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A B S T R A C T   

This work demonstrates femtosecond pulse generations in C- and L-band regimes utilizing a gamma-aluminum 
oxide/polydimethylsiloxane saturable absorber (γ-Al2O3/PDMS-SA) via mode-locking technique. The γ-Al2O3/ 
PDMS-SA has a 7.3% modulation depth and a moderate saturation intensity of 303 MW/cm2, and estimated 
damage threshold of greater than 8.49 and 3.57 GW/cm2 pumping intensities in C- and L-band wavelengths, 
respectively. In the C-band laser cavity, the generated mode-locked pulse delivered a low threshold of 28.7 mW 
and an ultrafast width of 622 fs. Meanwhile, a higher threshold of 108.6 mW and 942 fs pulse width were 
measured in the L-band laser cavity centered at 1611 nm. These demonstrations showcase a versatile feature of 
γ-Al2O3 as a light-absorbing material that generates ultrashort pulses in a wideband wavelength range, which 
could benefit future research on the metastable state of aluminum-based materials within the field of ultrafast 
photonics.   

Introduction 

Pulsed lasers, especially in the generation of ultrashort width in 
femtosecond ranges, became the focus of research after the development 
of the first fiber laser in 1980, and currently received a great deal of 
interest to fulfill the industry demands on bone tissue ablation [1], high 
precision micromachining for material processing [2], photonic-chip 
device [3] and flexible sensor [4] fabrications. These pulses can be 
generated using a mode-locking technique, in which the cavity longi-
tudinal modes are locked together through active and passive tech-
niques. The former approach is made possible by using a modulator, 
such as an electro-optic modulator that modulates the resonator losses to 
produce pulses [5]. This technique is fast, typically in nanoseconds and 
adjustable, but it has limitations such as bulky components and is 
expensive. Meanwhile, the latter technique uses a bleached saturable 
absorber (SA) by employing its nonlinear absorption characteristics to 

initiate the optical pulse. Semiconductor saturable absorber mirrors 
(SESAMs) [6], graphene [7] and carbon nanotubes [8], black phos-
phorus [9], and MXene [10] have been most extensively explored for 
their excellent features of SA and the ultrashort pulse generations. 
Recently, metal oxides such as ferroferric-oxide (Fe3O4) [11], zinc oxide 
(ZnO) [12], and magnesium oxide (MgO) [13] have attracted much 
attention as SA due to their high nonlinear optical absorption ranges 
from visible to mid-infrared wavelengths, fast recovery time and 
excellent mechanical strength [11–13]. 

Aluminum oxide (Al2O3), is another metal oxide known as poly-
morphic materials present themselves in stable α-phase and various 
metastable phases of crystalline structure [14]. The material’s durability 
under extreme conditions is evidenced from its demand in ceramics 
manufacturing [15,16], and served as a coating layer for improving 
thermal tolerance of metal’s surface [17]. One of metastable phase, 
namely gamma alumina (γ-Al2O3) possess a great deal of interest in 
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heterogenous catalysis due to its acidic feature and large surface area 
[18]. Furthermore, the adsorbing ability of γ-Al2O3 for arsenic removal 
has been demonstrated to prove that this material has superior adher-
ence towards hazardous element [19]. Aside from that, γ-Al2O3 possess 
saturable absorbing characteristics, by having nonlinear refractive index 
of 3.67 × 10− 8 cm2/W and nonlinear absorption coefficient of 6.6 ×
10− 4 cm/W, respectively, determined from a z-scan method [14]. To this 
end, the researches on Al2O3 in pulsed fiber lasers are limited to α-phase 
crystal structure for the generation of single wavelength [20,21], dual- 
wavelength [22], and tunable wavelength [23] of Q-switched pulses. 
This approach manipulates the intracavity loss and deliver microsecond 
width of optical pulses. Meanwhile, the mode-locked pulse co-existed in 
Q-switched envelope [24] and double-scale temporal profile of noise- 
like pulse [25] have been reported thereafter. Therefore, there is al-
ways a research opportunity to explore other phase of Al2O3 families for 
ultrashort pulse generation of less than picoseconds regime. 

