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Recently, significant progress has been made in developing high-quality bulk 

superconductors using rare earth materials, particularly YBa2Cu3O7-δ (YBCO / Y-

123), for potential applications. However, these materials often face the challenge of 

weak link behavior due to defects such as structural inconsistencies, pores, voids, and 

non-superconducting phases at the grain boundaries, leading to low critical current 

density (Jc). This project aims to understand the complex interactions among 

inhomogeneities, non-superconducting phases, and thermodynamic fluctuations of 

superconducting parameters during the superconducting transitions. The research 

involves incorporating various low concentrations (0.0100 wt.% ≤ x ≤ 0.6000 wt.%) 

of chitosan (CHI), CaO and calcium compounds (CaO, CaCO3, and Ca(OH)2) 

extracted from chicken eggshells (CaES) into the YBCO matrix through thermal 

treatment method annealed under oxygen atmosphere and ambient. XRD results 

showed that all specimens crystallised into orthorhombic, Y-123 and non-

superconducting phases such as Y-211 and BaCuO2. These additions introduced 
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different trends in grain degradation, spiral growth and nano entities within the YBCO 

matrix system. Investigations into the excess conductivity through DC resistivity 

measurements of these bulk granular specimens revealed a complete reduction in inter-

layer coupling while preserving oxygen content and grain size. Furthermore, 

superconducting transition temperatures (Tc-onset, Tc-offset), superconducting transition 

width (Tc) and inter-granular current density (Jc(0)) experienced significant 

improvements at deficient concentrations (0.0100 wt.%, 0.0375 wt.% and 0.0750 

wt.%). The Jc(0) reached peak value at 1.10 × 107 A/m2 for specimen 0.0375 wt.% with 

CaO addition, which annealed in oxygen atmosphere, 1.03 × 107 A/m2 for specimen 

0.0375 wt.% with CHI  addition annealed in ambient, and 9.41 × 106 A/m2 for specimen 

0.0100 wt.% with CaES addition annealed in ambient. The excess conductivity of 

these granular specimens revealed a dimensional crossover from 2D to 3D fluctuation 

as the temperature decreased. This could be attributed to the presence of non-

superconducting phases (Y-211 and BaCuO2) exhibiting inhomogeneity, which 

functioned as low-resistance grain boundaries and led to an improvement of thermal 

fluctuation parameters.  It also serves as an effective superconducting connection 

between the grains.  Incorporation below 0.0375 wt.% proved suitable for achieving 

finely scaled lattice defects that can act as effective pinning centres, dominating the 

3D regime of thermal fluctuation, reducing flux motion and improving Jc(0).  This 

project underlines the potential of a sustainable approach involving incorporating low-

concentration organic polymer (CHI), CaO and Ca compound. 

Keywords: Critical current density, excess conductivity, intra-granular, 

superconducting parameters, thermal fluctuation 

SDG: GOAL 7: Affordable and clean energy, GOAL 11: Sustainable Cities and 

Communities 
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Baru-baru ini, kemajuan ketara telah dicapai dalam pembangunan superkonduktor 

pukal berkualiti tinggi menggunakan bahan nadir bumi, khususnya YBa2Cu3O7-δ 

(YBCO / Y-123), untuk aplikasi yang berpotensi. Namun, bahan-bahan ini sering 

menghadapi cabaran kelakuan pautan lemah akibat kecacatan seperti 

ketidakkonsistenan struktur, liang-liang, lompang, dan fasa bukan superkonduktor 

pada sempadan butiran, yang membawa kepada ketumpatan arus kritikal (Jc) yang 

rendah. Projek ini bertujuan untuk memahami interaksi kompleks antara 

ketidakseragaman, fasa bukan superkonduktor, dan fluktuasi termodinamik parameter 

superkonduktor semasa peralihan superkonduktor. Penyelidikan ini melibatkan 

penggabungan pelbagai kepekatan rendah (0.0100 wt.% ≤ x ≤ 0.6000 wt.%) kitosan 

(CHI), CaO dan sebatian kalsium (CaO, CaCO3, dan Ca(OH)2) yang diekstrak dari 

kulit telur ayam (CaES) ke dalam matriks YBCO melalui kaedah rawatan haba yang 

disepuh di bawah atmosfera oksigen dan persekitaran. Keputusan XRD menunjukkan 

bahawa semua spesimen mengkristal menjadi ortorombik, Y-123 dan fasa bukan 
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superkonduktor seperti Y-211 dan BaCuO2. Penambahan ini memperkenalkan 

