43 

LSTM 
 

100 65 94% 
 

0.94 0.94 0.94 

Algorithm Epoch Batch size Accuracy 
 

Precision Recall F- Measure 

RNN 
 

100 65 92.16% 0.92 0.92 0.92 

GRU 
 

100 65 97.05% 0.98 0.97 0.98 

CNN 
 

100 65 36.75% 0.75 0.37 0.49 

LSTM 
 

100 65 97.06 % 0.97 0.97 0.97 

Algorithm Epoch Batch size Accuracy 
 

Precision Recall F- Measure 

RNN 
 

100 65 13.52% 0.02 0.14 0.03 

GRU 
 

100 65 67.57% 0.76 0.68 0.69 

CNN 
 

100 65 45.84% 0.53 0.46 0.45 

LSTM 
 

100 65 90.02% 0.92 0.83 0.85 

Algorithm Epoch Batch size Accuracy 
 

Precision Recall F- Measure 

RNN 
 

100 65 8.02% 0.01 0.09 0.01 

GRU 
 

100 65 96.03% 0.96 0.96 0.96 

CNN 
 

100 65 90.58% 0.92 0.91 0.91 

LSTM 
 

100 65 98.26% 
 

0.98 0.98 0.98 

Table 2: Results on first dataset (without IQR and RFE) 

 

Table 3: Results on first dataset (with IQR and RFE ) 
 

Table 4: Results on second dataset (without IQR and RFE) 
 

Table 5: Results on second dataset (with IQR and RFE) 
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5.1 Receiver Operating Characteristic (ROC) 
Curve 
 
The Receiver Operating Characteristic (ROC) curve 
summarizes the trade-off between TP rate and the FP 
rate for a predictive model that uses different 
probability thresholds. It has two dimensions 
whereby the x-axis indicates the False Positive FP 
rate and the y-axis indicates the True Positive TP rate 
[26] 
 
 

 

 

 
5.1.1 Receiver Operating Characteristic (ROC) 
Curve (first dataset) 
 
Figure 12 shows the ROC curves for RNN, CNN, 
GRU and LSTM for the first dataset with 0.97, 0.54, 
0.99 and 1.00 respectively. 
 
5.1.2 Receiver Operating Characteristic (ROC) 
Curve (second dataset) 
 
Figure 13 shows the ROC curves of second dataset 
for RNN is 0.952 with no skill at 0.06, CNN is 0.992 
with no skill at 0.50, GRU is 0.987 with no skill at 
0.99 and LSTM is 0.997 at no skill 0.99.  
 
 
5.2 Precision-Recall (PR) Curve 
 
There are many ways to evaluate the classifier, and 
among these methods are the Precision-Recall curve 
(PR) and the receiver operating characteristic (ROC) 

curve. PR It is a graph that expresses the Precision 
values on the y-axis and the recall values on the x-
axis. In other words, the PR curve contains the y-axis 
and the x-axis. 
 
5.2.1 Precision-Recall (PR) Curve (first dataset) 
 
Figure 14 shows the PR curve for RNN, CNN, GRU 
and LSTM for first dataset with 0.52, 0.96, 0.99, and 
0.98 respectively. 
 
 

 

 

 
5.2.2 Precision-Recall (PR) Curve (second 
dataset) 
Figure 15 shows the PR curve for RNN, CNN, GRU 
and LSTM for first dataset with 0.84, 0.58, 0.99, and 
0.99 respectively. 
 
 
5.3 DISCUSSION  
 
Nowadays, there are many methods for malware 
detection, most notably deep learning methods, but 
many do not distinguish which is the best and most 
appropriate for detecting malware. The importance 
of this research is to identify the weaknesses, 
strengths, and efficiency of deep learning methods in 
detecting malware based on the opcode, this research 
used a set of data of different sizes and working 
environments.