In this paper, γ-Al2O3 was blended with the polydimethylsiloxane 
(PDMS) as a binding agent, then coated onto a tapered fiber to form a 
reliable γ-Al2O3/PDMS-SA. The SA was inserted into ring configuration 
of erbium-doped fiber lasers operating in C- and L-band regimes for 
femtosecond pulse generations. Under the C-band operation, a pulse 
width of 622 fs was obtained at 1560.86 nm central wavelength. By 
changing the erbium-doped fiber (EDF), the ultrashort pulse was ach-
ieved in the L-band regime at 1610.94 nm central wavelength with 942 
fs pulse width. The fabricated SA based on a tapered fiber has a high 
damage threshold, providing an alternative for high-power operation 
with estimated damage threshold of larger than 8.49 GW/cm2 and 3.57 
GW/cm2 input intensities for C- and L-band operations, respectively. 

These findings open infinite possibilities for future advancement of 
metastable state of aluminum-based materials within the field of ultra-
fast photonics. 

γ-Al2O3/PDMS-SA fabrication and characterizations 

The methodology of preparing γ-Al2O3/PDMS composite is pre-
sented in Fig. 1. The γ-Al2O3 powders were commercially available from 
ACS Material, LLC, USA (8–12 nm, 99%) and were directly used without 
further purification. The homogenous solution of γ-Al2O3 was prepared 
by dispersing 2 mg of γ-Al2O3 powders in 10 mL of isopropyl alcohol 
(IPA, 99.5%, Sigma Aldrich). The γ-Al2O3/IPA mixture was then soni-
cated using an ultrasonic equipment (Hielscher UP200s) with an 
amplitude of 100% and a cycle of 0.5 within 2 h. After that, the solution 
was mixed with 1 g of PDMS (Sylgard®184 silicone elastomer, pur-
chased from Dow Corning). The solution was heated afterwards under a 
stirring condition at 80 ◦C on a magnetic hotplate. Aside from that, an 
adiabatic tapered fiber with dimensions of 30 mm transition length, 0.8 
mm waist length, and 10 μm waist diameter was fabricated using a 
Vytran GPX-3400 optical processing workstation. The optical fiber used 
was single mode fiber (Corning SMF-28), heated at 50 W filament power 
and stretched according to the desired parameters as previously 
mentioned. Then, the fabricated tapered fiber was transferred on a flat 
substrate and ready for the next step of material deposition. Following 
that, a polymer hardener (0.1 g) was added into the as-prepared com-
posite material and continuously stirred for 10 min. The viscous 
γ-Al2O3/PDMS composite was treated in a vacuum condition for the 
process of air-bubble removal for 30 min. The final composite was 

Fig. 1. The methodology of γ-Al2O3/PDMS-SA fabrication.  
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dropped on the tapered fiber region, followed by spin-coating procedure 
at 4000 rotation per minute with a duration of 5 min. Finally, the 
fabricated γ-Al2O3/PDMS-SA was hardened in a laboratory environment 
for 2 days. 

Fig. 2 presents the characterization of γ-Al2O3 powders. The field 
emission scanning electron microscope (FESEM) image is illustrated in 
Fig. 2(a), characterized using a FEI Nova NanoSEM 230 with acceler-
ating voltage of 18 kV. The micrograph shows that γ-Al2O3 powders 
existed in an agglomerate cluster, whereas its elemental compositions 
are displayed in Fig. 2(b). The elemental dispersive X-ray (EDX) analysis 
shows high purity of sample; evidenced from the inset of Fig. 2(b); 
51.20% of oxygen (O) and 48.80% of aluminum (Al) elements with no 
detection of other foreign elements. Fig. 2(c) shows the X-ray diffraction 
(XRD) spectrum of γ-Al2O3, the characterization was performed using a 
Rigaku SmartLab (Cu-Kα radiation wavelength of 1.5406 Å). All the XRD 
peaks are indexed according to the database JACDS Card No: 80–1385, 
reflected to a cubic crystallographic system with a lattice parameter, a =
7.9382 Å [26]. From Fig. 2(c), the identified peaks at 19.56◦, 32.86◦, 
37.50◦, 39.32◦, 45.65◦, 60.86◦, and 67.02◦ are corresponded to (111), 
(220), (311), (222), (400), (511), and (440) planes, respectively. 
Referring to the most intense peak at 2θ = 67.02◦, the d-spacing and 
crystallite size are determined to be 1.3953 Å and 8.9 nm, correspond-
ingly. The values obtained are reflected from the hkl plane of (440), 
calculated using Scherrer’s equation. On the other hand, ultra-
violet–visible-near-infrared spectroscopy (UV–Vis-NIR, Shimadzu UV- 
3600) was performed to characterize the absorbance of γ-Al2O3 pow-
ders. Fig. 2(d) shows the absorption spectrum covering from UV to NIR 
regions, which proposes the applicability of γ-Al2O3 in photonics ap-
plications such as SA. 

