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Cervical cancer is the third most prevalent cause of mortality among women in 

Malaysia. Early detection, especially in high-risk populations, can reduce mortality 

rates and enable timely treatment. This study investigates the efficacy of staging 

classification using diffusion-weighted imaging magnetic resonance imaging (DWI-

MRI) through radiomic analysis and machine learning. Data were retrospectively 

analyzed from the picture archiving and communication system (PACS) at Institut 

Kanser Negara (IKN) in Putrajaya, Malaysia. The first objective involved 30 patients 

to evaluate the repeatability and reproducibility of manual and semi-automated 

segmentation methods on DWI-MRI images. Intra-class correlation coefficient (ICC) 

analyses were performed on 662 radiomic features encompassing texture, shape, and 

first-order statistics. The semi-automated active contour model (ACM) algorithm 

(average ICC = 0.952 ± 0.009, p > 0.05) was found to be more robust and reproducible 

than fully manual segmentation (average ICC = 0.897 ± 0.011, p > 0.05). The second 

objective assessed the stability of radiomic features using contrast-limited adaptive 
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histogram equalization (CLAHE) for image enhancement of 80 DWI-MRI images, 

enhanced images exhibited improved stability in radiomic features (ICC = 0.990 ± 

0.005, p < 0.05), outperforming both semi-automated (ICC = 0.864 ± 0.033, p < 0.05) 

and manual methods (ICC = 0.554 ± 0.185, p > 0.05). The third objective focused on 

classifying cervical cancer stages using DWI-MRI radiomic features. A support vector 

machine (SVM) classifier yielded excellent performance metrics, accuracy of 0.77, 

and precision of 0.63, with an area under the curve (AUC) of 96%. Additionally, the 

SVM algorithm was evaluated based on its performance across different DWI b-

values, aiming to optimize scanning time. In conclusion, SVM-based models can 

develop accurate and reproducible software for classifying cervical cancer stages, 

significantly enhancing the role of radiology by enabling more quantitative MRI 

interpretations. This study underscores the potential of radiomic analysis to improve 

the accuracy of medical reports, reduce dependency on contrast agents, and enhance 

early detection of cervical cancer. 

Keywords: Cervical cancer, DWI-MRI, Radiomic analysis, Supervised machine 

learning. 
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Kanser serviks adalah punca kematian ketiga paling lazim di kalangan wanita di 

Malaysia. Pengesanan awal, terutama dalam populasi berisiko tinggi, dapat 

mengurangkan kadar kematian dan membolehkan rawatan diberikan tepat pada 

masanya. Kajian ini menilai ketepatan klasifikasi peringkat menggunakan imej 

pengimejan wajaran resapan pengimejan resonans magnet (DWI-MRI) melalui 

analisis radiomik dan pembelajaran mesin. Data dianalisis secara retrospektif dari 

sistem pengarkiban gambar dan komunikasi (PACS) di Institut Kanser Negara (IKN) 

Putrajaya, Malaysia. Objektif pertama melibatkan 30 pesakit untuk menilai 

kebolehulangan dan kebolehasilan proses segmentasi manual dan separa automatik 

pada imej DWI-MRI. Analisis pekali korelasi intra-kelas (ICC) bagi 662 ciri radiomic 

tekstur, bentuk, dan statistik peringkat pertama. Algoritma model kontur aktif (ACM) 

bagi separa automatik (purata ICC = 0.952 ± 0.009, p > 0.05) didapati lebih teguh dan 

kebolehhasilan yang tinggi berbanding segmentasi manual (purata ICC = 0.897 ± 

0.011, p > 0.05). Objektif kedua menilai kestabilan ciri radiomik menggunakan 
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penyamaan histogram adaptif terhad kontras (CLAHE) untuk 80 imej DWI-MRI, imej 

yang dipertingkatkan menunjukkan kestabilan yang lebih baik dalam ciri radiomik 

(ICC = 0.990 ± 0.005, p < 0.05) berbanding kaedah separa automatik (ICC = 0.864 ± 

0.033, p < 0.05) dan manual (ICC = 0.554 ± 0.185, p > 0.05). Objektif ketiga memberi 

tumpuan kepada pengelasan peringkat kanser serviks menggunakan ciri radiomik 

DWI-MRI. Pengelasan mesin vektor sokongan (SVM) menghasilkan metrix prestasi 

yang cemerlang, ketepatan 0.77, kejituan 0.63 dengan kawasan di bawah lengkung 

(AUC) 96%. Di samping itu, algoritma SVM digunakan untuk menilai prestasi 

merentas nilai b DWI yang berbeza bagi mengoptimumkan masa imbasan. 

