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This research aimed to develop a numerical solution to analyze the effects of solar 
radiation and nanoparticle shape factors on the flow of a hybrid nanofluid past a 
shrinking Darcy-Forchheimer porous medium. The base fluid chosen for this study is 
water (H2O), and the hybrid nanofluid consists of nanoparticles of silver (Ag) and 
titanium dioxide (TiO2) in four different shapes: bricks, cylinders, platelets, and blades. 
To account for solar radiation, the energy model incorporated a radiative heat flux, 
while the momentum problem considers the influence of a magnetic field. The 
application of an appropriate similarity transformation method converts the partial 
differential equations (PDEs) model into a system of nonlinear ordinary differential 
equations (ODEs). The mathematical model is solved using the shooting technique 
method and the bvp4c solver. The obtained results, along with the effects of the 
nanoparticle shape factor, solar radiation parameter, shrinking parameter, Darcy-
Forchheimer number, and nanofluid volume fraction, are visually presented through 
figures and tables. It is worth noting that, in our numerical results, we observed the 
presence of dual solutions when λ < 0. Our findings indicate that the thermal 
transmittance increases with an increase in the nanoparticle shape factor and solar 
radiative parameter. Additionally, we observed an escalation in the velocity 
distribution in relation to the shrinking parameter and nanofluid volume fraction. 
Before reaching the two solutions, a flow stability analysis revealed that the first 
branch appears to be the most stable. Overall, these findings provide valuable insights 
into the behaviour of hybrid nanofluid flow in the presence of solar radiation and 
porous media.  

Keywords: 

Dual solutions; stability analysis; hybrid 
nanofluid; porous medium; Darcy-
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1. Introduction 
 

The wide-ranging applications of heat transfer in engineering, technical, and production 
industries have always been of great significance, as it directly affects the efficiency of thermal 
devices. Over the past four decades, numerous studies and research have been conducted to 
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enhance the heat transfer rate, with the aim of improving thermal efficiency and achieving energy 
savings as well as cost reductions in device manufacturing and production [41]. Among the various 
methods explored, nanofluids were initially introduced by Choi and Eastman [1] in 1995. They 
dispersed nanoparticles of nanometer size in a base fluid and demonstrated the nanoparticles’ ability 
to enhance thermal transmittance by disrupting nanoscale particles. Building on this, Routbort et al., 
[2] initiated a project in 2008 to utilize nanofluids for industrial cooling, which aimed to reduce 
emissions and save energy. The application of nanofluids in heating and cooling water has the 
potential to save a significant amount of energy in the U.S. industries alone. In the U.S. electric power 
industry, it has been reported that applying nanofluids in closed-loop cooling cycles could result in a 
triple joule of energy savings. Furthermore, Wong and Leon [3] stated that this approach could lead 
to a reduction of approximately 8600 metric tons of NO, 5.6 million metric tons of CO2, and 21000 
metric tons of SO2 emissions. These findings paved the way for the development of hybrid nanofluids, 
which involve suspending two different distinct nanoparticles in a fluid. The concept of hybrid 
nanofluids, as explained by Sarkar et al., [4], aims to further enhance the heat transfer rate and 
pressure drop characteristics by leveraging the strengths and weaknesses of individual suspensions. 
Ghadikolaei [5] demonstrated that hybrid nanofluids in fluid flow have the potential to increase the 
heat transmittance rate due to their favorable aspect ratios and synergistic effects. Aladdin et al., [6] 
revealed that both mono- and hybrid-nanofluids resulted in a positive increase in the skin friction 
coefficient, with hybrid nanofluids showing better improvement in shear stress compared to 
nanofluids alone. Bakar et al., [7] reported a 27.35% increase in heat transfer rate for single-
nanofluids and a 36.73% increase for hybrid-nanofluids, indicating a rate increment of 9.38%. Their 
study also highlighted that an increase in the volume fraction of nanoparticles enhances both 
solutions of the boundary layer flow, as the shrinking parameter results in the existence of dual 
solutions. Recent studies on hybrid nanofluid flow have been extensively analyzed by Gul et al., [8], 
Hussain et al., [9], Lund et al., [10], Muhammad et al., [11], and Rashidi et al., [12].  

