
 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6888

COMPARATIVE ANALYSIS AND HOW EFFICIENT DEEP
LEARNING METHODS OF MALWARE DETECTION

FIRAS SHIHAB AHMED 1, NORWATI MUSTAPHA 2,

 NOR FAZLIDA MOHD SANI HEAD3, RAIHANI MOHAMED4

1Faculty of Computer Science and Information Technology, University Putra Malaysia, Selangor, Malaysia

2Associate Professor, Department of Computer Science, Faculty of Computer Science and Information

Technology, University Putra Malaysia, Malaysia
3Associate Professor, Department of Computer Science, Faculty of Computer Science and Information

Technology, University Putra Malaysia, Malaysia

 4Senior Lecturer, Department of Computer Science, Faculty of Computer Science and Information

Technology, University Putra Malaysia, Malaysia

E-mail: 1firasshahab48@gmail.com , 2norwati@upm.edu.my, 3 fazlida@upm.edu.my, 4

raihanimohamed@upm.edu.my

ID 55351 Submission Editorial Screening Conditional Acceptance Final Revision Acceptance
16-08-2024 17-08-2024 11-09-2024 30-09-2024

ABSTRACT

Due to the massive interconnectivity among Internet devices in the Internet of Things (IoT), this led to
security challenges in confronting attacks by malware. Detecting malware attacks in the IoT environment is
considered a crucial matter that constitutes a challenge for researchers to contribute an accurate method to
build a protection system capable of providing security for existing applications in the IoT environment.
Today, most of the current research explores deep-learning methods for malware detection. This paper
presents an approach that includes analysis to compare the performance of deep learning methods based on
opcode in detecting malware in IoT. Four deep learning methods which include Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and Gated Recurrent
Unit (GRU) are evaluated and compared for accuracy, precision, recall, and F-measure. The idea of this study
is based on pre-processing and feature selection by identifying outlier values inside opcodes using the
Interquartile range (IQR) technique. Then, the Recursive Feature Elimination (RFE) method has been applied
to determine the important features and the suitable hyperparameters to reduce memory space. There are two
data sets used in this study to evaluate the performance of the deep learning methods. The first dataset is
generated by an IoT-based application with two classes which is considered smaller size than the second
dataset which comprises nine different classes. The experimental results showed that the performance of the
LSTM method outperformed compared to the other methods which were based on methods for measuring
performance and reliability such as accuracy, precision, recall, and F-measure for both data sets. Moreover,
used result of receiver operating characteristic (ROC) curves and precision-recall (PR) curves confirm that
LSTM is the best method to detect malware. These results will be used as reference results to address the
weaknesses of each deep learning method.

Keywords: Malware Detection, Deep Learning, , AI Methods, Efficiency

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6889

1. INTRODUCTION

The Internet of Things (IoT) is defined as a large
network of things associated with each other through
different sensing devices in a vast range of
applications [1, 2] Due to its continuous services
over the Internet, IoT devices generate a tremendous
amount of different sensory data over time, this led
to security challenges in confronting attacks by
malware [3, 4]. Therefore malware detection is a
fundamental matter in IoT-based applications. The
main issue in detecting malware is ineffective when
using the signature method to identify code that is
suspected of security changes [5]. For this reason,
many researchers have explored and proposed many
techniques and methods to detect malware in
different attack vectors [6].

In the process of detecting malware, many relied on
traditional machine learning methods to find
appropriate solutions, such as [7-9], this research
focused on discovering this malware that is based on
portable executable files (PE) that run on operating
systems as the Windows operating system was
widely used. Machine learning offers various
methods and models that aid in providing adequate
protection systems among IoT-based Moreover,
machine learning methods require additional time
and effort to extract the basic features for detecting
malware.

Currently, deep learning methods have been relied
upon to solve many problems such as extracting
important features and selecting features with
minimal feature extraction efforts, in addition to
their ability to deal with the high dimensions of the
dataset [10]. However, the problem lies in working
with high-dimensional or very large data, because
the data has not been processed sufficiently for deep
learning methods to be able to detect malware more
efficiently [11, 12].

2. PROBLEM STATEMENT

One of the most important problems and challenges
facing researchers in building a malware detection
model is the suitability of the detection model
designed using one of the deep learning methods and
its suitability to the size and type of data used, as
there are no fixed criteria for choosing one of the
deep learning methods to detect malware except
through trial and error to determine the suitability of
the detection model. By identifying the weaknesses
of each method and showing the extent of its impact

and improvement in performance after data
processing, this study clarified the extent of the
response of each method through the performance
measurement tools that were explained in Tables (2-
7). Therefore, this study came to determine some
criteria through an analytical study of these methods
after using two different groups in terms of size and
work environment and the extent to which the
accuracy rate of these methods is affected by the
stages of data processing before using them.
Therefore, this study is considered a contributing
factor in determining the suitability of the deep
learning methods model to detect malware and what
should be taken into account in determining the
appropriate method.

Because there is a gap in providing adequate
protection for IoT applications, this research
provides a comparative analysis of deep learning
methods for detecting malicious software based on
opcode sequences in the IoT environment-based
applications and in the Windows environment. The
analysis will compare four deep learning methods,
which are RNN, LSTM, CNN, and GRU. The
analysis is imperative to serve as benchmark
performance for all malware detection methods
focusing on opcodes. The rest of this paper is
organized as follows. Section 2 reviews the related
works on malware detection based on deep learning
methods. Section 3 presents the supervised learning
methodology used to perform malware detection
along with the dataset evaluation metrics. Section 4
discusses the experimental results and finally,
Section 5 concludes the paper.

3. RELATED WORKS

 The diversity of malware has made the process of
detecting and controlling it extremely difficult. The
term malware represents many types of malicious
software, for example, ransomware, viruses,
spyware, and many other types. The literature has
shown an increase of deep learning methods being
explored in malware detection.