Kesimpulannya, model berasaskan SVM dapat membangunkan perisian yang tepat 

dan kebolehulangan yang tinggi untuk mengklasifikasikan kanser serviks, serta 

meningkatkan peranan radiologi melalui pentafsiran imej MRI yang lebih kuantitatif. 

Kajian ini menekankan potensi analisis radiomik dalam meningkatkan ketepatan 

laporan perubatan, mengurangkan kebergantungan kepada agen kontras, dan 

meningkatkan pengesanan awal kanser serviks. 

Kata Kunci: Kanser serviks, Pengimejan wajaran resapan-pengimejan resonans 

magnet. Analisis radiomic, Pembelajaran mesin diselia,  

 

SDG: MATLAMAT 3: Kesihatan Baik dan Kesejahteraan, MATLAMAT 11: 

Komuniti dan Bandar yang Lestari 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research background  

Cancer of the cervical represent a worldwide health concern, particularly in low-

resource settings. The United States is expected that there will be 1,958,310 new 

cancer cases and 609,820 cancers related to deaths in 2023 (Siegel et al., 2023). In 

Malaysia, cancer is the fourth leading cause of death which contributes to 39.3% as 

stated in the Malaysian study on cancer survival and cervical cancer is the third most 

common female cancer. According to Shin et al., 2010, the incidence of cervical 

cancer has shown an upward trend, with an increase in the average age of affected 

patients. It is estimated that the mortality rate due to cervical cancer among women 

aged 30 to 60 has significantly increased (Mustafa et al., 2022). Apart from a sedentary 

lifestyle and unhealthy dietary patterns, more women suffer from cervical cancer. The 

fast-paced lifestyles inherently neglect routine physical exams, which increases the 

risk of cervical cancer.  

There is variety of medical imaging modality for diagnosis and treatment. Magnetic 

Resonance Imaging (MRI) that is extensively used for superior tissue structure 

contrast and tumour evaluation and offer a more detailed understanding of the tumor's 

microenvironment and microcellular activity (Schick et al., 2019). Detailed 

knowledge of anatomy and precise tumor localization are essential in radiology for 

aiding clinicians in diagnosing, prognosticating, and planning treatment decisions. 

Hence, it is imperative to minimize human error or the possibility of false negatives 

to the greatest extent possible, as this will impact visual interpretation.  
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Radiomics gathers quantitative data from medical imaging and uses advanced 

computer techniques to highlight complex tumor traits. These characteristics, which 

include shape and geographic interactions, provide insights into tumor biology 

(Hagiwara et al., 2023). According to the literature, radiomics has the potential to 

improve cervical cancer prognosis by assessing risk, predicting treatments, and 

identifying biomarkers (Lambin et al., 2012). It complements traditional assessments 

by offering a complete approach to disease characterization (Abbasian et al., 2022). 

Furthermore, insufficient research has been conducted on the radiomics analysis of 

quantitative cervical cancer in Malaysia, highlighting the necessity to commence this 

line of investigation. Therefore, this study investigates the present status of cervical 

cancer radiomics, focusing on the reliability of image segmentation and feature 

selection.  

Through a systematic review of the existing literature, the study identified a deficiency 

in research on the accuracy, sensitivity, and clinical specificity of radiomics in 

diagnosing cervical cancer using machine learning techniques. Consequently, this 

radiomics study is pivotal in advancing the reporting system by providing quantitative 

data to support medical professionals in interpreting digital images effectively. The 

current approach to interpreting radiological images of cervical cancer involves only 

qualitative assessments, which depend on subjective interpretations by radiologists 

and are recognized to be a time-consuming process (Yunus et al., 2022). This study 

emphasizes the significance of quantitative analysis for its measurability and enhanced 

accuracy in clinical evaluation and documentation of cervical cancer classification. 

Additionally, the application of machine learning methodologies in cervical cancer 

radiomics research is being explored due to their increasing utilization in the medical 
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field. Growing in the application of artificial technology contributes to advancement 

in medical imaging field (Hosny et al., 2018).  

The growing need in improving cervical cancer detection using machine learning has 

prompted this study to improve the algorithm implementation that can overcome the 

limitations in computational and system complexity in cervical cancer detection. The 

expectation is that the results of this research can be applied in a clinical context to 

improve patient well-being and promote the role of artificial intelligence of cervical 

cancer. Diffusion-weighted imaging (DWI) parameters potentially be used as an 

imaging biomarker to evaluate the effect of b-value at microscopic level (Padhani et 

al., 2011). DWI is a non-invasive MRI technique that allows for the observation of 

water molecules' movements within biological tissues and tumour (Shen et al., 2015). 

This research offers into radiomics and machine learning algorithm in classification 

in cervical cancer clinical imaging protocols which essential for evaluating the 

effectiveness of cancer treatments and patient survival. 