Renewable energy has gained significant attention in the 21st century due to environmental 
concerns and the growing demand for energy, including the urgent issue of global warming caused 
by CO2 emissions. Among various renewable energy sources, solar energy has emerged as a highly 
promising option, given its natural abundance as radiation from the Sun. Solar energy is widely 
regarded as an environmentally friendly, sustainable, and cost-effective source of energy. It requires 
minimal maintenance and offers a depletion in energy costs. Its applications are vast, ranging from 
solar power plates, artificial photosynthesis, and solar thermal electricity, as elaborated by Jamshed 
et al., [13]. Research on solar radiation dates back to 1924, when Angstrom [14] first reported on the 
topic. Since then, studies on solar radiation have continuously expanded, with recent advancements 
shedding new light on the subject. Qu et al., [15] demonstrated that even a small concentration of 
hybrid nanofluid (0.0015%) can significantly enhance the absorption capacity, enabling almost full 
absorption of solar radiation in the fluid. Acharya [16] examined the thermal patterns of hybrid 
nanofluid flow within a microchannel under solar radiation. The study revealed temperature 
augmentation due to solar radiation and hybrid nanofluids, compared to ordinary nanofluids. 
Alzahrani et al., [17] developed a model for hybrid nanofluid flow through a Darcy-Forchheimer 
porous medium in the presence of solar radiation. Their findings highlighted the improved efficiency 
of nanoparticle volume in capturing and transporting solar radiation. Other notable works on hybrid 
nanofluid flow with solar radiation can be found in the research of Al-Mahmodi et al., [18], Jahan et 
al., [19], Kumar et al., [20], and Rabbi and Sahin [21]. In conclusion, solar energy has garnered 
significant attention as a clean and renewable energy source, offering immense potential for 
addressing environmental concerns and the increasing demand for energy. Ongoing research on solar 
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radiation and its interaction with hybrid nanofluids contributes to the advancement of solar energy 
utilization and its integration into various applications.  

Porous media is a widely applied technique in various technical and engineering industries due 
to its large specific surface area and complex pore structure. It finds applications in electronic cooling 
devices, fuel collectors, and catalytic reactors, packed bed heat exchangers, drying technology 
devices, and tissue replacement production in biomedical equipment. In the study conducted by 
Saghir and Rahman [22], four different hybrid nanofluids in a porous media was investigated: 
MWCNT-Fe3O4, Al2O3-Cu, TiO2-SiO2, and diamond-Fe3O4. It was observed that the hybrid MWCNT-
Fe3O4 nanoparticle mixture exhibited the most promising results among all the combinations. Slimani 
et al., [23] studied a porous conical system using a hybrid Al2O3-Cu/water nanofluid with the presence 
of a magnetic field. The study indicated that the heat transmittance rate increased with positive 
values of porosity, Darcy number, and hybrid nanoparticle concentration. Abu Bakar et al., [24] 
investigated hybrid nanofluid flow over a porous permeable shrinking sheet with slip and radiation, 
revealing that the parameters considered in their study increased both dual solutions in the skin 
friction coefficient and velocity distribution. Recent research has further expanded the 
understanding of hybrid nanofluid flow in porous media, with contributions from Mahn et al., [25], 
Jino and Kumar [26], Khan et al., [27], Maitra et al., [28], and Shah et al., [29]. Among the various 
convection flows in porous media, the non-Darcian porous media model is well-known. A 
modification of Darcian flow, known as the Darcy-Forchheimer model, incorporates the inertia effect 
in the momentum equation through the velocity squared term, as described by Ganesh et al., [30]. 
The implementation of fluid flow in Darcy-Forchheimer porous media is of significant importance in 
mechanical industries, such as insulation design for heat protection, heat pipe construction, cooling 
of turbine blades, and oil flow filtration. Further studies on this topic have been reported by Gul et 
al., [31], Khan et al., [32], Ramesh et al., [33], Abu Bakar et al., [34], and Nayan et al., [35].  

