

UNIVERSITI PUTRA MALAYSIA

INCORPORATING OBJECT-ORIENTED METRICS
INTO A REVERSE ENGINEERING TOOL

NIDAL BASHIR ESHAH

FSKTM 2003 3

INCORPORATING OBJECT-ORIENTED METRICS
INTO A REVERSE ENGINEERING TOOL

By

NIDAL BASHIR ESHAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of Master of Science

April 2003

INCORPORATING OBJECT-ORIENTED METRICS

INTO A REVERSE ENGINEERING TOOL

By

NIDAL BASHIR ESHAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in

Fulfilment of the Requirements for the Degree of Master of Science

April 2003

To my parents

II

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment
of the requirements for the degree of Master of Science

INCORPORATING OBJECT-ORIENTED METRICS
INTO A REVERSE ENGINEERING TOOL

By
NIDAL BASHIR ESHAH

April 2003

Chairman: Associate Professor Abdul Azim Abdul Ghani, Ph.D.
Faculty: Computer Science and Information Technology

This work explains the use of object-oriented software product metrics with

their thresholds and how they could be incorporated into a reverse engineering tool

that visualizes the architectural components of a software system. Visualizing.

Object-Oriented C++ (VOO++), reverse engineering tool that visualizes C++ object-

oriented source code, is enhanced and reproduced to become a Visualizing and

Measuring C++ (VMCPP) tool that visualizes and measures object-oriented C++

files. VMCPP assists the software developer in extracting and interpreting the

components of a software system. Unified Modeling Language (UML) class

diagrams are produced to graphically represent the classes involved in implementing

a software system. Thresholds are used within VMCPP to separate the extracted

metrics values into normal values and critical values.

III

Abstrak tesis dipersembahkan kepada Senat Universiti Putra Malaysia sebagai
memenuhi syarat keperluan untuk ijazah Master Sains

PENGGABUNGAN METRIK OBJECT-ORIENTED KEPADA SATU ALAT
KEJURUTERAAN SONGSANG

Daripada
NIDAL BASHIR ESHAB

April 2003

Pengerusi: Profesor Madya Abdul Azim Abdul Ghani, Ph.D.
Fakulti: Sains Komputer dan Teknologi Maklumat

Tesis ini menerangkan penggunaan metrik perisian berorientasi objek melalui

penggunaan takat dan bagaimana ia dapat digabungkan dengan kejuruteraan

songsang untuk membolehkan pengarnatan komponen dalarn sistem perisian.

Memperlihatkan berorientasi objek C++ (VOO++), satu alat kejuruteraan songsang

yang memperlihatkan kod sumber berorientasi objek C++, dipertingkat dan

dibangunkan semula untuk menghasilkan, penganatan dan mengukur fail C++

berorientasi objek (VMCPP) yang membolehkan penganatan dan mengukur fail C++

berorientasi objek. VMCPP membantu pembangun perisian dalarn mengarnbil dan

mentafsir komponen sistem perisian. Kelas diagram, UML dihasilkan untuk

mewakilkan secara graftk kelas yang terlibat dalam melaksanakan sesuatu sistem

perisian. Takat digunakan dalam VMCPP untuk mengasingkan nilai-nilai metrik

kepada nilai-nilai normal dan kritikal.

IV

ACKNOWLEGEMENTS

In the name of Allalr., Most Gracious, Most Merciful

I would like to take this opportunity to convey my sincere thanks and deepest

gratitude to my supervisor Assoc. Prof. Dr. Abdul Azim bin Abd. Ghani for his

advises, comments, suggestions, help, and invaluable guidance throughout my

research.

I am also indebted to Assoc. Prof. Hj. Mohd Hasan bin Selamat and Ms.

Hazura ZulzaIil, members of the supervising committee, for their technical support

and suggestions. Their insights were priceless.

I am greatly indebted to the Libyan Ministry of Education for the fmancial

support during my study. Also, the contribution of the Libyan Embassy staff in Kuala

Lumpur is highly appreciated.

Special thanks to the School of graduate studies staff at UPM, especially Mr.

Rustam who without his help this thesis wouldn't be finished in time.

I am very Thankful to Mr. Ali Mresa who kept helping me understanding the

source code of VOO++.

v

I certify that an Examination Committee met on 21 st April, 2003 to conduct the final
examination of Nidal Bashir Eshah on his Master of Science thesis entitled
"Incorporating Object-oriented Metrics into a Reverse Engineering Tool" in
accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and
Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee
recommends that the candidate be awarded the relevant degree. Members of the
Examination Committee are as follows:

Hamidah Ibrahim, Ph.D.
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairperson)

Abdul Azim bin Abd. Ghani, Ph.D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Mohd Hasan bin Selamat
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Hazura bt Zulzalil, M.Se.
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

GULAMRUS
Professor / Deputy
School of Graduate Studies
Universiti Putra Malaysia

Date:

VI

This thesis submitted to Senate of the Universiti Putra Malaysia has been accepted as
fulfillment of the requirement for the degree of Master of Science. The members of
the Supervisory Committee are as follows:

Abelul Azim bin Abel. Ghani, Ph.D.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Mohd Basan bin Selamat
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Bazara bt Zulzalil, MoSc.
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

VII

AINI IDERIS, Ph.D.
Professor I Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: If 5 AUG 2003

DECLARA TION

I hereby declare that the thesis is based on my original work except for quotations
and citations which have been duly acknowledged. I also declare that it has not been
previously or concurrently submitted for any other degree at UPM or other
institutions.

vm

Name: Nidal Bashir Eshah
Date: L1/ b' 2.. C) C) �

TABLE OF CONTENTS

DEDICATION

ABSTRACT

ABSTRAK

ACKNOWLEDGEMENTS

APPROVAL SHEETS

DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER

1 INTRODUCTION

1.1 Background

1.2 Reverse Engineering

1.3 Software Measurement

1.4 Problem Statement

1.5 Research Objectives

1.6 Thesis Organization

2 SOFfWARE MEASUREMENT: METRICS, THRESHOLDS
AND REVERSE ENGINEERING TOOLS

Page

II
III

IV
V

VI

VIII

XIII

XIV
XVI

1

1

2

2

3

4

5

6

2.1 Software Measurement 6

2.2 Classification of Software Metrics 7

2.3 Object-Oriented Product Metrics 7

2.4 Henry and Kafura's Metrics 9

2.5 Chidamber and Kemerer's Metrics 10
2.6 Li and Henry's Metrics IS
2.7 Lorenz and Kidd's Metrics 15

2.8 Other Metrics 17

2.9 Reverse Engineering Tools 20

2.9.1 Visualizing Object-Oriented C++ Applications (VOO++) 20

2.9.2 C-Metrics 21
2.9.3 IntegriSoft 22

2.9.4 Cantata++ IPL 22

2.9.5 Metrics4C 23

IX

2.9.6 Resource Standard Metrics (RSM) 23

2. 10 Thresholds 24

2.10.1 Lorenz Guidelines 25

2. 10.2 NASA Thresholds 26

2.10.3 Schroeder Benchmarks 26

2.1 1 Reverse Engineering 27

2.1 1. 1 Reverse Engineering Tasks 27

2. I I. I. I Information Extraction 27

2.1 1.1.2 Information Abstraction 27

2.1 1.2 Reverse Engineering Purposes 27

2.12 Summary 28

3 THE UNIFIED APPROACH 29

3. 1 Introduction 29

3.2 Inputs 3 1

3.2.1 Customer Interviews 3 1

3.2.2 Information from other Tools 3 1

3.3 Unified Approach Analysis Phase Activates 3 1

3.3.1 Identifying the Actors 32

3.3.2 Developing Use-cases 32

3.3.3 Developing Interaction Diagrams 34

3.3.4 Classifying System Objects 35

3.4 Unified Approach Design Phase Activates 37

3.4.1 Refming the UML Static Class Diagram 37

3.4.2 Designing the Access Layer 39

3.4.3 Designing the View Layer 39

3.4.3.1 Macro-level UI Design Process 39

3.4.3.2 Micro-level UI Design Activities 41

4 VMCPP ANALYSIS, DESIGN, AND IMPLEMENTATION 42

4. 1 Introduction 42
4.2 Business Phase 42

4.2.1 Prerequisites 42

4.2.2 Activities 42

4.2.2. 1 Identity and Document Types of Users 42

4.2.2.2 VMCPP Functional Requirements Description 43

4.2.2.3 VMCPP Non-functional Requirements 44
4.3. Analysis Phase 45

4.3.1 Prerequisites 45

4.3.2 Use-cases 45

4.3.3 Developing Interaction Diagrams 50

x

4.3.4 Classification 5 1

4.4 VMCPP Design 57

4.4.1 Refming UML Static Class Diagram 57

4.4.1.1 Refining Attributes 62

4.4.1.2 Designing Methods using UML Activity Diagram 62

4.4.2 View Layer Design 63

4.4.2.1 Macro-Level UI Design Process 63

4.4.2.2 Micro-Level UI Design Activities 63

4.5 VMCPP Implementation 65

4.5. 1 VMCPP Platfonn 65

4.5.2 VMCPP Data Structures and Classes 65

4.5.2.1 The Analyzer Package Components 65

4.5.2.2 The Database Package Components 66

4.5.2.3 The Measurer Package Components 68

4.5.2.4 The Charter Package Components 69

4.5.3 User Interface 70

4.5.4 Hungarian Notation 75

4.5.5 Incorporating Object-oriented Metrics into VOO++ 77

5 RESULTS AND DISCUSSION 78

5.1 Introduction 78

5.2 GA, Sales-man Problem Case Study 79

5.2.1 GA System Metrics 80

5.2.2 GA Module Metrics 81

5.2.3 GA Class Metrics 83
5.2.4 GA Method Metrics 85

5.3 ZIP Case Study 88

5.3.1 ZIP System Metrics 88

5.3.2 ZIP Module Metrics 89

5.3.3 ZIP Class Metrics 90
5.3.4 ZIP Method Metrics 92

5.4 Validating the Hungarian Notation Metric 93

6 CONCLUSION AND FUTURE WORK 96

6.1 Conclusions 96

6.2 Future Work 97

REFERENCES 99

APPENDICES

A VMCPP Static Structure using UML 101

XI

B Metrics Values Collected From GA and ZIP Case Studies 123