1.2 Problem statement 

Current practice in radiological image interpretation of cervical cancer relies solely on 

qualitative assessments, involving subjective interpretation of images by radiologist, 

which are known to be time-consuming (Yunus et al., 2022). Images information in 

pixel contain important role in human perception, which limited to visualize the 

information of electromagnetic (EM) spectrum. Moreover, both random sampling 

biopsy and surgical procedures for diagnosis have limitations, such as procedure-

related complications, sampling errors, and interobserver variability. Consequently, 

interobserver variability and false-negative diagnoses are inevitable, as human error 
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can impact both diagnosis and prognosis for the patient (Balaji & Chidambaram, 

2022). Furthermore, early screening with combination of radiomic machine 

advancement created new opportunities to study medical signal processing, enabling 

analysis to become more intelligent and effective.  

The radiomics process is also capable of significantly assisting the field of medical 

imaging in two distinct steps namely, the process of data segmentation and 

classification. Analyzing data that requires human interaction on selection of a specific 

region of interest (ROI) to complete quantitative analysis in the clinical routine. 

However, there are variety of segmentation techniques that can be used in phase of 

tumor segmentation. The component of radiomic represents high quantitative image 

features of tumor phenotypes that characterize the volumes of interest. The feature 

extraction contains information from input images and represents data in lower 

dimensional space (Scrivener et al., 2016). This involves a complex mathematical 

algorithm which describes phenotypes of tumors that are unrecognized and might not 

be detectable by human observation.  

The influence on the repeatability features is also known to be affected by the large 

variability of image acquisition and feature extraction parameters (Zhang et al., 2017). 

Moreover, there are several segmentation techniques that can be utilized in the process 

of image segmentation (Seo et al., 2020). Identifying the segmentation technique that 

offers greater stability in radiomic features of cervical cancer is crucial. Hence, it is 

essential to identify the segmentation technique that provides more stability in the 

radiomic features of cervical cancer. This determination can enhance the precision of 
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tumor edge delineation, boundaries, and contrast, ultimately improving the 

consistency in extracting radiomic features.  

Moreover, the integration of machine learning methodologies in cervical cancer 

radiomics research is highly regarded for its applicability in the medical field. This 

research in radiomics has the potential to decrease the workload for specialist 

physicians by enhancing the accuracy of diagnostic reports. It can reduce the need for 

manual input by specialists in describing the intensity, shape, and texture of anomalies 

in images and the boundaries of cancer, thereby improving patient care and treatment.  

1.3 Research objectives 

The main objective of this research study is to design a model for classifying cervical 

cancer DWI-MRI images using radiomic features and machine learning techniques. 

The specific objectives are: 

1. To evaluate the stability of reproducibility and repeatability of radiomic 

features DWI-MRI images of cervical cancer. 

2. To determine the impact of the contrast enhancement in the stability of 

radiomic features cervical cancer DWI-MRI images. 

3. To analyze the performance of supervised machine learning classifier in 

differential radiomic of cervical cancer DWI-MRI images.  

4. To compare the performance of support vector machine (SVM) in classifying 

the DWI-MRI b-value for cervical cancer images. 
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1.4 Scope of study  

The scope of this study involves determination of the radiomics features from various 

segmentation techniques and contrast enhancement of cervical cancer DWI-MRI 

images. Afterward, evaluating the performance of classifier using radiomic features 

and machine learning classifier. The scope of the study was divided into four parts: 

1. Part I: The contrasted MRI pelvis of cervical cancer with DWI-MRI images 

were segmented using manual and semi-auto segmentation technique using 

active contour model (ACM) algorithm to evaluate the stability of 

reproducibility and repeatability of radiomic features.  

2. Part II: The contrast enhancement using contrast limited adaptive histogram 

equalization (CLAHE) in the stability of radiomic features cervical cancer 

DWI-MRI images were compared between manual, semi auto segmentation 

and segmentation with CLAHE. 

3. Part III: The performance of supervised machine learning classifiers in 

differentiating radiomic features of cervical cancer DWI-MRI images was 

evaluated using selected features. The classifiers applied included logistic 

regression (LR), decision trees (DT), and support vector machines (SVM). 

4. Part IV: The performance of SVM were analyzed in classifying the DWI-

MRI b-value for cervical cancer staging. 