pelbagai trend dalam degradasi butiran, pertumbuhan spiral dan entiti nano dalam 

sistem matriks YBCO. Kajian mengenai konduktiviti lebihan melalui pengukuran 

rintangan DC pada spesimen granular pukal ini mendedahkan pengurangan 

sepenuhnya dalam penyambungan antara lapisan sambil mengekalkan kandungan 

oksigen dan saiz butiran. Selain itu, suhu peralihan superkonduktor (Tc-onset, Tc-offset), 

lebar peralihan superkonduktor (ΔTc) dan ketumpatan arus antara butiran (Jc(0)) 

mengalami peningkatan ketara pada kepekatan rendah (0.0100 wt.%, 0.0375 wt.% dan 

0.0750 wt.%). Jc(0) mencapai nilai puncak pada 1.10 × 107 A/m2 untuk spesimen 

0.0375 wt.% dengan penambahan CaO, yang disepuh dalam atmosfera oksigen, 1.03 

× 107 A/m2 untuk spesimen 0.0375 wt.% dengan penambahan CHI yang disepuh 

dalam persekitaran, dan 9.41 × 106 A/m2 untuk spesimen 0.0100 wt.% dengan 

penambahan CaES yang disepuh dalam persekitaran. Konduktiviti lebihan spesimen 

granular ini mendedahkan perubahan dimensi dari fluktuasi 2D ke 3D apabila suhu 

menurun. Ini boleh dikaitkan dengan kehadiran fasa bukan superkonduktor yang 

menunjukkan ketidakseragaman, yang berfungsi sebagai sempadan butiran rintangan 

rendah dan membawa kepada peningkatan parameter fluktuasi termal. Ia juga 

berfungsi sebagai sambungan superkonduktor yang efektif antara butiran. 

Penggabungan di bawah 0.0375 wt.% terbukti sesuai untuk mencapai kecacatan kekisi 

berskala halus yang boleh bertindak sebagai pusat pinning yang efektif, mendominasi 

rejim 3D fluktuasi termal, mengurangkan pergerakan fluks dan meningkatkan Jc(0). 

Projek ini menekankan potensi pendekatan lestari yang melibatkan penggabungan 

polimer organik kepekatan rendah (CHI), CaO dan sebatian kalsium. 

 

 

Kata Kunci: Fluktuasi termal, dalam butiran, kekonduksian berlebihan, ketumpatan 

arus kritikal, parameter superkonduktor 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter introduces the fundamental aspects of superconductivity, elucidating 

some elementary theories associated with it. It further delineates the research's 

problem statement and objectives, delving into its innovative and commercial value. 

Additionally, it discusses the potential applications of high-temperature 

superconductors (HTS) materials and addresses global issues amid HTS technology 

development. This chapter concludes with a brief preview of the thesis and a summary 

of the research conducted in this project. 

 

1.1  Basic Phenomena of Superconductors 

 

Superconductivity refers to the complete absence of electrical resistance and the ability 

to repel magnetic fields in specific materials once they're cooled below a critical 

temperature. Dutch physicist Heike Kamerlingh Onnes unearthed this phenomenon in 

Leiden on April 8, 1911. Much like ferromagnetism and atomic spectral lines, 

superconductivity is a phenomenon rooted in quantum mechanics. His groundbreaking 

revelation was that as the mercury (Hg) temperature decreased, its resistance didn't 

decrease gradually; instead, it abruptly plummeted to zero at approximately 4.2 K 

(Owens et al., 2002; Van et al., 2010). Similar behaviour was observed in other 

elements like Pb, Sn, and Al, with critical temperatures ranging between 4 to 10 K.  

Figure 1.1 shows a plot of Onnes’s original resistance measurements, the first 
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observation of superconductivity. Resistance drops sharply over a very narrow 

temperature range, from 0.11 ohm at 4.22 K to 0.00001 ohm (10 - 5 ohm) at 4.19 K.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The temperature-dependent behaviour of mercury's resistance 

illustrates its gradual disappearance as it transitions into a superconducting state 

(Van et al., 2010) 

 

 

 

Although Onnes received the Nobel Prize in 1913 for his achievement in helium 

liquefaction, his discovery of superconductivity needs to be specifically honored. The 

total repulsion of a magnetic field by a superconducting sample below its transition 

temperature (Tc) is termed the "Meissner effect," exhibiting perfect diamagnetism 