Next, the optical characterizations of γ-Al2O3/PDMS-SA were carried 
out which are represented in Fig. 3. The transmission loss γ-Al2O3/ 
PDMS-SA was determined from an experimental setup consisted of a 
light source and an optical spectrum analyzer (OSA, Yokogawa 
AQ6370B), schematically presented in Fig. 3(a). The measured loss of 
γ-Al2O3/PDMS-SA was 4.7 and 4.5 dB at 1.56 and 1.61 μm, corre-
spondingly. In addition to that, the nonlinear transmission of γ-Al2O3/ 

PDMS-SA was evaluated via a twin-balanced detector measurement as 
depicted in the Fig. 3(c). The setup is comprised of a femtosecond pulse 
laser source operating at 1560 nm, 150 fs pulse width, and 60 MHz 
repetition rate. The adjustment of optical power was done by a manual 
attenuator, and an isolator was utilized to block any back-reflected 
power into the pulse source. The splitting power with equivalent ratio 
of 50% was made possible by incorporating a 50/50 optical coupler 
(OC), whereas both output ports were connected to optical power meters 
for qualitative data collection. The nonlinear transmission curve is 
portrayed in Fig. 3(d), whereby the experimental data was fitted ac-
cording to the following expression; 

T(I) = 1 − ΔT
[

exp
(

−
I

Isat

)]

− Tns  

The modulation depth (ΔT) was identified to be 7.3%, which is higher 
than the previous work (3.5%) reported by Al-Hayali et al. [20], and 
comparable to Al-nanoparticles-SA (7%) [27] as well as α-Al2O3-SA 
(6.24%) [24]. The incident intensity acquired to saturate the half of the 
SA’s modulation depth, defined as saturation intensity (Isat) was esti-
mated to be 303 MW/cm2. Aside from that, the non-saturable loss (Tns) 
resulted from the accumulated effects of unavoidable scattering effect at 
the tapered region, material/polymer concentration, imperfection of 
substrate fabrication was measured to be 63%, considerably matched 
with the loss profile in Fig. 3(b). 

Integration of γ-Al2O3/PDMS-SA into an erbium-doped fiber laser 
cavity 

Fig. 4 portrays the schematic layout of an erbium-doped fiber laser 
(EDFL) which incorporates γ-Al2O3/PDMS-SA as a pulse initiator. A 980 
nm laser diode (LD) was utilized to allow erbium ions excitation in an 
active gain medium with an 8 m long length (EDF, model Lucent 
HP980). The low concentration EDF with an absorption of 4 dB/m at 
1530 nm ensured the operational wavelength within the C-band region. 
The photons supplied from the 980 nm LD into the gain medium were 
made possible by incorporating an optical component called a 

Fig. 2. Characterizations of the γ-Al2O3 powders, (a) The FESEM image, (b) EDX spectrum, and (d) UV–Vis-NIR absorption profile.  
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wavelength division multiplexer (WDM) that covers both the pump and 
signal wavelengths of 980/1550 nm. A polarization-insensitive isolator 
(ISO) was added to force the light oscillations in one direction. There-
after, the γ-Al2O3/PDMS-SA was inserted following the amplifying sec-
tion, whereas a piece of OC with a splitting ratio of 80/20 was utilized to 
divide the optical signal into two different directions; the large power 
ratio was directed to the amplifying section of the laser resonator 
through a three-paddle polarization controller. Meanwhile, the small 
power ratio was connected to the equipment for pulse performance 
evaluations, data collection and analysis, and troubleshooting purposes. 
The equipment used in the experiment were an optical spectrum 
analyzer (OSA, Yokogawa AQ6370B), an oscilloscope (Tektronix TDS 
3012C), an electrical spectrum analyzer (GW Instek GSP-830), an 
autocorrelator (APE PulseCheck 150), and an optical power meter 
(OPM, Thorlabs PM100D and S148C thermal sensor). 