Research by [13] provides a general and
comprehensive overview of malware that runs on the
Android system and gives an idea of the most
common types of malware. The LSTM model was
used by examining the structure of system actions,
calls, or other active communication (API), which
were created from Android applications, the LSTM
algorithm is well suited for modelling sequential
information, making it a potential tool for
identifying malware that reveals subtle

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6890

communication patterns over time. The performance
results achieved were 96.65% accuracy, 93.04%
precision, 96.53% recall, and 94.07% F1 score.

The LSTM algorithms were also proposed by [14]
together with the Markov model to detect malware
in the IoT by identifying anomalies in the network
which is not practically possible for simple edge-
based computing devices. The idea of removing
outlier values before inputting them into the
proposed model results in 92.48% accuracy.

[15] Address of outliers and noise in the data set for
malware in the Internet of Things environment
(IoT). A new approach was proposed that combines
the cornetropy model and the deep learning model
CNN to deal with a complex data set due to outliers
and noise of the features used in the detection model
since CNN is skilled in learning hierarchical features
from big data.

Similar work by [16] proposed a multi-channel CNN
algorithm to detect malware in IoT with the other
two deep-learning algorithms LSTM, and RNN to
discriminate against extracted system calls and
opcode sequences for dwarf files. The work of the
CNN algorithm is based on two channels connected
in parallel, whereby each channel takes a sequence
of the opcodes as input while the other channel
works with system calls. The main motivation of the
work is to deal with a larger number of features at
the same time using a single model. To achieve this
type of model only by implementing a multi-channel
architecture based on deep learning algorithms. The
results of this research have shown that CNN
outperforms the remaining considered techniques by
achieving a high accuracy of 99.8%.

Another study to detect new and unknown malware
through detecting network anomalies is [17]. It is not
enough to compare current anomalies with the
expected normal range because most current
methods have low rates of detecting new or
unknown types of attacks. Therefore, this study
proposed a model that predicts the parameter values
of network sensors and control units in systems by
integrating a one-dimensional convolutional neural
network (1D_CNN) and GRU to identify the
temporal and spatial correlation for the sensors, and
control units. The method is based on calculating
deviation and statistical analysis to achieve anomaly
detection in control systems. The results have shown
precision and recall of this method are 99% and 85%
respectively with an average F1 score is 91%.

Botnet attacks in the IoT environment have raised
major security concerns. Therefore, [18] presents an
approach to detect malware of botnet attacks by
selecting features within edge environments.
Harnessing Chi-square analyses, and Redundant
Feature Elimination (RFE) are some techniques used
strategically to find meaningful subsets of features.
GRU and machine learning models were used to
evaluate 19 classifiers. Preliminary results
confirmed the potential of the Gated recurrent unit
(GRU) model, especially when coupled with
intrinsic feature selection based on Lasso method.

[19] Presents a new approach to detecting malware
in the Internet of Things (IoT) environment by using
deep-world methods such as LSTM and CNN. The
proposed approach consists of three steps. In the first
step, the data set is pre-processed using scaling,
normalization, and noise removal. In the second
step, features are identified using a single fast
encoder followed by an ensemble classifier based on
LSTM and CNN to detect malware and finally
evaluate the results. The results showed that the
proposed methods outperformed the benchmark
methods on standard data sets with an average
accuracy of 99.5%.

4. MATERIALS AND METHOD
The malware classification process based on
sequence opcode features with deep learning as
shown in Figure 1. The process of classifying
malware will be carried out on two different opcode
datasets whereby the first dataset will be classified
into two class labels and the second dataset will be
classified into nine different types of malwares there
are sub-sections will be detail out the datasets, pre-
processing and feature selection, model validation,
algorithms, and evaluation metrics.

4.1 Dataset
This study focuses on deep learning methods to
detect malware in the Internet of Things (IoT)
environment and in the Windows system
environment. For the purpose, there are two datasets
used in experiments. The first dataset is generated by
IoT-based application that comprises 552 malware
samples with two different classes. With the
Raspberry Pie II, it is worth noting that AMD
processors have been widely used in cloud-edge
devices, thus qualifying the Raspberry Pi II as a IoT
cloud-edge device. The dataset used in this research
was obtained from the Debian Linux package
repositories from https://pkgs.org/. The second
dataset is provided by Microsoft in a Windows

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6891

environment which was obtained from
https://www.kaggle.com/competitions/malware-
Classification/data?select=trainLabels.csv. It is the
malicious code families which divided in nine
categories with 10,869 malware samples.

4.2 Pre-Processing and Feature Selection
 In creating a dataset that can be used as input to deep
learning algorithms, the Object-Dumb tool was used
to decompile all samples to extract Opcode
sequences in each sample. After that, the Opcode
sequences will be processed with various pre-
processing steps that include normalizing, centering,
and scaling.

Figure 1: Malware Classification Process

(a) First dataset

The Python code was used to convert this sequence
file into an Excel file before splitting it into a training
and testing set. In addition, other two techniques
have been used which are Recursive Feature
Elimination (RFE) and Interquartile range (IQR)
techniques. The RFE as a feature selection method is
used to create a subgroup of the dataset that contains
themost important features to prevent an overfitting
issue during processing and build a model capable of
classification with high accuracy. It is based on
determining the weights of the features in the data
set, which reflect the importance of each feature in
the group. Figure 2 represents the process of RFE in
this study that deals with a dataset in the Internet of
Things environment and the Windows system,
which contains large and high-dimensional and
numerous outliers that affect the performance of the
model for malware classification. Figure 3 shows the
ranking features of the first dataset and the second
set.