The particle size and shape factor of nanoparticles play a crucial role in determining the efficiency 
of heat transfer in fluid flow. The geometry of nanoparticles can be characterized by their shape and 
size. Nanoparticle properties are influenced by their particle size, with spherical particles being 
considered the ideal shape. Qi et al., [36] described that the shape factor is defined as the ratio of 
the surface area of a non-spherical nanoparticle to that of a spherical nanoparticle. Ghadikolaei et 
al., [37] concluded that platelet-shaped nanoparticles in hybrid TiO2-Cu/water nanofluid exhibited 
the highest efficiency compared to cylindrical and brick-shaped nanoparticles. Khan et al., [38] 
explained that the shape factor directly influenced the temperature field, with blade-shaped 
nanoparticles performing the best and brick-shaped nanoparticles performing the worst. An analysis 
of MHD hybrid nanofluid flow inside a porous cavity with nanoparticle shape factor was conducted 
by Gholinia et al., [39] and they found that lamina-shaped nanoparticles demonstrated the highest 
Nusselt number, outperforming brick, tetrahedron, and platelet-shaped nanoparticles. Recent 
studies on hybrid nanofluid flow with nanoparticle shape factor have been conducted by Benkhedda 
et al., [40], Dinarvand and Rostami [42], Anwar et al., [43], Hafeez et al., [44], Khan et al., [45], 
Khashi’ie et al., [46], and Rekha Sahoo [47]. 

In this study, our objective is to investigate the impact of solar radiation and nanoparticle shape 
factor on the flow of a hybrid nanofluid over a Darcy-Forchheimer porous medium past a permeable 
shrinking sheet. The mathematical models employed in this work are based on the research 
conducted by Khan and Alzahrani [48]. The current flow problem is characterized by the inclusion of 
hybrid nanoparticles, solar radiative heat flux, a permeable surface, a shrinking sheet, and 
nanoparticle shape factor. For the hybrid nanofluid, we have selected silver (Ag) and titanium dioxide 
(TiO2) nanoparticles, with water (H2O) serving as the base fluid. The combination of Ag- TiO2 
nanoparticles is chosen due to the superior properties of Ag, such as high temperature stability and 
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corrosion resistance, complemented by the photoactivity efficiency and environmental safety of 
TiO2. In addition, this study also explores the influence of non-spherical nanoparticles shapes, 
including bricks, cylinders, platelets, and blades. These shapes add further complexity to the analysis 
and enable a comprehensive understanding of the flow behavior. To mathematically model the 
system, we employ the saturation of the Darcy-Forchheimer relation in the momentum equation. 
The radiation heat flux is included in the energy equation to consider the effects of solar radiation. 
Overall, this study aims to contribute to the understanding of the combined effects of solar radiation 
and nanoparticle shape factor on hybrid nanofluid flow over a Darcy-Forchheimer porous medium 
where the potential application of this study can be applied in solar collectors, solar stills, or 
photovoltaic/thermal system and to the best of the authors’ knowledge, it is believed that the current 
problem has never been published anywhere.  
 
2. Mathematical Formulation 
2.1 Properties of Fluids and Nanoparticle Shape Factors 
 

This current study deals with hybrid Ag-TiO2/H2O nanofluid, where the nanoparticle volume 

fraction for Ag ( 1 ) is selected to be at 5%, while the nanoparticle volume fraction for TiO2 ( 2 ) is 

chosen to be in the range of 
21% 5%  . The volume fraction for hybrid nanofluid is in the form of 

2

2

1 2

Ag TiO

hnf

Ag TiO

V V

V
  

−

+
= + =  [49]. To frame the thermophysical properties, we followed the one 

suggested by Takabi and Salehi [50] and Ghalambaz et al., [51] as listed in Table 1, while Table 2 
presented the values of nanoparticles properties and Table 3 demonstrated the size and sphericity 
of nanoscale particles, which denoted by m.  
 

Table 1 
Correlation properties of hybrid nanofluid, see Abu Bakar et al., [34], Takabi and Salehi 
[50] and Ghalambaz et al., [51] 
Properties Hybrid nanofluid correlations 

Dynamic viscosity 
2.5 2.5

1 2
(1 ) (1 )

f

hnf




 
=

− −
 

Heat capacity ( ) ( ) ( )( ) ( ) ( )
2 1 1 21 2

1 1
p p p phnf f

C C C C       = − − + +    

Density  ( ) ( ) 2 1 1 1 2 2
1 1

hnf f
       = − − + +  

Thermal conductivity ( ) ( )( )
( ) ( )

2 2 2

2 2 2

1 1

1

hnf nf nf

nf nf nf

k k m k m k k

k k m k k k





+ − − − −
=

+ − + −
 where 

( ) ( )( )
( ) ( )

