
 
 
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 

INCORPORATING OBJECT-ORIENTED METRICS 
INTO A REVERSE ENGINEERING TOOL 

 
 
 
 
 
 
 

NIDAL BASHIR ESHAH 
 
 
 
 
 
 
 
 

FSKTM 2003 3 



INCORPORATING OBJECT-ORIENTED METRICS 
INTO A REVERSE ENGINEERING TOOL 

By 

NIDAL BASHIR ESHAH 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Master of Science 

April 2003 



INCORPORATING OBJECT-ORIENTED METRICS 

INTO A REVERSE ENGINEERING TOOL 

By 

NIDAL BASHIR ESHAH 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 

Fulfilment of the Requirements for the Degree of Master of Science 

April 2003 



To my parents 

II 



Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment 
of the requirements for the degree of Master of Science 

INCORPORATING OBJECT-ORIENTED METRICS 
INTO A REVERSE ENGINEERING TOOL 

By 
NIDAL BASHIR ESHAH 

April 2003 

Chairman: Associate Professor Abdul Azim Abdul Ghani, Ph.D. 
Faculty: Computer Science and Information Technology 

This work explains the use of object-oriented software product metrics with 

their thresholds and how they could be incorporated into a reverse engineering tool 

that visualizes the architectural components of a software system. Visualizing. 

Object-Oriented C++ ( VOO++), reverse engineering tool that visualizes C++ object-

oriented source code, is enhanced and reproduced to become a Visualizing and 

Measuring C++ ( VMCPP) tool that visualizes and measures object-oriented C++ 

files. VMCPP assists the software developer in extracting and interpreting the 

components of a software system. Unified Modeling Language (UML) class 

diagrams are produced to graphically represent the classes involved in implementing 

a software system. Thresholds are used within VMCPP to separate the extracted 

metrics values into normal values and critical values. 
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Abstrak tesis dipersembahkan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi syarat keperluan untuk ijazah Master Sains 

PENGGABUNGAN METRIK OBJECT-ORIENTED KEPADA SATU ALAT 
KEJURUTERAAN SONGSANG 

Daripada 
NIDAL BASHIR ESHAB 

April 2003 

Pengerusi: Profesor Madya Abdul Azim Abdul Ghani, Ph.D. 
Fakulti: Sains Komputer dan Teknologi Maklumat 

Tesis ini menerangkan penggunaan metrik perisian berorientasi objek melalui 

penggunaan takat dan bagaimana ia dapat digabungkan dengan kejuruteraan 

songsang untuk membolehkan pengarnatan komponen dalarn sistem perisian. 

Memperlihatkan berorientasi objek C++ (VOO++), satu alat kejuruteraan songsang 

yang memperlihatkan kod sumber berorientasi objek C++, dipertingkat dan 

dibangunkan semula untuk menghasilkan, penganatan dan mengukur fail C++ 

berorientasi objek (VMCPP) yang membolehkan penganatan dan mengukur fail C++ 

berorientasi objek. VMCPP membantu pembangun perisian dalarn mengarnbil dan 

mentafsir komponen sistem perisian. Kelas diagram, UML dihasilkan untuk 

mewakilkan secara graftk kelas yang terlibat dalam melaksanakan sesuatu sistem 

perisian. Takat digunakan dalam VMCPP untuk mengasingkan nilai-nilai metrik 

kepada nilai-nilai normal dan kritikal. 
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1.1 Background 

CHAPTER 1 

INTRODUCTION 

"The degree to which you can express something in numbers 

is the degree to which you really understand it." Lord Kelvin 

The concepts of object-oriented paradigm like encapsulation, inheritance and 

polymorphism made the object-oriented paradigm is more desirable by software 

developers than the traditional programming. Many of the traditional programming 

problems have been solved using the object-oriented paradigm (Pressman, 1997). 

This technology requires not only new programming languages but also new 

approaches and techniques to refine it. For example software metrics applied to the 

traditional programming languages are no longer useful for the object-oriented 

approach because of some fundamentally different issues (encapsulation, inheritance, 

and polymorphism). As a result, new metrics have been introduced and applied to 

measure the products of the object-oriented approach. 



1.2 Reverse Engineering 

Reverse engineering for software is the process of analyzing a program in an 

effort to create a representation of the program at a higher level of abstraction than 

the source code (Pressman, 1997). The key to reverse engineering is its ability to 

abstract specifications from the detailed source code implementation (Pfleeger, 

1998). 

Most of the software reverse engineering tools extracts data and architectural 

design from software products to increase the understanding of the subject system 

(Rausi et al, 2ooo). The purpose of software reverse engineering product tools is to 

extract the architectural components, to explore and visualize, to measure, and to re

document existing software systems. 

1.3 Software Measurement 

A key element of any engineering process is measurement. We use 

measurements to better understand the attributes of the models that we create, but 

most important, we use measurement to assess the quality of the engineered products 

or systems that we build (Pressman, 1997). 