Figure 2: The process of Recursive Feature Elimination
(RFE)

(b) Second dataset
Figure 3: Ranking features of (a) first

dataset (b) second dataset

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6892

QR has been applied to identify outlier values inside
features (opcode). It measures the statistical
dispersion of the data values as a measure of overall
distribution. IQR is equivalent to the difference
between the first quartile (Q1) i.e. 25% and the third
quartile (Q3) i.e. 75% respectively. Outliers' data are
measured by measuring the lower and upper limits,
meaning any data point that is below the lower limit
or outside the upper limit is considered extreme as
shown in Figure 4.

Figure 4: The Interquartile Range (IQR)

Outliers present in both datasets can be visualized
using Boxplots as shown in Figure 5 for the first and
second datasets.

(a) First dataset

(b) First dataset (cont’d)

(c) Frist dataset (cont’d)

(d) Second dataset

(e) Second dataset (cont’d)

Figure 5: Boxplot of outliers in the first dataset
(a-c) and second dataset (d-e)

Figure 6 shows an example of removing the outliers
from one of the feature eip by setting the threshold
to detect outliers using the filtering conditions above
the limits.

4.3 Model Validation

The cross-validation k-fold is a method for
performance validating of the deep learning
methods, where the dataset is split into k-fold each
iteration using one fold as testing data and the
remaining folds as training data [20] As a result, the
procedure is repeated until every dataset has been
assessed. The results are typically repeated along

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6893

with the values' mean scores. In this study, malware
classification was performed based on the cross-
validation (k-fold) method for training and testing as
shown this Figure 7, where a 10-fold cross-
validation was set up. Here, using one fold for
testing, and the rest of the fold nine of data are used
for training, and the process is repeated until it
reaches 10 fold.

count 10868.000000
mean 121.681450
std 235.653595
min 0.000000
25% 39.000000
50% 76.000000
75% 127.000000
max 9139.000000
Name: eip, type: float64

The placement marks column:
 75th quartile: 127.0
 25th quartile: 39.0
 IQR of (eip) = 88.0

Figure 6: Example of removing outliers from feature eip

As mentioned above, the features that have high
degrees of importance in the datasets were selected
by applying the RFE technique and then determining
outliers and removing them by IQR technique. This
process was performed on the datasets before
applying deep learning algorithms to detect
malware.

4.4 Algorithms

Four deep learning algorithms are used in the
comparative experiments, which are Recurrent
Neural Networks (RNN), Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU),
and Convolutional Neural Network (CNN). All
algorithms were implemented using the Anaconda
Navigator, TensorFlow, Scikit-learn: Machine
learning, Jupyter Notebook, and tools in Python.

Figure 7: Validation methodology

4.4.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks RNN is an extension of
a neural network with feed-forward and is called
recurrent because it performs the same task with
each element of the sequence while relying on the
output of previous calculations. There is also another
way to Recurrent Neural Networks RNN it has a
memory that obtains information about what has
been calculated so far. The algorithm is powerful in
modelling sequences through the presence of
periodic connections [21].

It use X = (x_1,x_(2……….,),x_T) to represent the,
input vector sequence. The hidden vector sequence
H = (h_1,h_(2……….,),h_T) and output vector
sequence Y= (y_1,y_(2……….,),y_T) are calculated
with t belongs to [1,T] as shown in Equations 1 and
2:
 ℎ௧ୀ ఙ (ௐೣ೓ ௑೟ ା ௐ೓೓ ௛೟షభ ା ௕೓) (1)

 𝑦௧ୀ ௐ೓ೖ ௛೟ ା ௕೤ (2)

Where W and b is the weight matrix and bias term,
𝑋௧ is the input vector at time t, ht-1 is the state at time

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6894

t-1, is a nonlinearity activation function as shown in
Figure 8.

Figure 8: Recurrent Neural Networks RNN [21]

4.4.2 Long Short-Term Memory (LSTM)

The goal for discovering the LSTM algorithm in
1997 is to solve the vanishing gradient problem in
RNN algorithm. So the structure of the LSTM
algorithm was built from three gates to address this
problem: the input gate, the forgetting gate, and the
output gate.

The value cell task is to remember random periods
and also organize the three gates for the flow of
information into and out of the cell and trace the
relationships between elements of the input
sequence as a new value flows into the cell. As for
the forget gate, it controls the extent to which values
are kept in the cell. The process of storing
information takes place through cells, and memory
is processed through gates as shown in Figure 9 [21,
22].

Figure 9: Long Short-Term Memory (LSTM)

Forget Gate

The task of the forgetting gate is to identify
information that is no longer useful in the process of
training the model. It is done by feeding the gate with
inputs xt (input at a given time) and ht-1 (output of the
previous cell) by multiplying them using the weight
matrices, and then the bias 𝑏𝑓 is added. Through the
activation function σ, the result is passed to give a
binary output. If the cell state is 0, the information
will be forgotten, but if the value is 1, the

information will be kept for use in the future, the
forget equation as shown in Equation 3:

𝑓௧ୀ 𝜎(𝑊௙[ℎ௧ିଵ,𝑥௧] + 𝑏௙) (3)

Where:

 𝑊௙ represents the weight matrix associated with
the forget gate.

 𝑊௙[ℎ௧ିଵ,𝑥௧] denotes the concatenation of the
current input and the previous hidden state.

 𝑏௙ is the bias with the forget gate.
 σ is the sigmoid activation function.