1 1 1

1 1 1

1 1

1

nf nf f

f f f

k k m k m k k

k k m k k k





+ − − − −
=

+ − + −
 

 
Table 2 
Thermophysical properties for selected nanoparticles, see Dinarvand et al., [52] and 
Mansourian et al., [53] 
Physical 
properties 

Density,   (kg/m3)  Specific heat, 
p

C  

(J/kg K) 

Thermal conductivity, k 
(W/m K) 

Water 997.1 4179 0.613 

Ag 10500 235 429 

TiO2 4250 686 8.9538 
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Table 3 
Shape, size, and geometrical appearance for a 
nanoparticle, see Gholinia et al., [39] 
Shape Size Geometrical schematic 

Bricks  3.7  
 

Cylinders  4.9  
 

Platelets  5.7  
 

Blades  8.6  
 

 

2.2 Mathematical Modelling 
 

In this study, we consider a 2D steady flow of hybrid – nanofluid over a permeable shrinking 
surface of porous medium in presence of solar radiation and nanoparticle shape factor as illustrated 
in Figure 1. The porous space is saturated by an incompressible liquid that characterize the 

relationship of Darcy-Forchheimer. The surface velocity is deformed by ( )wU x cx=  where c is the 

coefficient of the plate velocity and described by c > 0 for stretching plate while c < 0 is shrinking 
plate. The dispersion of the nanoparticles in the base fluid is assumed to be in a state of thermal 

equilibrium, together with the temperature of the fluid below the sheet is fT  and the ambient 

temperature isT . The desired governing equations are extended by Khan and Alzahrani [49] by 

including the above assumption which can be written by  
 

 
Fig. 1. Schematic diagram of current problem 
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0
u v

x y
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 
                           (1) 

 
22
0 2

2 *

hnf hnf hnf

c

hnf hnf hnf

Bu u u u
u v u F u

x y y K

  

  
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+ = − − −
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           (2) 

 

( ) ( )

2 3 2

2 2

1 16 *

3 *

hnf

p phnf hnf

kT T T T T
u v

x y y K yC C



 

   
+ = −
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        (3) 

 
With the boundary conditions at  
 

( ) ( ),  ,   as 0

0,   at 

w w wu U x v v x T T y

u T T y

= = = →

→ → →
                                     (4) 

 
Here u and v are the velocities of x- and y-axis while T is temperature. The final expression in Eq. 

(3) represents the non-linear radiative of solar energy where *  is the Stefan-Boltzmann constant 

and *K  is the mean absorption coefficient. Further, 
0B  is the strength of magnetic field, 

*

b
c

C
F

x K
=  is the non-uniform inertia coefficient where 

bC  is the drag force coefficient, while hnf

, hnf , hnfk , ( )p hnf
C  and hnf  represent density, dynamic viscosity, thermal conductivity, specific 

heat and electrical conductivity of hybrid Nano-suspension, accordingly.  
We now introduce the similarity variables as follows, see Khan and Alzahrani [48] 
 

( ) ( ) ' ,  ,  ,  f

w f

T T c
u cx f v c f y

T T
    






−
= = − = =

−
        (5) 

 
Where Eq. (1) is satisfied, while Eq. (2) and Eq. (3) can deduce to 
 

( ) ( ) ( )
2

2

1 2 2

1
1 0f

M
f Kf f ff f D

A A A
    − − + − + =                       (6) 

 

( )3 4 Pr 0A N A f  + + =                                          (7) 

 

Pertaining to the boundary conditions at 
 

( ) ( ) ( )

( ) ( )

0 ,  0 ,  0 =1 when 0

0,  0 as 

f S f

f

  

   

 = = =

 → → →
                         (8) 

 

When K, M, fD , N, Pr and S are porous medium permeability, magnetic parameter, inertia coefficient 

or Darcy-Forchheimer number, solar radiation parameter, Prandtl number and suction parameter, 
correspondingly, which are mathematically described by 
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 
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 

 
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        (9) 

 
Physical quantities of interest that convey the essential data for engineers to design apparatus by 

utilizing hybrid nanoparticles are the coefficient of skin friction fC  and Nusselt number
xNu . 