(Figure 1.2). The discovery of superconductors property was credited to Meissner and 

Ochsenfeld in 1933. The Meissner effect describes the complete expulsion of magnetic 

field lines from within a superconductor during its transition to the superconducting 

state. This effect signifies that superconductivity isn't just an ideal form of perfect 

conductivity in classical physics. While the electrical resistivity of a metallic conductor 

gradually decreases with lowering temperature, impurities and defects limit this 

decrease in materials like copper or silver. Even at temperatures near absolute zero, 
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these normal conductors maintain some resistance. In contrast, resistance suddenly 

vanishes in a superconductor when the material is cooled below its critical 

temperature. In a superconducting loop, an electric current can flow continuously 

without the need for an external power source. Perfect diamagnetism observed in 

superconductors clearly indicates the true thermodynamic nature of superconductivity. 

When a material transitions from its normal to the superconducting state, it undergoes 

a significant thermodynamic phase transition. This shift marks a fundamental change 

in the material's behaviour and properties. 

Figure 1.2: Depicting the manifestation of perfect diamagnetism in 

superconductors (Meissner effect, 2023)  

In 1987, at the University of Houston, Paul Chu and his students discovered the first 

ceramic material with a transition temperature more significant than the boiling point 

of liquid nitrogen at 77 K, i.e. YBCO or Y-123. It was discovered that some cuprate-

perovskite ceramic materials have a critical temperature above 90 K (- 183 °C). Such 

a high transition temperature is theoretically impossible for a conventional 

superconductor, leading the materials to be termed high-temperature superconductors. 

B B

T > Tc T < Tc
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1.2 Types of Superconductors 

 

Superconductors can be classified according to their reaction to an externally applied 

magnetic field, with categorisation dependent on their diamagnetic response: 

(i) Type I Superconductors 

(ii) Type II Superconductors 

 

1.2.1  Type I Superconductors  

 

Superconductors of type I, known as soft and pure superconductors, exhibit a rapid 

breakdown of their smaller magnetic fields, H values, even when exposed to relatively 

weak external magnetic fields. In type I superconductors, superconductivity undergoes 

an abrupt termination through a first-order phase transition when the intensity of the 

applied field exceeds a critical value, Hc (Owens et al., 2002). This type of 

superconductivity is commonly seen in pure metals like aluminium, lead, mercury, and 

others. Figure 1.3 demonstrates the correlation between the internal magnetic field 

within the material and the external field. In type I superconductors, the external 

magnetic field is kept out of the material until it reaches the critical field (Hc). Once 

this threshold is surpassed, the superconducting state is disrupted, enabling the 

complete penetration of the applied field into the material. Their transitions are sharply 

defined, with resistance plummeting to zero within a narrow temperature range, as 

depicted in the case of mercury in Figure 1.1. Due to their lower values of Hc and Tc, 

type I superconductors lack significant practical applications. 
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Figure 1.3: The relationship between the internal magnetic field of the material 

and the external magnetic field for type I superconductor (Owens et al., 2002) 

 

 
 

1.2.2  Type II Superconductors  

 

Since approximately 1962, there has been a widespread acknowledgement of a distinct 

category of superconductors known as type II superconductors (Goodman, 1966). 

They are distinguished by their display of a novel form of reversible magnetic 

behaviour. This revelation has provided insight into various superconducting 

properties of numerous elements and a wide array of previously ununderstood alloys. 

It is essential to highlight that type II encompasses all chemical compounds and alloys, 

whereas type I superconductivity excludes elements. 

 

 

A type II superconductor is distinguished by the emergence of magnetic vortices when 

subjected to an applied magnetic field, occurring above a certain critical field strength, 

Hc1 (Owens et al., 2002). The density of these vortices increases proportionally with 

the rising field strength. Superconductivity is entirely disrupted at a higher critical 

field, Hc2, as depicted in Figure 1.4. In this type, magnetic field penetration begins at 

a lower critical field, Hc1, and progresses with increasing applied field until reaching 
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the upper critical field, Hc2, leading to the loss of the superconducting state across the 

entire material. In regions where the applied field is below Hc1 and no flux penetrates, 

the material is in what is known as the Meissner state. Between the two critical fields, 

Hc1 and Hc2, a mixed state exists with sections of non-superconducting (i.e., normal) 

material interspersed within a perfectly superconducting matrix. Below Hc1, type II 

behaves similarly to type I; above Hc2, it reverts to a normal state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: The relationship between the internal magnetic field of the material 

and the external magnetic field for type II superconductor (Owens et al., 2002) 