Input Gate

The information is organized and the values that will be
remembered are filtered similarly to the forget gate
using the inputs ht-1 and xt. After that, a vector will be
created using the tanh function, which gives outputs
from -1 to +1, containing all possible values ht-1 and xt.
Finally, the vector and regularized values are multiplied
to obtain useful information. The input gate equation is
as shown in Equations 4 and 5:

𝑖௧ = 𝜎 (𝑊௜ [ℎ௧ିଵ , 𝑥௧] + 𝑏௜) (4)

Ĉ௧ = 𝑡𝑎𝑛ℎ (𝑊௖ [ℎ௧ିଵ , 𝑥௧] + 𝑏௖) (5)

The previous state is multiplied by 𝑓௧ Ĉ௧ିଵ ignoring
the previously selected information and direction,
and then inserted 𝑖௧ Ĉt where this represents the
updated candidate values adjusted for the amount we
chose to update each state value as shown in
Equation 6:

Ĉ௧ = 𝑓௧ 𝐶௧ିଵ + 𝑖௧ Ĉ௧ (6)

Output Gate

The task of the output gate is to extract information
from the state of the cell that is useful in the training
process to present it as output to this gate. The vector
is created by applying the tanh function to the cell.
After that, the sigmoid function organizes the
information and filters it for the values that should
be used (ht-1 and xt). In the final stage, the vector
values and the structured values are multiplied and
then they are sent as outputs and inputs to the cell
that will be the next. The equation of this gate will
be as shown in Equation 7:

 𝛰௧ = 𝜎(𝑊ை . [ℎ௧ିଵ , 𝑥௧] + 𝑏இ) (7)

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6895

4.4.3 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit GRU algorithm is an
updated version of the LSTM algorithm and is a bit
more dramatic. In this algorithm, the forget gate and
the input gate are combined to become one gate
called the update gate. Along with making various
modifications, it mixes the hidden state and the cell
state. The resulting model, which is clearer than
traditional LSTM models, The equations of GRU is
shown in Equation 8 to Equation 11:

Update Gate: zt = σ(Wz * [ht-1, xt]) (8)
Reset Gate: rt = σ(Wr * [ht-1, xt]) (9)
Hidden State: ht̃ = tanh(W * [rt ⊙ ht-1, xt]) (10)
Final Hidden State: ht = (1 - zt)⊙ ht-1 + zt ⊙ht̃ (11)

Here, σ represents the sigmoid function, tanh is the
hyperbolic tangent function, Wz, Wr, and W are
parameter matrices, ht-1 is the previous hidden state,
xt is the current input, ⊙ represents element-wise
multiplication, and ht is the current hidden state as
shown in Figure 10.

Figure 10: Gated Recurrent Unit (GRU)

4.4.4 The Convolutional Neural Network (CNN)

CNN algorithm is considered a deep learning
method that is widely used in analyzing visual
images, where the (CNN) structure uses a special
technique called Convolution instead of relying only
on matrix multiplications like traditional neural
networks. This algorithm uses the process of
convolution, where it performs a process, which
combines two functions to show how one changes
the shape of the other. The input (x) for each layer in
the CNN model has three dimensions, height, width,
and depth, where the height (m) is equal to the width.
In addition, the depth is indicated by the channel
number. The convolutional layer calculates a dot
product between its inputs and the weights, as in the
Equation 12, which is similar to NLP, but the inputs

are small-scale regions of the initial image volume.
The nonlinearity or activation function is then
applied to the output of the convolutional layer as
shown in Figure 11 [23, 24].

 ℎ௞ = 𝑓(𝑊௞ ∗ 𝜒 + 𝑏௞) (12)

 Where: 𝑊௞=weight, 𝑏௞= bias, ℎ௞ =maps, k =
generating feature

4.5 Evaluation Metrics

The evaluation and percentage metrics are based on
the confusion matrix as shown in Table 1, where the
rows in the matrix represent instances of the actual
class and each column represents instances of the
expected class. It is created through the results
extracted from the malware classification. The
correct predictions are the number of values
distributed for each category, taking into account the
total expected results after classification. Through
this table, TP means that the instance was correctly
predicted to be benign and that it was predicted to be
benign. TN means that the instance was correctly
predicted to be malware and that it was predicted to
be malware. FP means that the instance predicted as
malware was incorrectly predicted as benign FN
means the instance predicted as benign was
incorrectly predicted as malware. so through the
confusion matrix, we can extract evaluation metrics
to give insight into the performance of the detection
model, where these metrics determine the accuracy
and validity of the training model to detect malware
by the following functions[5].

Table 1: Confusion matrix

 Predicted
Actual Positive class (Benign) Negative class (Malware)
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

• Accuracy: Accuracy is the number of correct
predictions from all predictions made. It can be
calculated using Equation 13.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା

்௉ା்ேାி௉ାிே
 (13)

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6896

• Precision: Precision measures the percentage of
expected malware that is correctly classified as
malware and the formula is shown in Equation 14.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

்௉

்௉ାி௉
 (14)

• Recall: recall or detection rates is the percentage of
malware that was correctly predicted and it can be
calculated using Equation 15.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
 (15)

• F-Measure: is the harmonic mean of precision and
recall, and it is considered a very important measure
for the success of the detection model when the
layers are unbalanced in the information retrieval
process, as precision measures the importance of the
result, while recall measures the number of truly
relevant results that were returned.
The formula as given in Equation 16.

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
ଶ × ்௉

ଶ ×்௉ାி௉ାிே
 (16)

Measuring Precision, recall, and F-measure is
necessary because accuracy alone is insufficient and
it can be misleading. The confusion matrix is a
means of describing the breakdown of errors in the
predictions for an unseen dataset. Precision and
recall will give the exactness and completeness of
the model respectively while the F-measure or F1-
score gives the balance [25].

5. RESULTS AND DISCUSSION

The experiments aimed to evaluate and compare the
performance of four deep learning algorithms in
detecting malware based on opcode features. Those
algorithms are Recurrent Neural Networks (RNN),
Long Short-Term Memory (LSTM), Convolutional
Neural Networks, (CNN), and Recurrent Neural
Networks (GRU). The idea of this research is based
on pre-processing by removing the outliers with IQR
and reducing the memory size of the features from
64-bit to 8-bit by applying the Pandas equations.