Following Aly and Pop [54], these quantities are assumed to be frame at the lower surface of the 
plate and can be written in the form of  
 

( )2
,  w w

f x

f w f w

xq
C Nu

U k T T



 

= =
−

                                     (10) 

 

Where 
0

w hnf

y

u

y
 

=


= −


 and 

0

w hnf

y

T
q k

y
=


= −


 are shear stress along the plate and heat flux from the 

plate, accordingly. By employing the similarity variables in Eq. (5), the reduced form of fC  and 
xNu  

are finalized by 
 

( ) ( ) ( )3

2

1 1
Re 0 ,  0

Re
f x x

x

C f Nu A N
A

 = = − +                     (11) 

 

Where 
( )

Re
w

x

f

U x x


=  is Reynolds number. 

 
2.3 Procedure of Numerical Approach 
 

The non-linear ordinary differential equations ODEs presented in Eq. (6) and Eq. (7), along with 
the corresponding boundary conditions in Eq. (8), are solved numerically using the shooting 
technique method implemented in MAPLE software. The shooting technique method is commonly 
employed in numerical analysis to transform a boundary value problem (BVP) into an initial value 
problem (IVP). This transformation involves “shooting” trajectories in various directions until the 
desired trajectory is obtained, which satisfies the BVP, see Bakar et al., [7]. To solve the higher-order 
ODEs described in Eq. (6) and Eq. (7), they are first converted into code form and subsequently 
executed as an IVP. In this process, the variables are labelled as follows 

 

1 1 2 2 3

4 4 5

,  ,  ,  

,  .

f y f y y f y y

y y y 

   = = = = =

 = = =
 

 
Hence, the ODEs in Eq. (6) and Eq. (7) are then formulated into 
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22 2
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  

   
    −   + 

 

 
Initially, the values are selective to be guessed when the initial conditions are not given. In 

condition of  →  at each parameter, the end of boundary layer region is determined when the 

unknown boundary layer values are fixed with the consecutive iterative step length is less than 710− . 
 
3. Results and Discussions 
 

Before discussing the mathematical models presented in Eq. (6) – Eq. (8), a comparison was 
conducted between the current results and the findings of Khan and Alzahrani [48] and Gorla and 
Sidawi [55], as outlined in Table 4. The comparison reveals a strong consensus and agreement 
between the different studies, with additional distinct outcomes that can be identified accordingly. 

In Figure 2, the stream flows for two different numbers of Ag-nanoparticle 1  are illustrated. It can 

be observed that the flow rate becomes constrained or restricted in the central region due to the 
meandering nature of the fluid flow. This phenomenon occurs because the nanoparticles experience 
more collisions with the meandering surface, leading to a decrease in flow rate.  
 

Table 4 
Comparison of (0)−  against Pr when 1.0 =  

Pr (0)−  

Khan and Alzahrani 
[48] 

Gorla and Sidawi [55] Present outcomes 

0.2 0.1688 0.16912 0.1688237 

0.7 0.4579 0.53488 0.4539061 

2.0 0.9119 0.91142 0.9113576 

3.0 - 1.15970 1.1596994 

7.0 1.8994 1.89046 1.8984302 

10.0 - 2.30350 2.3139646 

20.0 3.3539 3.35391 3.3539049 
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(a) 

 
(b) 

Fig. 2. Streamline flows for (a) Hybrid nanofluid of 
1

0.01 =  and 
2

0.05 =  (b) Hybrid nanofluid of 

1 2
0.05 = =  

 
Further, Figure 3 presents the streamline flows of four different nanoparticle shapes m. It can be 

observed that as the value of m increases, the streamline flows become more predominantly laminar. 