 

 

 

1.2.3  High-temperature Superconductors (HTS) 

 

The real breakthrough in High-Temperature Superconductors (HTS), also known as 

High Tc superconductors, commenced in 1987 at the IBM research laboratory in 

Zurich, Switzerland, courtesy of Bednorz and Müller. A novel type of lanthanum 

copper oxides (LaBaCuO) compound was revealed, exhibiting superconductivity up 

to 35 K. This surpassed the theoretical forecast made two decades earlier, which had 

predicted 30 K. (Bednorz et al., 1986). Subsequently, this initial discovery of cuprates 

received the Nobel Prize in Physics a year later. This groundbreaking revelation 
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sparked immense interest among researchers worldwide, encouraging intensified 

exploration of various chemical compounds in the realm of HTS due to their 

significantly enhanced superconducting properties (Cava et al., 1987). 

 

During the initial months of 1987, research teams from the University of Alabama and 

Houston, led by M. K. Wu and P. W. Chu, discovered superconductivity in 

YBa2Cu3O7- (YBCO) at 92 K, which notably exceeded the boiling point of liquid 

nitrogen at 77 K (Ching Wu Chu, 1988). Following the revelation of superconductivity 

in cuprates, laboratories worldwide initiated an intense pursuit aimed at raising the 

transition temperature beyond the boiling point of liquid nitrogen (77 K), achieved 

through the discovery of YBCO. This marked the first instance of a superconductor 

with Tc > 77K, reaching up to 130K in mercury-based compounds under pressure. The 

advent of YBCO's discovery sparked a significant surge in research endeavors. Its role 

in the HTS system became pivotal. It was recognised as the first to exhibit 

superconductivity above the boiling point of liquid nitrogen, a notably more cost-

effective and manageable alternative to the expensive and challenging liquid helium. 

The system's granular nature and the material's intriguing behaviour, even at room 

temperature, became a focal point for researchers. 

 

1.3  Research Innovation  

 

This research delves into the thermodynamic fluctuations of the YBCO system, which 

play a crucial role in its fundamental properties. It involves analyzing excess 

conductivity, providing detailed insights into the transition to the superconducting 

state from temperatures well above Tc. This enables the exploration of fluctuations in 
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superconducting Cooper pairs across a wide temperature range beyond Tc, allowing 

for experimental access to several microscopic properties of high-temperature 

superconducting materials. Moreover, the research emphasizes a sustainable method 

by incorporating environmentally friendly organic polymers, such as chitosan obtained 

from marine waste, and calcium compounds extracted from chicken eggshells, into the 

YBCO system through a green synthesis thermal treatment approach. This process is 

conducted entirely in an oxygen atmosphere and under ambient conditions, resulting 

in improved superconducting properties. This research marks a notable technological 

progression by integrating renewable energy sources into the fabrication of high-

temperature superconductors. This not only caters to the demands of environmentally 

conscious high-field technological applications but also aids in tackling the global 

issue of waste management. 

 

1.4  Problem Statement 

 

The challenge lies in enhancing the quality of Y-123 systems by addressing issues such 

as reduced conductivity at grain boundaries and weak flux pinning within the 

compound. Weak link behavior in Y-123 is attributed to structural inhomogeneities 

and the presence of non-superconducting phases at grain boundaries, impacting inter-

grain connectivity. Weak inter-grain links and limited flux pinning capability 

contribute to lower critical current density (Jc) values in bulk specimens, primarily due 

to these weak links. Additionally, Y-123 exhibits reduced anisotropy and relatively 

lower transition temperature (Tc), which affects the width of the transition temperature 

(Tc and Tc
MF-offset), and its ability to sustain a significant Jc. Efforts to improve Tc 

and Tc
MF-offset, or Jc have focused on introducing artificial pinning centers (APCs) 
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such as alkali earth metal (Calcium) into the copper oxide system (Feighan et al., 2017; 