In addition, the RFE method is used as feature
selection to improve the result significantly.
Comparison experiments of different deep learning
algorithms against two different datasets with and
without pre-processing and feature selection were
implemented.

Tables 2 and 3 contain the full results of accuracy,
precision, recall, and F-measure for each algorithm
under study for the first dataset before and after
applying the preprocessing and feature selection
step. As noticed from Table 2, LSTM gives better
performance compared to other algorithms with 94%
accuracy, 0.94 precision, 0.94 recall, and 0.94 F-
measure. The modest performance achieved by

GRU, RNN followed by CNN showed the lowest
performance. In Table 3, it is noticed that there is an
improvement in the performance after applying IQR
and RFE methods in all algorithms and LSTM
remains the best in terms of accuracy, precision-
recall, and F-measure with 97.06%, 0.97, 0.97 and
0.97 respectively. Similarly, concerning the
performance of the algorithms against the second
dataset, it can be seen there is improvement in the

Figure 11: Convolutional Neural Network (CNN)

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6897

Observed from the results in the tables, the low
performance of the algorithms due to the large size
of the training set without selection of important
features, along with the presence of outliers led to
poor performance of the Algorithms. At the same
time, the very poor result shown by RNN is due to
the inability of this algorithm to deal with large
dataset that have long sequences

Performance of all the methods before and after
applying IQR and RFE methods and again LSTM
still gives an excellent result as shown in Table 4 and
Table 5.

The results in Table 3 and Table 5 are analyzed based
on Receiver Operating Characteristic (ROC) curve
and Precision-Recall (PR) curve. They played a role
in understanding the method of various systems in
the presence of uncertainty. The Area under Curve
(AUC) will be used as a summary of the model skill.
The model skill will be compared with a no-skill
classifier. A model with no skill is represented at the
point (0.5, 0.5) for first dataset and different values
of no skill for the second dataset. Table 6 and Table
7 show the results of AUC for ROC and PR of four
deep learning methods across the first and second
datasets respectively.

Algorithm Epoch Batch size Accuracy

Precision Recall F- Measure

RNN

100 65 78.38% 0.80 0.78 0.78

GRU

100 65 88.29% 0.90 0.90 0.88

CNN

100 65 34.34% 0.92 0.34 0.43

LSTM

100 65 94%

0.94 0.94 0.94

Algorithm Epoch Batch size Accuracy

Precision Recall F- Measure

RNN

100 65 92.16% 0.92 0.92 0.92

GRU

100 65 97.05% 0.98 0.97 0.98

CNN

100 65 36.75% 0.75 0.37 0.49

LSTM

100 65 97.06 % 0.97 0.97 0.97

Algorithm Epoch Batch size Accuracy

Precision Recall F- Measure

RNN

100 65 13.52% 0.02 0.14 0.03

GRU

100 65 67.57% 0.76 0.68 0.69

CNN

100 65 45.84% 0.53 0.46 0.45

LSTM

100 65 90.02% 0.92 0.83 0.85

Algorithm Epoch Batch size Accuracy

Precision Recall F- Measure

RNN

100 65 8.02% 0.01 0.09 0.01

GRU

100 65 96.03% 0.96 0.96 0.96

CNN

100 65 90.58% 0.92 0.91 0.91

LSTM

100 65 98.26%

0.98 0.98 0.98

Table 2: Results on first dataset (without IQR and RFE)

Table 3: Results on first dataset (with IQR and RFE)

Table 4: Results on second dataset (without IQR and RFE)

Table 5: Results on second dataset (with IQR and RFE)

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6898

5.1 Receiver Operating Characteristic (ROC)
Curve

The Receiver Operating Characteristic (ROC) curve
summarizes the trade-off between TP rate and the FP
rate for a predictive model that uses different
probability thresholds. It has two dimensions
whereby the x-axis indicates the False Positive FP
rate and the y-axis indicates the True Positive TP rate
[26]

5.1.1 Receiver Operating Characteristic (ROC)
Curve (first dataset)

Figure 12 shows the ROC curves for RNN, CNN,
GRU and LSTM for the first dataset with 0.97, 0.54,
0.99 and 1.00 respectively.

5.1.2 Receiver Operating Characteristic (ROC)
Curve (second dataset)

Figure 13 shows the ROC curves of second dataset
for RNN is 0.952 with no skill at 0.06, CNN is 0.992
with no skill at 0.50, GRU is 0.987 with no skill at
0.99 and LSTM is 0.997 at no skill 0.99.

5.2 Precision-Recall (PR) Curve

There are many ways to evaluate the classifier, and
among these methods are the Precision-Recall curve
(PR) and the receiver operating characteristic (ROC)

curve. PR It is a graph that expresses the Precision
values on the y-axis and the recall values on the x-
axis. In other words, the PR curve contains the y-axis
and the x-axis.

5.2.1 Precision-Recall (PR) Curve (first dataset)

Figure 14 shows the PR curve for RNN, CNN, GRU
and LSTM for first dataset with 0.52, 0.96, 0.99, and
0.98 respectively.

5.2.2 Precision-Recall (PR) Curve (second
dataset)
Figure 15 shows the PR curve for RNN, CNN, GRU
and LSTM for first dataset with 0.84, 0.58, 0.99, and
0.99 respectively.

5.3 DISCUSSION

Nowadays, there are many methods for malware
detection, most notably deep learning methods, but
many do not distinguish which is the best and most
appropriate for detecting malware. The importance
of this research is to identify the weaknesses,
strengths, and efficiency of deep learning methods in
detecting malware based on the opcode, this research
used a set of data of different sizes and working
environments.