Algorithms ROC  
AUC 

PR  
AUC 

Recurrent Neural Networks (RNN) 0.97 0.96  
Gated Recurrent Unit (GRU) 0.99 0.99 
Convolutional Neural Network (CNN) 0.54 0.52 
Long Short-Term Memory (LSTM) 1.00 0.98 

Algorithms ROC  
AUC 

PR  
AUC 

Recurrent Neural Networks (RNN) 0.952 0.84 

Gated Recurrent Unit (GRU) 0.987 0.99 

Convolutional Neural Network (CNN) 0.992 0.58 

Long Short-Term Memory (LSTM) 0.997 0.99 

Table 7: Area under Curve (AUC) of ROC and PR for second dataset 

Table 6: Area under Curve (AUC) of ROC and PR for first dataset 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6899 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ROC Curve for subset small data 
 

                 
(a) RNN                                                                    (b)  CNN  

                 
(c) LSTM                                                             (d) GRU  

ROC curve for subset big data 
 

     
                                (e)RNN                                                       (f) GRU 

           
         (g)LSTM                                                         (h) CNN  

Figure 12: ROC curves for RNN, CNN, GRU, and LSTM (first dataset) 
 

Figure 13: ROC curves for RNN, CNN, GRU, and LSTM (second dataset) 
 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6900 

 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

PR curve for sub-second dataset 
 

       

                                (m) RNN                                                             (n) CNN  

       
                           (p) GRU                                                     (q) LSTM  
 

PR curve for subset first dataset  
 

                 

                            (i) RNN                                                (j) CNN  

           
                               (k) GRU                                                     (l) LSTM 

 

Figure 14: PR curves for RNN, CNN, GRU, and LSTM (first dataset) 
 

Figure 15: PR curves for RNN, CNN, GRU, and LSTM (second dataset) 
 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6901 

 

This study provided an evaluation and analysis of the 
performance of deep learning methods by using 
performance measurement tools for each method 
through using of a small data set and a large data set. 
The extent to which these algorithms are affected by 
the size and type of the data set has been proven. It is 
better to use the (LSTM) algorithm when the data set 
is large or unbalanced because it is capable of 
processing large data without falling into overfitting 
or vanishing gradients, where  It relies on three gates, 
which reflect the high ability to process large data 
efficiently, through the accuracy and evaluation 
results shown in Tables (2-7), it becomes clear to us 
that the (GRU) algorithm is the closest in performance 
to the (LSTM) algorithm, but it suffers from the 
inability to unbounded counting of data sets, when the 
data set is large, as it just uses two, gets to process the 
data. As for the (RNN) algorithm, its performance was 
not good, as it originally suffered from the problem of 
vanishing gradient, especially with large data, and this 
is what previous research confirmed. As for the (CNN) 
algorithm, it was the worst among all deep learning 
methods because it specializes in processing image 
data more, and according to the results of this study, it 
is not able to process the data well except after 
converting the data set into an image format. 
 
 As mentioned above, the AUC curve of two curves, 
the Receiver Operating Characteristic (ROC) curve, 
and the Precision-Recall (PR) curve have been used in 
this comparative analysis study. The important point 
of using the ROC and PR curves together is finding 
close or shared points to give the best evaluation of the 
models used in this study as shown in Tables 6 and 7. 
In addition, AUC and ROC curves will help us to 
know the feasibility of the classifier’s performance of 
deep learning methods and to evaluate the efficiency 
of detecting malware. Therefore, ROC measures the 
performance of the classification model at all 
classification thresholds and AUC measures the 
ability of the binary classifier to differentiate between 
classes and it is used as a summary of the ROC curve. 
Knowing how the AUC curve works, the higher the 
AUC, the better the model’s performance at 
distinguishing between positive and negative classes. 
AUC ranges in value from 0 to 1. A model whose 
predictions are 100% wrong has an AUC of 0.0 or 
otherwise AUC of 1.0 if predictions are 100% correct. 
 
 
The performance of the ideal model in detecting 
malware depends on choosing the appropriate model 
for the dataset. As the performance measures that we 
mentioned above, it is possible to determine the 
appropriate model for the dataset used in this study. 