Murakami et al., 1989). Overcoming these challenges and achieving significant 

superconducting properties depends on controlling the macrostructure and 

microstructure of bulk samples, which affect the electrical properties within and 

between grains of the superconducting material. The optimal microstructure size for 

an effective trapping center depends on its preparation, growth mechanism, and 

intentional creation of well-connected defects during the growth process. Despite 

numerous efforts, understanding the mechanism behind Y-123 and its superconducting 

properties remains elusive. Research focusing on investigating thermodynamic 

fluctuations, specifically the excess conductivity above Tc, continues to be a key area 

in high-temperature superconductors (HTS) research. This aims to uncover the precise 

mechanism governing superconductivity through intra-grain and inter-grain properties 

of these materials. Excess conductivity, identified as the deviation from the linear 

relationship between resistance and temperature above Tc in HTS, has been linked to 

fluctuations in the superconducting order parameter (Ghorbani et al., 2014). Studying 

excess conductivity resulting from thermodynamic fluctuations provides valuable 

insights into fundamental aspects, including a deeper understanding of intrinsic 

superconducting characteristics (internal defects in the structure), the dimensionality 

of HTS systems, as well as extrinsic properties of the specimens such as grain 

morphology and grain coupling (Slimani et al., 2024). 

 

1.5  Objectives of Research  

 

The main goal of this project is to investigate the unique effects of thermal fluctuation 

and excess conductivity properties resulting from the addition of different 
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concentrations of chitosan derived from marine waste, commercially sourced CaO, 

and Ca-based compounds extracted from chicken eggshells (ranging from 

concentrations, x = 0.0000 wt.% to 0.6000 wt.%) into YBa2Cu3O7-y specimens using 

a green approach thermal treatment method. 

 

This main objective can be divided as follows:  

i. To optimize the phase formation of (YBCO)1-x(chitosan)x, (YBCO)1-x(CaO)x, 

and (YBCO)1-x(Ca compounds)x  prepared using thermal treatment method.  

ii. To investigate the superconducting properties resulting from thermodynamic 

fluctuations, especially focusing on the excess conductivity properties of (YBCO)1-

x(chitosan)x, (YBCO)1-x(CaO)x, and (YBCO)1-x(Ca compounds)x.  

iii. To establish the structural relationship between microstructure morphology 

and the conductivity induced by thermodynamic fluctuations in the specimens. 

 

1.6  Motivation for Incorporating Chitosan (Waste Marine Extraction), CaO, 

and Ca Compounds (Chicken Eggshells Extraction) into YBCO System  

 

 

 

The rapid growth of industries and population has led to the creation and lasting 

presence of diverse inorganic and organic pollutants, posing potential hazards to both 

the environment and human well-being. Mitigating these pollutants from 

environmental sources like air, water, and soil has become a critical global challenge, 

prompting the development of various nanotechnologies and nanostructured materials 

for effective environmental cleanup. The contrast between global waste disposal 

challenges and the advancement of high-field technology leads to varied perspectives 

in research as follows: 
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➢ Environmental Impact: Some argue that while high-field technology 

advancements are beneficial, they also generate electronic waste and 

byproducts, contributing to the pressing issue of waste disposal and posing 

environmental risks if not managed properly. 

➢ Technological Innovation: Advocates of high-field technology development 

highlight its crucial role in scientific, medical, and industrial advancements. 

Prioritizing technological progress can spur innovation and contribute to 

solving environmental issues through more efficient waste management 

technologies, as suggested. 

➢ Sustainability Concerns: Critics emphasize that the rapid evolution of high-

field technology might outpace sustainable waste disposal solutions. There is 

a stress on the need for concurrent research and investment in sustainable 

materials, recycling, and waste management strategies to counterbalance the 

environmental impact of technological advancement. 

 

The motivation behind incorporating chitosan extracted from marine waste and 

calcium compounds from eggshells into the YBCO system for this study stems from 

their environmental advantages and unique properties. These materials are 

biodegradable, have a minimal environmental impact, and offer potential for waste 

reduction. They also exhibit properties that can enhance YBCO superconductors, such 

as acting as effective pinning centers or improving the material's microstructure. 

Previous research has shown their effectiveness in similar applications (Aranaz et al., 

2021; Awana et al., 1994; Guth et al., 2001; Hammerl et al., 2000; Jampafuang et al., 

2019; Khoerunnisa et al., 2023; Khoerunnisa et al., 2021; Kucera et al., 1995; Mohan 

et al., 2007; Swethavinayagam et al., 2019), highlighting the importance of sustainable 
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materials and environmentally friendly practices in high-field technology 

development. Commercially sourced CaO is also added to the YBCO system as a 

benchmark for comparing the effectiveness of the calcium compounds derived from 

chicken eggshells.  