In Figures 4(a) and 4(b), the impact of TiO2-nanoparticles 2  on the skin friction coefficient (0)f   

and temperature gradient (0)−  with respect to the shrinking parameter is illustrated. Within the 

range of 0c   , a non-unique solution is observed. This non-unique solution causes the 

bifurcation of branches, resulting in two solutions known as the first and second solutions (or first 

and second branches). The critical value of the solution, denoted as c , corresponds to the peak of 

this bifurcation. In Figure 4, it is evident that both fluid flow and heat transfer rate exhibit significant 

expansion with increasing value of 2 . This increment indicates that the volumetric fraction of 

nanoparticles is pressed towards the wall direction as the viscosity of the buoyancy forces increases.  
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 3. Streamline flows for nanoparticle shape factor m when (a) m = 3.7 (bricks-shaped) 
(b) m = 4.9 (cylinders-shaped) (c) m = 5.7 (platelets-shaped) (d) m = 8.6 (blades-shaped) 

 

 
(a) 

 
(b) 

Fig. 4. Influence of 
2

  on (a) Skin friction coefficient (0)f   

(b) Temperature gradient (0)−   
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The effect of Darcy-Forchheimer number or inertia coefficient parameter fD  on (0)f   and 

(0)−  is illustrated in Figures 5(a) and 5(b), respectively. From both figures, a significant increment 

pattern is noticed when fD  expanded from 0.3 to 1.0. Inertia coefficient can be described by the 

ability of mass to resist a transition, where any additional amount of fD  may expand the resistance 

and produce a strong movement in the fluid flow. This reaction subsequently enhances both flows in 
(0)f   and (0)− . Figures 6(a) and 6(b) presented the impact of solar radiation parameter N and 

nanoparticle shape factor m on (0)−  against , accordingly. From Figure 6(a), it is noticed that the 

heat transmittance escalates as N increases, which can be explained by the increasing amount of 
mean absorption coefficient resulting in more amount of heat transfer rate. Simultaneously, the 
pattern of increment in Figure 6(b) justifies that the temperature is at the highest for m = 8.6 (blades-
shaped) and the lowest is for m = 3.7 (bricks-shaped).  

 

 
(a) 

 
(b) 

Fig. 5. Influence of f
D  on (a) Skin friction coefficient (0)f   (b) 

Temperature gradient (0)−   
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(a) 

 
(b) 

Fig. 6. Temperature gradient (0)−  against (a) Numbers of N 

(b) Numbers of m  

 
The velocity and temperature profiles exhibit overall enhancements, as shown in Figures 7(a) and 

7(b), respectively, in relation to the TiO2- nanoparticles 2 , except for a decline observed in the 

second solution of the velocity profiles. Physically, the introduction of an increasing 2  triggers the 

development of viscous forces within the nanofluid which resistance arises among the fluid particles, 
leading to an increase in heat transfer rate within the temperature profiles ( )  , while 

simultaneously causing a decrease in fluid particle velocity. Figures 8(a) and 8(b) convey the impact 
of shrinking parameter   on the dimensionless profiles of velocity ( )f   and temperature ( )  , 

accordingly. A brief observation can be made that the lowest temperature in the first branch is 
conceived prior to the highest number of  , while the other solutions in both profiles possessed an 
improvement. This can be explained due to the hybridity in the shrinking surface boosting the velocity 
distribution but dragged away the first branch of heat transfer rate.  
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(a) 

 
(b) 

Fig. 7. Numbers of TiO2-nanoparticles 
2

  against (a) Velocity profiles ( )f   (b) Temperature profiles 

( )   

 

 
(a) 

 
(b) 

Fig. 8. Numbers of shrinking parameter   against (a) Velocity profiles ( )f   (b) Temperature 

profiles ( )    

  

The dimensionless temperature profiles ( )   for hybrid nanofluid flow with selected number of 

nanoparticle shape factor m and solar radiation parameter N are distributed in Figures 9(a) and 9(b), 
respectively. Here, velocity profiles ( )f   for m and N are not included due to the influence of these 

factors are directly proportion to temperature distribution while velocity distribution remains 
unchanged. From Figure 9(a), blades-shaped nanoparticle (m = 8.6) possessed the highest heat 
transfer rate in both branches of solutions, followed by platelets-shaped, cylinders-shaped and 
bricks-shaped. Based on the Figure 9(b), a dual pattern is distinguished against the factor of N, where 
this can be explained by the reducing amount of mean absorption coefficient when there is an 
increment in N, which resulting in less amount of heat transfer rate. Simultaneously, the increment 
of first solution in Figure 9(b) can be described by each additional number of N by releasing a 
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sufficient heat energy in the system and this possessed the domination of radiation over conduction 
in the fluid flow, where the transfer rate of solar radiation was measured by the amplification of 

3*16

3 *

T

K k

   in N factor. Further, Figure 10 employed the decrement of boundary layer thickness for 

hybrid nanofluid solutions when the intensity of the magnetic field parameter M increases.  Magnetic 
field creates a resistance of Lorentz force that works best in depreciate the velocity in fluid flow and 
thus acknowledged the definition of declining patterns in both solutions. 