In the L-band laser cavity, the optical components arrangement was 
maintained, while the previous mentioned EDF in the C-band laser 

configuration was changed to a new EDF with 7 m length (Liekki Er80- 
4/125). It is known that the L-band has a lower gain coefficient in 
contrast to the C-band. Incorporating the highly-doped EDF with 80 dB/ 
m absorption at 1530 nm facilitated the laser emission in the L-band 
region. An additional SMF-28 of 11 m length was added into the L-band 
laser cavity, mainly to optimize the laser cavity dispersion and stabilize 
the pulse output. The total cavity length for C- and L-bands were 20.2 m 
and 31.8 m, respectively. The dispersion coefficient (β2) and group ve-
locity dispersion (GVD) for each fiber in the C- and L-bands laser cavities 
are summarized in Table 1. 

The net GVD for C- and L-bands were approximated to be − 0.0694 
and − 0.296 ps2, respectively, affirming net anomalous dispersion 
characteristics of laser cavities. 

Results 

C-band mode-locked operation 

In this experiment, there was no mode-locking operated in the laser 
cavity without the presence of γ-Al2O3/PDMS-SA. Upon the placement 
of the γ-Al2O3/PDMS-SA into the C-band laser cavity, a narrow 

Fig. 3. Optical characterizations of γ-Al2O3/PDMS-SA; (a) experimental setup of loss characterization, (b) the transmission loss profile, (b) the experimental setup of 
twin-balanced detector setup, and (c) the nonlinear transmission curve γ-Al2O3/PDMS-SA. 

Fig. 4. Experimental setup of the EDFL based on γ-Al2O3/PDMS-SA.  

Table 1 
Calculation of net GVD for each optical fiber used in C- and L-band setups.  

Laser cavity Fiber type Length (m) β2(ps2/km) Net GVD (ps2) 

C-band SMF-28  11.2  –22.0  − 0.246 
Hi-1060  1.0  − 7.0  − 0.007 
EDF  8.0  +23.0  +0.184  
Total  20.2   − 0.0694  

L-band SMF-28  23.8  –22.0  − 0.524 
Hi-1060  1.0  − 7.0  − 0.007 
EDF  7.0  +33.6  +0.235  
Total  31.8   − 0.296  
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linewidth of continuous-wave (CW) laser emission was firstly observed 
at 13.8 mW, and emerged to a mode-locked operation at 28.7 mW pump 
power as presented in Fig. 5(a). The appearance of Kelly sidebands in the 
optical domain validated anomalous dispersion operational laser cavity 
in the C-band region. At 260 mW pump power, the soliton optical 
spectrum centered at 1560.86 nm with 5.21 nm spectral bandwidth, as 
displayed in a green line of Fig. 5(a). 

In Fig. 5(b), the generated pulse portrayed a full width at half 
maximum (FWHM) of 0.96 ps, reflecting a sech2 shape profile of 622 fs. 
From these pulse properties, the time bandwidth product (TBP) was 
determined to be 0.398. As the transform limited soliton pulse of sech2 

profile has the TBP value of 0.315, the obtained pulse in the C-band 
regime was determined to be slightly chirped. Fig. 5(c) illustrates a well- 
defined mode-locked pulses with 95 ns spacing, representing 20.2 m 
cavity length and 10.47 MHz repetition rate. Besides that, the RF spec-
trum shown in Fig. 5(d) exhibits a signal-to-noise ratio (SNR) of 58.9 dB 
at the fundamental repetition rate, while no abnormalities were detected 
across 100 MHz frequency span. Aside from that, the linear progression 
of output power and pulse energy are summarized in Fig. 6, whereby up 
to 11.23 mW and 1.07 nJ were attained at 260.0 mW pump power. 

The output spectrum and autocorrelation trace were recorded every 
3 min for a duration of 200 min are demonstrated in Fig. 7. Besides that, 
the 3-dB bandwidth, central wavelength, pulse width and TBP that 
correspond to the recorded data are compiled in Fig. 9(b) and (d), 
respectively. There were no significant changes of spectra or any shifts 
recorded in both optical and temporal domains. The average values of 3- 
dB bandwidth, central wavelength, TBP and pulse width were 5.24 ±
0.03 nm, 1560.84 ± 0.01 nm, 0.403 ± 0.003 and 624 ± 1 fs, corre-
spondingly. The small deviations affirmed a good stability of C-band 
operation with γ-Al2O3/PDMS-SA. 