In software engineering, software measurement tools gather software metrics 

to understand the subject software, to provide guidelines that recommend an action to 

improve the quality of software components, and to estimate a software product 

quality. 
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1.4 Problem Statement 

The aim of developing reverse engineering software product tools that 

visualize software products is to graphically represent software attributes and 

components to the software developer by extracting them from the subject software. 

In object-oriented world the software components are classes, and visualizing the 

classes involved in implementing a specific software system will allow the software 

developer to explore the subject software classes and their relationships to each 

other. Such tools are built to assist software developers to make good decisions 

when evaluating the subject software by producing a graphical view of the 

architectural components of a software system. As a resuh a high-level of abstraction 

of the subject software will be produced showing the subject software system as a 

whole ignoring the low-level entities that in fact, makes the subject software system 

works. 

On the other hand, software measurement tools treat the software products as 

a source of data that needs to be collected and then presented in terms of numbers. 

These tools lack the ability of representing software system components at a higher 

level of abstraction. Up to now there are no available tools that would deal with the 

subject software on both levels. 

If software metrics are useful in a forward software engineering environment, 

then they are quite vital in a reverse engineering environment (Zhou et. aI, 1999). 

Incorporating software metrics with their thresholds into reverse engineering 

software tools that visualize software products will be the ultimate solution to this 

problem (evaluating subject software system on both levels), which in turn will 
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enrich the knowledge of the software developer graphically and numerically about 

the subject software for better decisions. 

1.5 Research Objectives 

The objectives of this research are: 

• To extend the functionality of a reverse engineering tool by incorporating 

software metrics with their thresholds. The chosen tool for this purpose is 

the available VOO++, Visualizing object-oriented C++ files. This tool has 

been developed by Mresa (2000) to explore and visualize the architectural 

components of object-oriented C++ program files. VOO++ developer has 

recommended that measurement techniques can be incorporated into 

VOO++ to estimate the quality of software systems and monitor its 

progress (Mresa, 2000). 

• To introduce a new object-oriented metric that measures the 

understandability from the perspective of identifiers names. For this, a new 

version of the reverse engineering VOO++ tool will be developed and 

named VMCPP, Visualizing and Measuring C++ files. This tool will help 

the software developer understand the subject software system by: 

• Separating the metrics values of the subject software system 

components into critical values and nonnal values. 

• Visualizing the architectural components of a subject software 

system using the Unified Modeling Language (UML). 
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1.6 Thesis Organization 

The remainder of this thesis is structured into five chapters. Chapter 2 

explores the object-oriented metrics in general with emphasis on product metrics. 

Various object-oriented product metrics are discussed and explained in detail with 

examples to show their use. After that some thresholds have been collected with 

focusing on object-oriented product metrics. Chapter 3 explains the methodology 

chosen for building VMCPP. Chapter 4 presents the design, development, and usage 

of the VMCPP tool. Chapter 5 shows the validation of VMCPP and the results of 

applying the thresholds on real software projects. In chapter 6, the conclusions are 

discussed and the areas of future research as well as extensions to VMCPP are 

identified. 
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CHAPTER 1 

SOFTWARE MEASUREMENT: 

METRICS, THRESHOLDS AND REVERSE ENGINEERING TOOLS 

"You can't control what you can't measure" Tom DeMacro. 

1.1 Software Measurement 

Measurement can be defined as the process by which numbers or symbols are 

assigned to attributes of entities in the real world, in such a way as to describe them 

according to clearly defined rules (Fenton & Ptleeger, 1 996). 

We use measurement equipments in our daily life to measure time, weight 

temperature . . .  etc. These equipments provide us with very valuable information. For 

example, one could look at the home thermometer to decide whether the weather is 

suitable for out-door picnic or not. So, he may describe that day's temperature as 

"nice day," the word "nice" used to represent that day's temperature. People 

naturally have some kind of scaling in their minds, so they can imagine the weather 

without even going out and examine the weather by themselves. 

In software engineering, software measurement tools are the equipments that 

measure software systems. These tools gather software metrics to understand the 

software system under developing, to provide guidelines that suggest a specific 

action to improve the quality of different system components, and to estimate quality 

of a software product 
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2.2 Classificatioa of Software Metrics 

Software metrics are classified into two categories. The first one is the process 

metrics, those metrics deal with the developing process phases; they are used to 

estimate cost, time, and effort needed to complete a specific software project. 

The second category is the product metrics, which is divided into two 

sections, internal product metrics, and external product metrics. While the internal 

product metrics deals mostly with the size, complexity, and style of the software 

under developing, the external product metrics deals with functionality, usability, and 

performance of the software. Figure 2. 1 shows software metrics classifications. 

2.3 Objed-Orieated Product Metrics 

Because of its flexibility, object technology has been widely adopted in the 

first half of the nineties. Since then, object technology becomes the ultimate choice 

for many software product builders. New engineering approaches have been 

introduced in every phase of the software life cycle for this new technology. 

For software measurement professionals, the need for new metrics to measure 

object-oriented systems was raised dramatically, many new metrics have been 

proposed to specifically evaluate and quantify the object-oriented process and its 

products. 
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