 

 
(a) 

 
(b) 

Fig. 9. Temperature profiles ( )   against (a) Numbers of m (b) Numbers of N 

 

 
Fig. 10. Velocity profiles ( )f   against M 

 
Figure 11 then presented the percentage of heat transmittance rate within the mono- and hybrid- 

nanofluids flow when Ag- 1 5% =  and 2 20% TiO 5% −  . Here, it is clearly observed that the heat 

transfer rate for mono-nanofluid (Ag/water nanoparticle) is 42.93%, while the highest rate is 58.29% 
perceived by hybrid-nanofluid (5% of Ag, 5% of TiO2). This indicating that the heat transfer rate 
conceived better performance by hybrid-nanofluid volume fraction compared to mono-nanofluid 
with the gap of 15.36%. 
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Fig. 11. Heat transfer rate for mono- and hybrid-nanofluids 

 
4. Stability Analysis 
 

Stability analysis is performed in this study as to differentiate the realizable physical solution 
between two branches of solutions possessed by shrinking parameter , as emphasized by Ismail et 
al., [56] and Ismail et al., [57]. To analyse such condition, Weidman et al., [58] and Merkin [59] 
suggested to imply Eq. (2) – E q. (4) in an unsteady condition while Eq. (1) is being held. Prior to this, 
a new dimensionless time variable in the form of   is also introduced with the similarity variables in 
Eq. (5) 
 

( ) ( ) ' ,  ,  ,  ,  f

w f

T T c
u cx f v c f y ct

T T
     






−
= = − = = =

−
                   (12) 

 
Where t represents time. The unsteadiness flow may be due to natural processes since the flow in 
any situations is relying on time, and it is more complex than the steady flows as the conditions of 
unsteady flow vary with respect to time and space, as explained by Abu Bakar et al., [34]. Thus, with 
the consideration of our unsteady mathematical models and Eq. (12), we have 
 

( )
23 2 2 2

3 2

1 2 2

1
1 0f

f f M f f f f
K f D

A A A      

        
− − + − + − =   

        
                 (13) 

 

( )
2

3 42
Pr 0A N A f

  

  

  
+ + − =

  
                                     (14) 

 
With the boundary conditions at 
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( )

(0, )
(0, ) ,  ,  (0, ) 1 at 0

( , )
0,  , 0 as 

f
f S

f


    



 
   




= = = =




→ → →



                                   (15) 

 
Weidman et al., [58] and Merkin [59] then proposed the stability flow analysis as 
 

( ) ( ) ( ) ( ) ( ) ( )0 0, ,   ,f f e F e G          − −= + = +                             (16) 

 

Here, 0f  and 0  are the small relatives of ( )F   and ( )G  , accordingly, and   is the unknown 

eigenvalue parameter that represents the expansion or deterioration of a disturbance rate. 
Eigenvalues can be used to determine whether a fixed point is stable or not stable such that a system 
can be initially disturbed around its fixed point and yet eventually return to its original location and 
remain there, see Abu Bakar et al., [60], Bakar et al., [61] and Ismail et al., [62]. The solution of 

eigenvalues provides an infinite set of 1 2 3 ...     , where the negative or positive numbers of 

  represent the rate of expansion or deterioration of a disturbance rate. For instance, a negative 

number of   indicated that the disturbance rate is expanded, and the solution is unstable; and vice 

versa. 
Further, the following linearized equations are obtained by adopting Eq. (16) into Eq. (13) – Eq. 

(15). 
 