Algorithms ROC
AUC

PR
AUC

Recurrent Neural Networks (RNN) 0.97 0.96
Gated Recurrent Unit (GRU) 0.99 0.99
Convolutional Neural Network (CNN) 0.54 0.52
Long Short-Term Memory (LSTM) 1.00 0.98

Algorithms ROC
AUC

PR
AUC

Recurrent Neural Networks (RNN) 0.952 0.84

Gated Recurrent Unit (GRU) 0.987 0.99

Convolutional Neural Network (CNN) 0.992 0.58

Long Short-Term Memory (LSTM) 0.997 0.99

Table 7: Area under Curve (AUC) of ROC and PR for second dataset

Table 6: Area under Curve (AUC) of ROC and PR for first dataset

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6899

ROC Curve for subset small data

(a) RNN (b) CNN

(c) LSTM (d) GRU

ROC curve for subset big data

 (e)RNN (f) GRU

 (g)LSTM (h) CNN

Figure 12: ROC curves for RNN, CNN, GRU, and LSTM (first dataset)

Figure 13: ROC curves for RNN, CNN, GRU, and LSTM (second dataset)

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6900

PR curve for sub-second dataset

 (m) RNN (n) CNN

 (p) GRU (q) LSTM

PR curve for subset first dataset

 (i) RNN (j) CNN

 (k) GRU (l) LSTM

Figure 14: PR curves for RNN, CNN, GRU, and LSTM (first dataset)

Figure 15: PR curves for RNN, CNN, GRU, and LSTM (second dataset)

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6901

This study provided an evaluation and analysis of the
performance of deep learning methods by using
performance measurement tools for each method
through using of a small data set and a large data set.
The extent to which these algorithms are affected by
the size and type of the data set has been proven. It is
better to use the (LSTM) algorithm when the data set
is large or unbalanced because it is capable of
processing large data without falling into overfitting
or vanishing gradients, where It relies on three gates,
which reflect the high ability to process large data
efficiently, through the accuracy and evaluation
results shown in Tables (2-7), it becomes clear to us
that the (GRU) algorithm is the closest in performance
to the (LSTM) algorithm, but it suffers from the
inability to unbounded counting of data sets, when the
data set is large, as it just uses two, gets to process the
data. As for the (RNN) algorithm, its performance was
not good, as it originally suffered from the problem of
vanishing gradient, especially with large data, and this
is what previous research confirmed. As for the (CNN)
algorithm, it was the worst among all deep learning
methods because it specializes in processing image
data more, and according to the results of this study, it
is not able to process the data well except after
converting the data set into an image format.

 As mentioned above, the AUC curve of two curves,
the Receiver Operating Characteristic (ROC) curve,
and the Precision-Recall (PR) curve have been used in
this comparative analysis study. The important point
of using the ROC and PR curves together is finding
close or shared points to give the best evaluation of the
models used in this study as shown in Tables 6 and 7.
In addition, AUC and ROC curves will help us to
know the feasibility of the classifier’s performance of
deep learning methods and to evaluate the efficiency
of detecting malware. Therefore, ROC measures the
performance of the classification model at all
classification thresholds and AUC measures the
ability of the binary classifier to differentiate between
classes and it is used as a summary of the ROC curve.
Knowing how the AUC curve works, the higher the
AUC, the better the model’s performance at
distinguishing between positive and negative classes.
AUC ranges in value from 0 to 1. A model whose
predictions are 100% wrong has an AUC of 0.0 or
otherwise AUC of 1.0 if predictions are 100% correct.

The performance of the ideal model in detecting
malware depends on choosing the appropriate model
for the dataset. As the performance measures that we
mentioned above, it is possible to determine the
appropriate model for the dataset used in this study.

Observed from the results, ROC and PR AUC for
RNN, GRU, LSTM, and CNN models on the first
dataset is about (ROC = 0.952, PR = 0.84),
(ROC=0.987, PR=0.99), (ROC=0.997, PR=0.99), and
(ROC=0.992, PR=0.58) respectively. Meanwhile, the
ROC AUC for the RNN, GRU, LSTM, and CNN
models on the second dataset is about (ROC=0.54,
PR=52), (ROC=0.99, PR=0.99), (ROC=1.0,
PR=0.98), and (ROC=0.97, PR=96) respectively.
Therefore, this indicates that the LSTM model is the
best model among other deep learning models for
malware detection using opcode datasets in the IoT
environment (first dataset) as well as for categorizing
malware in the Windows environment (second
dataset). This is due to the strong structure of this
method, which involves the input gate, forget gate, and
output gate [27] in solving the problem of the
vanishing gradient. LSTM has outperformed the GRU
model which suffers from the problem of unbounded
counting [28] due to the merging of the forget gate and
the input gate into the update gate. As for the CNN
model, it is an efficient method for dealing with a set
of image data, so its performance was unsatisfactory
in processing the opcode sequences dataset.

5.3.1 Justify the criteria using which a conclusion

was reached regarding the research problem

The most important criteria of this study, which are
related to the statement of the problem, are the
suitability of the detection model, the limitations of
each of the deep learning methods, and the extent of
the response of each method in improving
performance after processing the data before using it
and the flexibility of each technique by moving from
a small data set to a large data set and using the same
parameters in terms of repetition, number of layers,
and number of nodes in each method.

5.3.2 The major findings when research
contribution and comparison to other such
solutions presented

This study came to evaluate deep learning methods
accurately and individually without working on
merging between the methods to detect malware
because we noticed that most previous studies were
working on merging between deep learning methods
to improve the performance of each method, as each
method has weaknesses and strengths in dealing with
different data in terms of size and type. This study
came to analyze the weaknesses and strengths of each
method how to use the data before and after processing
it and the extent of its impact on the ability to detect

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6902

malware. Therefore, the goal of this study is to
understand the behaviors of deep learning methods
how to overcome their weaknesses, and the extent of
their suitability for the type and size of data.