 

1.5 Research significance 

Early-stage in patients of cervical cancer in low-risk and high-risk groups show 

different radiomic scores of DWI-MRI in estimating disease-free survival (DFS) (Hu 

et al., 2022). The different radiomic scores provide a better understanding of high-risk 

and low-risk groups, patient treatment planning, response to anticancer therapies, drug 

development, and making patient decisions. DWI-MRI plays a crucial role in 
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radiomics for various cancer types. It quantitatively measures apparent diffusion 

coefficient (ADC), which reflects water diffusivity, and provides information on cell 

membrane integrity and tumor cellularity. Images acquired from DWI-MRI were 

utilized because of their ability to serve as an initial surrogate imaging biomarker for 

therapy responsiveness. Moreover, DWI-MRI has been identified as valuable in the 

evaluation of cervical cancer, providing essential information for diagnosis and 

treatment planning. Zhang et al., (2022a) demonstrated that radiomics models with a 

combination of multi-parametric DWI showed high clinical value in predicting 

concurrent chemoradiotherapy for cervical cancer.  

Manual segmentation, though widely used, is often labor-intensive, time-consuming, 

and subject to variability due to human error (Gresser et al., 2023). Segmentation using 

DWI-MRI images improves tumor delineation with the utilization of ACM algorithm 

in semi auto segmentation which produce more stability in reproducibility and 

repeatability of features extraction. Impact of contrast enhancement using CLAHE in 

the stability of radiomic features cervical cancer DWI-MRI images were produce 

higher level of robustness compare to manual and semi-auto segmentation method. 

Thus, CLAHE segmentation improved the consistency and durability of radiomic 

features segmentation and strengthening the robustness of radiomic features for 

staging classification. Performance evaluation using a supervised machine learning 

classifier in the differential radiomics of cervical cancer DWI-MRI images is 

important for further development of model selection in machine learning 

classification models. Previous research in cervical cancer detection and staging has 

utilized various machine learning models, including DT, random forests (RF), k-

nearest neighbors (k-NN), and artificial neural networks (ANN)(Yu et al., 2024). 
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These models have demonstrated varying degrees of success, with RF and ANN 

showing particularly strong performance in image classification tasks. However, SVM 

has remained popular due to its robustness with smaller datasets and its ability to 

handle complex decision boundaries effectively. Lastly, the performance of SVM in 

classifying the DWI-MRI b-value for cervical cancer staging improves the 

understanding of effective b-values in radiomic features. The research makes a 

significant contribution by reducing scanning time in the clinical application of DWI-

MRI sequences.  

The research findings result a valuable tool to assist specialist physicians in achieving 

more precise disease diagnoses. Many studies have recently published that machine 

learning has many advantages over complexity and accuracy issues in conventional 

methods (Bayrak & Kirci, 2022; Zhou et al., 2022). Applying machine learning based 

classification in combination with preconditioning, redundancy, and dimensional 

reduction can enable the extraction of quantitative imaging features to diagnose 

cervical cancer (Reijtenbagh et al., 2022). Thus, this research comprehensively studies 

radiomic features of cervical cancer through DWI-MRI images and performance of 

machine learning model to enhance the accuracy of the classifier.   

The multi-center radiomics study in Malaysia was initiated in response to significant 

challenges posed by the existing limitations of MRI technology, particularly in the 

quantitative identification of cervical cancer. By employing radiomic machine 

learning algorithms across multiple healthcare institutions in Malaysia, this study aims 

to enhance the diagnostic capabilities for individualized patient care. In other words, 

this research implementation indirectly encourages non-professional physicians to 
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perform early diagnosis and individual screening if any symptoms occur. Hence, the 

timely identification of cervical cancer through machine learning and the application 

of radiomic assessments enable the assessment of cancer stage using DWI images 

more effectively. This is in compliance with the United Nations Sustainable 

Development Goals 3 (SDG 3), which aims at encouraging healthy lives to every 

person and promote well-being for individual at all ages including cancer screening. 

The anticipated outcomes include improved efficiency and accuracy in disease 

diagnosis, with potential benefits for the Ministry of Health Malaysia, private 

healthcare providers in the country, as well as patients both domestically and 

internationally. In conjunction with SDG 9, to develop innovative machine learning 

software for cervical cancer, and SDG 11, to strengthen global partnerships in the 

study of cancer.  

1.6 Thesis outlines 

This thesis consists of five-chapter, chapter 1 introduced along with the critical issues 

in the field. The chapter briefly discusses the research background, defines the 

problem, states the purpose and underscores the significance in this study. Chapter 2 

provides the background of the study, which explains the introduction of the 

reproductive system, cervical cancer disease, the history and principle of MRI are 

elaborated. Within this chapter, the discussion extends to the radiomic features 

correlated with cervical cancer, along with the comprehensive procedure for cervical 

cancer detection, which includes preprocessing, segmentation, feature extraction, and 

classification. Chapter 3 explains the research methodology by conceptual design, 

followed by the dataset employment and algorithm development. Chapter 4 discusses 

result and analysis from the methodology of the proposed work. Lastly, Chapter 5 
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presents the research conclusion, followed by the findings, limitations arising from the 

analysis performance and necessary future recommendations. 
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