( ) ( )
2

0 0 0

1 2 2

1
2 1 0f

M
F KF F f F f F f F D F

A A A
       − − + + − + + =                    (17) 

 

( ) ( )3 2 0 0Pr 0A N G A F f G G   + + + + =                                             (18) 

 
Prior to the boundary conditions at 
 

( ) ( ) ( )

( ) ( )

0,  ' 0,  0 at 0

' 0,  0 as 

F F G

F G

   

  

= = = =

→ → →
                                            (19) 

 

Following Harris et al., [63], the condition of ( )' 0F  →  is putted at rest and replaced with the 

condition of ( ) 1F  =  as → . Hence, Table 5 listed the smallest eigenvalue   versus two 

different amounts of hybrid nanoparticles volume fraction, while the list of   number series against 

Darcy-Forchheimer number fD  and suction parameter S are presented in Tables 6 and 7, 

respectively. A series of positive amounts are observed in all first branch of solution, while the second 
branch of solution is distinguished to be in a series of negative numbers as can be noticed in these 
three tables. Thus, from the definition of eigenvalue  , a firm conclusion can be drawn as the first 

branch is stable and the other solution is contrariwise. 
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Table 5 
Different amounts of hybrid nanoparticles and smallest eigenvalue   

1
  

2
    

  

First branch of 
solution 

Second branch of 
solution 

5% 

1% 

-1.2 0.00347 -0.00995 

-1.3 0.01058 -0.01584 

-1.4 0.14309 -0.14773 

5% 

-1.2 0.01149 -0.01092 

-1.3 0.16873 -0.02961 

-1.4 0.30908 -0.15089 

Consideration of m = 3.7, S = 2.2, N = 2.0, 0.5
f

K M D= = =  and Pr = 6.2 

 
Table 6 

Darcy-Forchheimer number 
f

D  and smallest eigenvalue   

f
D    

  

First branch of solution Second branch of 
solution 

0.5 
-1.4 0.30908 -0.15089 

-1.5 0.37334 -0.29055 

1.0 
-1.4 0.36211 -0.43783 

-1.5 0.40918 -0.47720 

Consideration of 
1 2

0.05 = = , m = 3.7, S = 2.2, N = 2.0, 0.5K M= =  and Pr = 6.2 

 
Table 7 
Suction parameter S and smallest eigenvalue   

S   

  

First branch of solution Second branch of 
solution 

3.0 
-1.4 0.40132 -0.26269 

-1.5 0.45339 -0.39730 

4.0 
-1.4 0.58297 -0.35521 

-1.5 0.63189 -0.44560 

Consideration of 
1 2

0.05 = = , m = 3.7, N = 2.0, 0.5
f

K M D= = =  and Pr = 6.2 

 

5. Conclusions 
 

In this study, we investigate a steady, 2D flow of a hybrid – nanofluid over a magnetic shrinking 
surface filled with a Darcy-Forchheimer porous medium and exposed to solar radiation. The hybrid 
nanofluid is formed by dispersing two types of nanoparticles, Ag and TiO2, in water. To analyze the 
flow behavior, a system of ODEs is derived from the non-linear PDEs using the similarity 
transformation method. These ODEs are then solved using the shooting technique method in MAPLE 
software and the bvp4c solver in MATLAB software. The current study examines the impact of various 
parameters on the flow field, including the nanoparticle volume fraction , shrinking parameter , 

solar radiation parameter N, Darcy-Forchheimer number fD , nanoparticle shape factor m and 

magnetic field parameter M. It is found that these parameters have significant effects on the flow 
characteristics based on the following outcomes 
 

i) Two branches of solutions are possessed prior to the shrinking surface 0  . 
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ii) The range of c  is significantly expanded as the number of 2  and fD  increase. 

iii) Heat transfer rate showed a significant improvement by hybrid nanofluid compared to 
mono nanofluid with the difference of 15.36%. 

iv) Velocity and temperature profiles are directly overcome with nanoparticle volume 
fraction  , nanoparticle shape factor m, shrinking parameter  , Darcy-Forchheimer 

number fD  and solar radiation parameter N, while magnetic field parameter M divert the 

pattern. 
v) Blades-shaped nanoparticles possessed the highest heat transfer rate in both branches of 

solutions, followed by platelets-shaped, cylinders-shaped, and bricks-shaped. 
vi) Stability analysis is performed on the mathematical model due to dual solutions, and the 

first branch showed the most stable compared to the second branch. 
 
In conclusion, this work offers valuable insights into the behavior of hybrid nanofluid flow over a 

magnetic shrinking surface within a Darcy-Forchheimer porous medium under solar radiation. These 
findings contribute to a deeper understanding of the flow field and its dependence on the considered 
parameters. It is also anticipated that the results obtained from this study will be beneficial to 
academicians and researchers in the same field.  
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