6. CONCLUSION

While there are numerous approaches to malware
detection—deep learning techniques being one of the
most popular—there is no way to differentiate
between the most effective and suitable approaches.
This study presented an analysis of the performance of
deep learning methods to determine the suitability of
the malware detection model for the dataset, which
employs a set of data with varying sizes and working
circumstances to determine the efficacy, drawbacks,
and efficiency of deep learning techniques for
malware detection based on opcodes. It has been
demonstrated how much the size and nature of the data
collection influence these algorithms. This paper
presented a comparative analysis of four deep learning
methods which are LSTM, GRU, CNN, and RNN to
detect malware in the Internet of Things environment
and the Windows system. Two sets of data were used
based on sequences of operating code (opcode). The
experimental results showed that the performance of
the LSTM method outperformed compared to the
other methods under study in terms of accuracy,
precision, recall, and F-measure for both datasets. In
addition, these results are supported by the analysis of
Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves to confirm that LSTM is
the best method to detect malware. These results and
evaluations will be used as reference results to address
the weaknesses of each deep learning method with the
same datasets. They can also be used to explore deep
learning methods with other data sets from different
environments to evaluate deep learning methods.

 The limitations and future work

Not counting the training and testing time of the
methods used, where time is an important element in
evaluating the efficiency of each method. So The
future work of this study is to measure the
performance of deep science methods not only
through accuracy, but the time factor must be
introduced because it is considered very important in
the efficiency of the detection model, especially in the
large data set, addition to and the number of features
used, and to improve the method of selecting features
by assigning weights of the importance of features and
excluding unimportant and duplicate features.

REFERENCES

[1] M. H. Alsharif et al., "A comprehensive survey of

energy-efficient computing to enable sustainable
massive IoT networks," Alexandria Engineering
Journal, vol. 91, pp. 12-29, 2024.

[2] C. Singh and A. K. Jain, "A Comprehensive
Survey on DDoS Attacks Detection & Mitigation
in SDN-IoT Network," e-Prime-Advances in
Electrical Engineering, Electronics and Energy,
p. 100543, 2024.

[3] Y. Bobde, G. Narayanan, M. Jati, R. S. P. Raj, I.
Cvitić, and D. Peraković, "Enhancing Industrial
IoT Network Security through Blockchain
Integration," Electronics, vol. 13, no. 4, p. 687,
2024.

[4] Q. Chen, D. Li, and L. Wang, "Network Security
in the Internet of Things (IoT) Era," Journal of
Industrial Engineering and Applied Science, vol.
2, no. 4, pp. 36-41, 2024.

[5] B. Nawaal, U. Haider, I. U. Khan, and M. Fayaz,
"Signature-Based Intrusion Detection System for
IoT," in Cyber Security for Next-Generation
Computing Technologies: CRC Press, 2024, pp.
141-158.

[6] T. Shi, R. A. McCann, Y. Huang, W. Wang, and
J. Kong, "Malware Detection for Internet of
Things Using One-Class Classification," Sensors,
vol. 24, no. 13, p. 4122, 2024.

[7] C. Ni and S. C. Li, "Machine learning enabled
industrial iot security: Challenges, trends and
solutions," Journal of Industrial Information
Integration, p. 100549, 2024.

[8] P. Jayaraman, K. K. Nagarajan, P. Partheeban,
and V. Krishnamurthy, "Critical review on water
quality analysis using IoT and machine learning
models," International journal of information
management data insights, vol. 4, no. 1, p.
100210, 2024.

[9] E. Altulaihan, M. A. Almaiah, and A.
Aljughaiman, "Anomaly Detection IDS for
Detecting DoS Attacks in IoT Networks Based on
Machine Learning Algorithms," Sensors, vol. 24,
no. 2, p. 713, 2024.

[10] Chaganti R, Ravi V, Pham TD. Deep learning
based cross architecture internet of things
malware detection and classification. Computers
& Security. 2022;120:102779.

[11] Nguyen KDT, Tuan TM, Le SH, Viet AP, Ogawa
M, Le Minh N, editors. Comparison of three deep
learning-based approaches for IoT malware
detection. 2018 10th international conference on
Knowledge and Systems Engineering (KSE);
2018: IEEE.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6903

[12] Alomari ES, Nuiaa RR, Alyasseri ZAA,
Mohammed HJ, Sani NS, Esa MI, et al. Malware
detection using deep learning and correlation-
based feature selection. Symmetry.
2023;15(1):123.

[13] Kumar M, Singh S, Pilania U, Arora G, Jain M.
LSTM-based Approach for Android Malware
Detection. Procedia Computer Science.
2023;230:679-87.

[14] Shanmuganathan V.Suresh A. LSTM-Markov
based efficient anomaly detection algorithm for
IoT environment. Appl Soft Comput.
2023;136(C):11.

[15] Luo X, Li J, Wang W, Gao Y, Zhao W. Towards
improving detection performance for malware
with a correntropy-based deep learning method.
Digital Communications and Networks.
2021;7(4):570-9.

[16] Manoharan S, Sugumaran P, Kumar K, Engineer
A. Multichannel based IoT malware detection
system using system calls and opcode sequences.
Int Arab J Inf Technol. 2022;19(2):261-71.

[17] Xie X, Wang B, Wan T, Tang W. Multivariate
abnormal detection for industrial control systems
using 1D CNN and GRU. Ieee Access.
2020;8:88348-59.

1] Ahmadi M, Ulyanov D, Semenov S, Trofimov M,

Giacinto G. Novel Feature Extraction, Selection
and Fusion for Effective Malware Family
Classification. Proceedings of the Sixth ACM
Conference on Data and Application Security and
Privacy; New Orleans, Louisiana, USA:
Association for Computing Machinery; 2016. pp.
83–94.