L-band mode-locked operation 

For an L-band laser scheme, the first emission of CW regime was 
observed when the 980 nm LD was set at 72.8 mW. By increasing the 
pump power to 108.6 mW, the initial soliton pulse emission with Kelly 
sidebands was recorded as depicted in Fig. 8(a). At 260.0 mW pump 
power, the measured central wavelength and spectral bandwidth were 
1610.94 and 4.11 nm, respectively. Meanwhile, the generated pulse 
plotted in Fig. 8(b) had 1.454 ps FWHM, and real pulse width was 
calculated to be 942 fs, assuming a sech2 pulse profile. Therefore, the 
TBP was calculated to be 0.45, significantly higher degree of chirping 

Fig. 5. Characteristics of C-band mode-locked fiber laser, (a) optical spectra at different pump powers, (b) autocorrelation trace, (c) oscilloscope trace, and (d) 
RF spectrum. 

Fig. 6. Output power and pulse energy against the pump power of C-band 
mode-locked fiber laser. 
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Fig. 7. Stability evaluation of C-band mode-locked fiber laser over 200 min, (a) optical spectra, (b) 3-dB bandwidth and central wavelength, (c) autocorrelation 
traces, and (d) TBP and pulse width. 

Fig. 8. Characteristics of L-band mode-locked fiber laser, (a) optical spectra at different pump powers, (b) autocorrelation trace, (c) oscilloscope trace, and (d) 
RF spectrum. 
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compared to its C-band pulse counterpart. Fig. 8(c) depicts the pulse 
train of 150 ns round-trip time, which is related to 6.47 MHz repetition 
rate and 31.8 m cavity length. The RF trace was captured for 100 MHz 
frequency span, as plotted in Fig. 8(d). At 6.47 MHz repetition rate, the 
result showed 58.10 dB SNR, implying a considerable stable operation of 
generated mode-locked pulse in the L-band fiber laser cavity. Besides 
that, the output power and pulse energy reached 4.65 mW and 0.71 nJ, 
respectively, at maximum pump power as shown in Fig. 9. 

The stability assessment of L-band mode-locked operation was per-
formed using similar procedure conducted in the C-band operation 
previously. The spectral outputs over 200 min are presented in Fig. 10 
(a), whereas the analyses plotted in Fig. 10(b) revealed the central 
wavelength of 1610.28 ± 0.01 nm and spectral bandwidth of 3.80 ±
0.01 nm. On the other hand, autocorrelation traces of sech2 pulse profile 
are depicted in Fig. 10(c), having insignificant drift in pulse width and 
TBP with the values of 955 ± 2 fs and 0.420 ± 0.002, respectively. 
Therefore, from these observations, it can be concluded that the L-band 
mode-locked operation had stable operation throughout the experiment. 

Discussion 

Table 2 summarizes past works of metal oxides functioned as SA 
material for ultrashort pulse generation in the region of C-band wave-
lengths. Besides the material’s capability of absorbing light, the main 
factor that influences the nonlinear properties of SA is fabrication 
method; namely, SA template used, the embedding procedure of mate-
rial onto SA template of either with or without polymer matrix, and 
concentration of material in polymer matrix. A sandwich-type based 
fiber ferrule approach of material/polymer composite is very popular in 
the past [28–33]. To prepare the SA using this route, several polymers 
were previously incorporated, namely polyethylene glycol (PEG) [34], 
polyethylene oxide (PEO) [28,32] and polyvinyl alcohol (PVA) [29–33]. 
For instance, Sadeq et al. [29] fabricated 20 μm thickness of copper 
oxide (CuO)/PVA composite from a mass ratio of 5 mg CuO: 1 g PVA, 
demonstrating the SA with 3.5% ΔT. Increasing the thickness and ma-
terial’s concentration in polymer matrix, higher ΔT of 13.0% was ach-
ieved by Co3O4/PVA-SA [30]. By utilizing an identical mass ratio of 
material and polymer (50 mg: 1 g), Y2O3/PVA-SA had higher ΔT 
(38.0%) [33] over Lu2O3/PVA-SA (10.0%) [31]. Guided by the non- 
saturable loss of both SAs, Y2O3 is stipulated to have higher absorbing 
property in the NIR region as compared to Lu2O3. Meanwhile, up to 
39.0% ΔT was attained with 180 μm thickness by nickel oxide (NiO)/ 
PEO-SA [32]. However, it must be emphasized that both aforemen-
tioned factors need to be carefully adjusted to avoid high Tns of the SA, 
which negatively impact the overall performance of the fiber laser sys-
tem. This circumstance was also applicable for the polymer composite- 
based tapered fiber SA, as reported in Ref. [35] and this work. 