 

These different opinions show how tricky it is to balance progress with dealing with 

global waste. The goal of research here is to improve technology while keeping waste 

under control and being kind to the environment. Superconducting Magnetic Energy 

Storage (SMES) systems are an example of this. They're eco-friendly, not needing to 

burn carbon or disrupt the environment with things like building dams. But the strong 

magnetic fields they produce need safety measures. SMES systems are great for tasks 

needing lots of energy quickly, like defense lasers. They're really efficient, losing only 

a bit of energy when converting from DC to AC and during cooling (Abd-Shukor, 

2004). 

 

1.7  Research Impact on Society, Economy and Nation 

 

This substance has the potential to boost energy efficiency, establish cost-effective 

safety measures for various energy storage systems in Malaysia, and cut down 

maintenance costs for hospital Magnetic Resonance Imaging (MRI) systems 

nationwide. The research also elevates intellectual and industrial contributions by 

investigating the superconducting properties using an eco-friendly approach to 

produce bulk Rear-earth Barium Copper Oxide (REBCO). The development and 

fabrication process of bulk REBCO via an innovative thermal treatment method have 
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demonstrated enhanced superconducting properties for large-scale industrial 

applications in manufacturing bulk REBCO. 

1.8 Potential Applications for High-Temperature Superconductors 

Understanding the superconducting properties of cuprate oxide superconductors 

continues to pose a complex challenge. Yet, substantial progress has been made in 

leveraging their practical uses, largely owing to advancements in materials science and 

processing. These materials have gained recognition for their significance in high-field 

applications, finding use in superconducting bearings, flywheel energy storage 

systems, and large-scale bulk superconducting magnets. 

In the past twenty years, significant advancements have emerged in the physics of 

superconductivity, primarily driven by the discovery and extensive exploration of 

HTS. These novel materials have unveiled promising potential for diverse applications 

in advanced technologies and high-field applications. Generally, the applications of 

HTS can be categorized into two groups: large-scale and small-scale (refer Figure 1.5). 

Moreover, Small scale applications are expected to be commercialized earlier than 

large scale applications.   

High-temperature superconductors (HTS) intended for large-scale applications must 

possess both a high Jc and the ability to endure the stresses generated by high magnetic 

fields. Large-scale applications encompass several key high-field applications (Abd-

Shukor, 2004), as outlined below: 
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✓ Medical applications: Magnetic Resonance Imaging (MRI), biotechnical 

engineering, super magnets (powerful superconducting magnet) for diagnostics 

medicine such as nuclear spin tomographs, superconducting accelerators applications, 

high field magnets 

✓ Power generation: motors, generators, flywheel energy storage system, 

transmission, fusion, transformers and inductors, power transmission cables, fusion 

confinement 

✓ Transport system and industry: magnetically levitated vehicles (MAGLEV), 

marine propulsion system, magnetic separator, kinetic launch vehicles 

Typically, small-scale applications necessitate thin films and commonly employed 

deposition techniques such as: 

✓ Electronics: Superconducting Quantum Interferences Devices (SQUIDs), 

transistors, Josephson junction devices, wires and circuitry connections, particle 

accelerators, sensors, resonators, microwave devices (filters / resonators), radiation 

detectors, magnetics field detectors, computers 

✓ Industrial: separation, magnets, sensors and transducers, magnetic shielding, 

superconducting bearings  
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Figure 1.5: The potential technological applications of High-Temperature 

Superconductors ("Superconducting chips to scale up quantum computers and boost 

supercomputers," 2021; Chu, 2023; Français, 2006; Marquis, 2016) 

 

 

 

1.9  Thesis Outlook and Overview 

 

This thesis comprises six chapters. Chapter 1 provides a succinct overview of 

superconductors and their potential applications, addressing the problem statement, 

objectives of this work, as well as the innovation and commercial value of this 

research. The chapter concludes by discussing the global issue versus the development 

of high-field technology. In Chapter 2, a review of previous studies on the Cuprates 

Family, particularly YBCO, focuses on the thermal treatment methods and dopant 

additions employed by earlier researchers. Additionally, a comprehensive review of 

the positive outcomes resulting from thermal fluctuation-induced excess conductivity 

analysis in previous research is also undertaken. Chapter 3 will intricately detail the 

theory and fundamentals of superconductivity, especially concerning YBCO. Chapter 
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4 centers on the materials and methods utilized in this study, providing detailed 

discussions on sample characterization methods such as XRD, FESEM, and DC 

resistivity measurement. Chapter 5 comprehensively analyses the results obtained 

from sample characterizations. Finally, Chapter 6 consolidates the research outcomes 

and presents recommendations for future research pursuits. 
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