[2] Azmoodeh A, Dehghantanha A, Choo K-KR.
Robust malware detection for internet of
(battlefield) things devices using deep eigenspace
learning. IEEE transactions on sustainable
computing. 2018;4(1):88-95.

[3] D’Orazio CJ, Choo K-KR, Yang LT. Data
exfiltration from Internet of Things devices: iOS
devices as case studies. IEEE Internet of Things
Journal. 2016;4(2):524-35.

[4] Watson S, Dehghantanha A. Digital forensics: the
missing piece of the internet of things promise.
Computer Fraud & Security. 2016;2016(6):5-8.

[5] Ahmed FS, Mustapha N, Mustapha A, Kakavand
M, Foozy CFM. Preliminary Analysis of Malware
Detection in Opcode Sequences within IoT
Environment. Journal of Computer Science.
2020.

[6] Burguera I, Zurutuza U, Nadjm-Tehrani S, editors.
Crowdroid: behavior-based malware detection
system for android. Proceedings of the 1st ACM

workshop on Security and privacy in smartphones
and mobile devices; 2011.

[7] Rathore MM, Paul A, Hong W-H, Seo H, Awan I,
Saeed S. Exploiting IoT and big data analytics:
Defining smart digital city using real-time urban
data. Sustainable cities and society. 2018;40:600-
10.

[8] Vigneswaran RK, Vinayakumar R, Soman K,
Poornachandran P, editors. Evaluating shallow
and deep neural networks for network intrusion
detection systems in cyber security. 2018 9th
International conference on computing,
communication and networking technologies
(ICCCNT); 2018: IEEE.

[9] Vinayakumar R, Alazab M, Soman KP,
Poornachandran P, Al-Nemrat A, Venkatraman S.
Deep learning approach for intelligent intrusion
detection system. Ieee Access. 2019;7:41525-50.

[10] Chaganti R, Ravi V, Pham TD. Deep learning
based cross architecture internet of things
malware detection and classification. Computers
& Security. 2022;120:102779.

[11] Nguyen KDT, Tuan TM, Le SH, Viet AP, Ogawa
M, Le Minh N, editors. Comparison of three deep
learning-based approaches for IoT malware
detection. 2018 10th international conference on
Knowledge and Systems Engineering (KSE);
2018: IEEE.

[12] Alomari ES, Nuiaa RR, Alyasseri ZAA,
Mohammed HJ, Sani NS, Esa MI, et al. Malware
detection using deep learning and correlation-
based feature selection. Symmetry.
2023;15(1):123.

[13] Kumar M, Singh S, Pilania U, Arora G, Jain M.
LSTM-based Approach for Android Malware
Detection. Procedia Computer Science.
2023;230:679-87.

[14] Shanmuganathan V.Suresh A. LSTM-Markov
based efficient anomaly detection algorithm for
IoT environment. Appl Soft Comput.
2023;136(C):11.

[15] Luo X, Li J, Wang W, Gao Y, Zhao W. Towards
improving detection performance for malware
with a correntropy-based deep learning method.
Digital Communications and Networks.
2021;7(4):570-9.

[16] Manoharan S, Sugumaran P, Kumar K, Engineer
A. Multichannel based IoT malware detection
system using system calls and opcode sequences.
Int Arab J Inf Technol. 2022;19(2):261-71.

[17] Xie X, Wang B, Wan T, Tang W. Multivariate
abnormal detection for industrial control systems
using 1D CNN and GRU. Ieee Access.
2020;8:88348-59.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6904

[18] A., Jyotsna; E. A., Mary Anita. A Novel
Paradigm for IoT Security: ResNet-GRU Model
Revolutionizes Botnet Attack Detection.
International Journal of Advanced Computer
Science & Applications. 2023;14(12).

[19] Riaz S, Latif S, Usman SM, Ullah SS, Algarni
AD, Yasin A. Malware detection in internet of
things (IoT) devices using deep learning. Sensors.
2022;22(23):9305.

[20] Varoquaux G. Cross-validation failure: Small
sample sizes lead to large error bars. Neuroimage.
2018;180(Pt A):68-77.

[21] Meng F, Fu Y, Lou F, Chen Z, editors. An
effective network attack detection method based
on kernel PCA and LSTM-RNN. 2017
International Conference on Computer Systems,
Electronics and Control (ICCSEC); 2017: IEEE.

[22] Prakash S, Jalal AS, Pathak P, editors.
Forecasting covid-19 pandemic using prophet,
lstm, hybrid gru-lstm, cnn-lstm, bi-lstm and
stacked-lstm for india. 2023 6th International
Conference on Information Systems and
Computer Networks (ISCON); 2023: IEEE.

[23] Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A,
Duan Y, Al-Shamma O, et al. Review of deep
learning: concepts, CNN architectures,
challenges, applications, future directions.
Journal of big Data. 2021;8:1-74.

[24] Mayya A, Alkayem NF, Shen L, Zhang X, Fu R,
Wang Q, et al., editors. Efficient hybrid
ensembles of CNNs and transfer learning models
for bridge deck image-based crack detection.
Structures; 2024: Elsevier.

[25] Sabharwal A, Sedghi H, editors. How Good Are
My Predictions? Efficiently Approximating
Precision-Recall Curves for Massive Datasets.
UAI; 2017.

[26] Nahm FS. Receiver operating characteristic
curve: overview and practical use for clinicians.
Korean journal of anesthesiology. 2022;75(1):25-
36.

[27] Staudemeyer RC, Morris ER. Understanding
LSTM--a tutorial into long short-term memory
recurrent neural networks. arXiv preprint
arXiv:190909586. 2019.

[28] Jordan ID, Sokół PA, Park IM. Gated recurrent
units viewed through the lens of continuous time
dynamical systems. Frontiers in computational
neuroscience. 2021;15:678158.