Aside from that, the direct materials deposition onto SA templates 
have also been investigated; namely drop-casting, optical deposition, 
and magnetron sputtering techniques. As the material attachment of 
drop-casting method is in a random manner, the reproducibility of this 
method is rather challenging. This is evidenced from the work reported 
by Wang et al., in which vanadium dioxide (VO2) solution was dropped 
casted onto a D-shaped fiber with the lowest ΔT of 3.0% [36]. In addi-
tion to that, the low ΔT was also influenced by the remaining depth of 
the polished region of D-shaped fiber [36]. Inversely, the optical depo-
sition and magnetron sputtering methods offer alternatives to increase 
the success rate of the SA fabrication and improved the SA properties. 
These are well-demonstrated by the optically deposited methylene blue 
loaded reduced titanium dioxide (TiO2-x-MB) and magnetron-sputtered 
chromium oxide (Cr2O3) onto tapered fibers with measured ΔT of 
7.1% [37] and 12.5% [38], respectively. Overall, the measured ΔT of 
the γ-Al2O3/PDMS-SA was 7.3%, which was comparable to Ref. [28,37], 
larger than Ref. [29,35,36], and smaller than Ref. [30–33,38]. Mean-
while, our γ-Al2O3/PDMS-SA permitted significantly large Tns except in 
Ref. [30,38]. 

The critical pulse properties such as mode-locked threshold power, 
pulse width, output power, repetition rate and pulse energy are also 
dependent on the laser cavity parameters. In the C-band laser operation, 
an ultrashort pulse of 334 fs was recorded by Cr2O3-SA, achieved by the 
shortest cavity length that corresponded to 34.48 MHz repetition rate 
[38]. By using a slightly longer cavity length with 22.91 MHz repetition 
rate, Wang et al. observed slow pulse width of 1.29 ps with their D- 
shaped fiber based VO2-SA [36]. In addition to that, the asymmetrical 
architecture of this SA negatively impacted the pulse performances due 
to its susceptibility towards different polarization angles. Therefore, a 
deliberate adjustment of PC was necessary to start the mode-locked 
operation as the fabricated VO2-SA was unable to self-start. Besides 
that, a fair comparison can be made between this work and NiO/PDMS- 
SA [35] due to its comparable Tns. Aziz et al. [35] extracted higher 
percentage of intracavity power for analysis as compared to this work 
(30% vs. 20%). Therefore, slightly higher pump power is required to 
compensate the intracavity loss and achieve mode-locked operation in 
Ref. [35]. This is also resulted in lower output power of 7.14 mW in 
Ref. [35] as compared to this work (11.23 mW). Aside from that, 
although vanadium pentoxide (V2O5)/PEO-SA possess lower Tns as 
compared to our γ-Al2O3/PDMS-SA, Nady et al. observed the mode- 
locked operation at significantly higher pump power (80.0 mW) due 
to the longer length of the laser cavity [28]. Nevertheless, the low 
repetition rate of 1.0 MHz cavity accumulated intracavity pulse energy, 
which well-translated to 4.44 nJ output pulse energy extracted from 
20% output coupler [28]. This approach also had been practiced in 
several other works [29,31–33]. From the literatures in Table 2, the 
highest pulse energy of 25.80 nJ was achieved by Y2O3/PVA-SA at the 
expense of slowest pulse width of 4150 fs [33]. Overall, this work 
demonstrated the lowest mode-locking threshold and an ultrafast pulse 
width as opposed to other works [28–33,35–38], highest output power 
of 11.23 mW, which is comparable to Ref. [30], and slightly lower than 
Ref. [33], as well as moderate pulse energy of 1.07 nJ operating in the C- 
band region. 