Observed from the results, ROC and PR AUC for 
RNN, GRU, LSTM, and CNN models on the first 
dataset is about (ROC = 0.952, PR = 0.84), 
(ROC=0.987, PR=0.99), (ROC=0.997, PR=0.99), and 
(ROC=0.992, PR=0.58) respectively. Meanwhile, the 
ROC AUC for the RNN, GRU, LSTM, and CNN 
models on the second dataset is about (ROC=0.54, 
PR=52), (ROC=0.99, PR=0.99), (ROC=1.0, 
PR=0.98), and (ROC=0.97, PR=96) respectively. 
Therefore, this indicates that the LSTM model is the 
best model among other deep learning models for 
malware detection using opcode datasets in the IoT 
environment (first dataset) as well as for categorizing 
malware in the Windows environment (second 
dataset).  This is due to the strong structure of this 
method, which involves the input gate, forget gate, and 
output gate [27] in solving the problem of the 
vanishing gradient. LSTM has outperformed the GRU 
model which suffers from the problem of unbounded 
counting [28] due to the merging of the forget gate and 
the input gate into the update gate. As for the CNN 
model, it is an efficient method for dealing with a set 
of image data, so its performance was unsatisfactory 
in processing the opcode sequences dataset. 
 
 
5.3.1 Justify the criteria using which a conclusion 

was reached regarding the research problem 

The most important criteria of this study, which are 
related to the statement of the problem, are the 
suitability of the detection model, the limitations of 
each of the deep learning methods, and the extent of 
the response of each method in improving 
performance after processing the data before using it 
and the flexibility of each technique by moving from 
a small data set to a large data set and using the same 
parameters in terms of repetition, number of layers, 
and number of nodes in each method. 

 
5.3.2 The major findings when research 
contribution and comparison to other such 
solutions presented 

 
This study came to evaluate deep learning methods 
accurately and individually without working on 
merging between the methods to detect malware 
because we noticed that most previous studies were 
working on merging between deep learning methods 
to improve the performance of each method, as each 
method has weaknesses and strengths in dealing with 
different data in terms of size and type. This study 
came to analyze the weaknesses and strengths of each 
method how to use the data before and after processing 
it and the extent of its impact on the ability to detect 
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malware. Therefore, the goal of this study is to 
understand the behaviors of deep learning methods 
how to overcome their weaknesses, and the extent of 
their suitability for the type and size of data. 
 
 
6. CONCLUSION  
 
While there are numerous approaches to malware 
detection—deep learning techniques being one of the 
most popular—there is no way to differentiate 
between the most effective and suitable approaches. 
This study presented an analysis of the performance of 
deep learning methods to determine the suitability of 
the malware detection model for the dataset, which 
employs a set of data with varying sizes and working 
circumstances to determine the efficacy, drawbacks, 
and efficiency of deep learning techniques for 
malware detection based on opcodes.  It has been 
demonstrated how much the size and nature of the data 
collection influence these algorithms. This paper 
presented a comparative analysis of four deep learning 
methods which are LSTM, GRU, CNN, and RNN to 
detect malware in the Internet of Things environment 
and the Windows system. Two sets of data were used 
based on sequences of operating code (opcode). The 
experimental results showed that the performance of 
the LSTM method outperformed compared to the 
other methods under study in terms of accuracy, 
precision, recall, and F-measure for both datasets. In 
addition, these results are supported by the analysis of 
Receiver Operating Characteristic (ROC) and 
Precision-Recall (PR) curves to confirm that LSTM is 
the best method to detect malware. These results and 
evaluations will be used as reference results to address 
the weaknesses of each deep learning method with the 
same datasets. They can also be used to explore deep 
learning methods with other data sets from different 
environments to evaluate deep learning methods. 
 
 The limitations and future work 

Not counting the training and testing time of the 
methods used, where time is an important element in 
evaluating the efficiency of each method. So The 
future work of this study is to measure the 
performance of deep science methods not only 
through accuracy, but the time factor must be 
introduced because it is considered very important in 
the efficiency of the detection model, especially in the 
large data set, addition to and the number of features 
used, and to improve the method of selecting features 
by assigning weights of the importance of features and 
excluding unimportant and duplicate features. 
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