Table 3 tabulates the reported works on metal oxides as a SA 
generating L-band soliton pulse centered in between 1565.40 to 
1610.94 nm wavelengths. The ZnO/PVA-SA in Ref. [39] was reported to 
initiate mode-locked operation at very low pump power of 42.0 mW. 
The switching mode from continuous to mode-locked pulse regime is 
mainly ascribed by the intracavity pulse energy. However, the stable 
mode-locked operation was limited to 159 mW pump power, as it 
became unstable beyond this power level [39]. Other than that, Wang 
et al. reported that the Fe3O4 deposited tilted fiber grating (TFG)-SA in 
the L-band cavity experienced pulse splitting effect beyond 200 mW 
pump power [41]. Meanwhile, the mode-locked operations demon-
strated by holmium oxide (H2O3)/PVA-SA [40] and V2O5/PEG-SA [34] 
were reverted back to CW emissions beyond 180 mW and 107 mW, 

Fig. 9. Output power and pulse energy against the pump power of L-band 
mode-locked fiber laser. 
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correspondingly. The oversaturation or slight damage to the SA device 
might be the main cause of these observations. Inversely, this work 
sustained the mode-locked operation until 260 mW pump power and 
remained stable during observation period without any CW break-
through, pulse splitting effect or any sign of damage to the SA. 

In other perspectives, Al-Hiti et al. integrated H2O3/PVA-SA into a 

9.01 MHz laser cavity, delivering an ultrafast width of 650 fs and high 
output power of 17.10 mW, despite of very small output power extrac-
tion (5%). With comparable repetition rate, Baharom and co-workers 
reported a mode-locked operation utilizing V2O5/PEG-SA centered at 
near edge of L-band region (1596 nm) with slower pulse width of 1.4 ps 
[34]. This is stipulated to the lower rate of population inversion and 

Fig.10. Stability evaluation of L-band mode-locked fiber laser over 200 min, (a) optical spectrum, (b) 3-dB bandwidth and central wavelength, (c) autocorrelation 
trace, and (d) TBP and pulse width. 

Table 2 
Review of mode-locked fiber laser for different metal oxides in C-band region.  

Material SA template ΔT(%) Tns (%) Power range (mW) τpulse(fs) Pavg (mW) frep (MHz) Ep (nJ) Ref. 

V2O5/PEO FF  7.0  49.0 80.0–107.0 3140 4.72  1.00 4.44 [28] 
CuO/PVA FF  3.5  3.7 65.0–159.0 1700 1.27  0.98 1.29 [29] 
Co3O4/PVA FF  13.0  67.8 110.0–220.0 1240 11.72  5.68 1.99 [30] 
Lu2O3/PVA FF  10.0  58.0 145.0–187.0 2120 7.42  0.97 7.64 [31] 
NiO/PEO FF  39.0  49.0 100.0–165.0 950 1.09  0.96 1.14 [32] 
Y2O3/PVA FF  38.0  52.0 175.9–228.0 4150 25.48  1.01 25.80 [33] 
VO2 DSF  3.0  56.7 79.0–365.0 1280 7.83  22.91 0.34 [36] 
TiO2-x-MB TF  7.1  51.9 40.0 978 − 9.93 − [37] 
Cr2O3 TF  12.5  67.5 580.0 334 − 34.48 − [38] 
NiO/PDMS TF  4.0  61.5 50.0–250.0 793 7.14  8.07 0.89 [35] 
γ-Al2O3/PDMS TF  7.3  63.0 28.7–260.0 622 11.23  10.47 1.07 This work 

*Note: FF: Fiber ferrule, DSF: D-shaped fiber, TF: tapered fiber, τpulse: pulse width, Pavg: Average output power, frep: repetition rate, Ep: pulse energy. 

Table 3 
Review of mode-locked fiber laser for different metal oxides in L-band region.  

Material SA template λc (nm) Power range (mW) τpulse (fs) Pavg (mW) frep (MHz) Ep (nJ) Ref. 

ZnO/PVA FF  1599.50 42–159 2600  6.90  3.26  2.12 [39] 
MgO/PVA FF  1569.00 81–159 5600  7.60  3.50  2.17 [13] 
H2O3/PVA FF  1565.40 62–180 650  17.10  9.01  0.52 [40] 
V2O5/PEG FF  1596.00 80–107 1400  1.93  9.40  0.21 [34] 
Fe2O3 FF  1572.39 100–225 4520  6.78  2.81  2.41 [11] 
Fe3O4 TFG  1595.00 60–200 912  6.00  15.84  0.38 [41] 
γ-Al2O3/PDMS TF  1610.94 108.6–260 942  4.63  6.47  0.71 This work 

*Note: FF: Fiber ferrule, TF: tapered fiber, λc: central wavelength, τpulse: pulse width, Pavg: Average output power, frep: repetition rate, Ep: pulse energy. 
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small net gain at longer wavelength in L-band which affect the rate of 
pulse amplification [42]. In the aspect of average output power, V2O5/ 
PEG-SA had only 1.93 mW at 10% output port [34] whereas the output 
powers of Fe3O4/TFG-SA [41], ZnO/PVA-SA [39], MgO/PVA-SA [13] 
lie within 6.00 mW to 7.6 mW. 

Besides that, at equivalent output splitting ratio of 20%, ferric oxide 
(Fe2O3)-SA [11] had slightly lower threshold mode-locked power and 
higher output power (100 mW, 6.78 mW) as compared to this work 
(108.6 mW, 4.63 mW). This is expected because the Tns of our γ-Al2O3/ 
PDMS-SA was at least 2.44 times larger than their work (65.0% vs. 
26.7%) although the laser cavities were pumped at different power 
levels. Conversely, a moderate repetition rate of our laser cavity (6.47 
MHz) produced the soliton pulse of 942 fs width, which was at least 4.8 
times faster compared to the 2.81 MHz repetition rate of laser cavity 
incorporating Fe2O3-SA (4.52 ps) in Ref. [11]. Aside from that, the pulse 
energy attained by γ-Al2O3/PDMS-SA was measured to be 0.71 nJ, 
placing this work to be in between the reported works in 
Ref. [11,34,40,41] and Ref. [13,39]. 

Overall, the performances of C- and L-band of mode-locked pulses 
incorporating γ-Al2O3/PDMS-SA as pulse initiator were demonstrated 
and carefully discussed. Neither oversaturation nor sign of damage was 
observed throughout the experiments. This was made possible by 
exploiting weak evanescent wave interaction at the tapered fiber region, 
suggesting the damage threshold to be greater than input intensities of 
8.49 GW/cm2 and 3.57 GW/cm2 in the C- and L-band regions, respec-
tively. Furthermore, polymers like PVA and PEG are known for their 
hydrophilicity, which might be disadvantage to operate stably in high 
relative humidity environment, provided that their molecular weight 
are small. Conversely, PDMS offers high hydrophobicity and viscous 
characteristics that facilitate in encapsulating material and secure 
tapered fiber region from any mechanical breakage and environmental 
factors. In short, this work contributes to the femtosecond pulse gener-
ations of using metastable phase of Al2O3 that is beneficial for next 
generation of wideband photonic devices in the future. 

Conclusion 

This work has demonstrated γ-Al2O3/PDMS-SA as a promising 
candidate for photonic devices owing to its light absorbing properties. 
The optical fiber substrate for the fabricated SA was based on a tapered 
fiber, exhibiting 7.3% modulation depth and 303 MW/cm2 saturation 
intensity at 1.56 μm wavelength. The device employment in the erbium- 
doped fiber laser cavities have successfully generated ultrafast pulses of 
622 and 942 fs operating at 1.56 and 1.61 μm wavelengths, respectively. 
Marginal deviations in optical and time domains over 200 min obser-
vation period indicated stable mode-locked operations. The fabricated 
γ-Al2O3/PDMS-SA could withstand light intensities of greater than 8.49 
and 3.57 GW/cm2 in the C-band and L-band operations, respectively. Its 
robustness is due to the light-matter interaction of weak evanescent 
waves and also, the outstanding feature of dissipating heat longitudi-
nally along the optical fiber. These research findings provide insightful 
information for future research on metastable state of aluminum-based 
materials for laser application in various photonic fields in near future. 
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