BIODATA OF AUTHOR 146

XII

LIST OF TABLES

Table Page

2.1 Lorenz Guidelines 25

2.2 NASA Thresholds 26

2.3 Schroeder Benchmarks 26

2.4 Metrics: Objective, Threshold, and Applying Level 28

4.1 The Hungarian Notation 76

5. 1 List of Files Involved in Implementing GA 80

5.2 List of Classes Involved in Implementing random.h 82

5.3 List of Methods Involved in Implementing CTooIlnfo Class 84

5.4 Manually Calculated Values of Method RandomTest::end 87

5.5 The Percentage of Hungarian Notation Applied in Each Module 88

5.6 List of ZIP Modules Depend on autobuffer.h 90

5.7 CCentralDir Class Methods with Their TFC 91
5.8 The Relation between the Identifiers Type Understandability and 94

the Hungarian Notation

xm

Figure

2. 1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.1 1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4. 1

4.2

4.3

4.4

4.5
4.6
4.7

4.8

4.9

4.10

4.1 1

4.12

4.13

LIST OF FIGURES

Software Metrics

Fan-in Class Dependency

Fan-out Class Dependency

Class Hierarchy Sample

NOC for Class Marine Mammals

Control Flow Graph of Method CcExample

The Possible Paths of Method CcExample

VOO++ User Interface

C-Metrics: Module And Class Metrics

IntegriSoft Module Dependency Diagram

Using Thresholds with Measurement Tools

Processes and Components of the Unified Approach

Analysis Phase Activities in the Unified Approach

Representing Use-cases in UML

Representing Sequence Diagrams in UML

Representing Collaboration Diagrams in UML

Design Phase Activities in the Unified Approach

Representing Class Diagrams in UML

Representing Activity Diagrams in UML

Macro-level UI Design Process

Analysis Phase Prerequisites and Deliverables

VMCPP Use-cases
Basic Components for Reverse Engineering Restructuring and
Reengineering Tools
Basic Components for VMCPP

Sequence Diagram for "Open File" Use-case

Sequence Diagram for "Show Metrics" Use-case

Collaboration Diagram for "Show Charts" Use-case

Key Classes of VMCPP and Their Relationships
Attributes and Methods Captured for CAnalyzer and
CThresholdsDialog Classes
Attributes and Methods Captured for CChartsDialog Class

Attributes and Methods Captured for CMetricsViewDialog Class
Attributes and Methods Captured for CAttributesList and
CClassesList Classes
Attributes and Methods Captured for CModulesList and
CMethodsList Classes

XIV

Page

8

9

10

I I
14

18

19

20

21

22

25

30

32

33

34

34

37

38

39

40

45

46

48

49

50

50

51

52

54

55

55

56

56

4. 14 Analyzer Package Components and Relations 57

4. 15 Database Package Components and Relations 58

4. 16 Measurer Package Components and Relations 60

4.11 Thresholder Package Components and Relations 61

4.18 Charter Package Components and Relations 62

4.19 Activities of the CChartsDialog Constructor Method 62

4.20
Microsoft DocumentlView Framework Components and 64
Relations

4.21 VMCPP Main Window 64
4.22 CTokensList and STokensNode 66

4.23 CSpecifiers and SSpecifiersNode 66

4.24 CAttributesList and SAttributesNode 67

4.25 CClassesList and SClassesNode 67

4.26 SMetricINT 68

4.27 SClass Values 69

4.28 SChartsMetricsList 69

4.29 Metrics Window - Project Metrics Property Page 71

4.30 Metrics Window - Module Metrics Property Page 71

4.3 1 Metrics Window - Class Metrics Property Page 72
4.32 Metrics Window - Method Metrics Property Page 73

4.33 Charts Window 73

4.34 Thresholds Window 74

4.35 VMCPP about Window 74

5. 1 Thresholds Set Used to Evaluate the Two Case Studies 79

5.2 GA Application Metrics Calculated by VMCPP 81

5.3 random.h Module Metrics Calculated by VMCPP 82

5.4 The Dependence of stdafx.h on random.h 82

5.5 The Dependence of random.cpp on random.h 83

5.6 A Source Code Fragment of CToolInfo Class Declaration 84

5.7 CToolIn/o Class Metrics Values Calculated by VMCPP 85
5.8 The Source Code of Method RandomTest::end 86

5.9 Metrics Values for Method RandomTest::end 81
5.10 The Percentage of Hungarian Notation in ZIP System 89
5. 1 1 Fan-in of autobuffer.h Module 90

5. 12 RFC for Class CCentralDir 91
5. 13 Source Code of Method CCentralDir::Locate 92

5. 14 The Number of Local Variables Declared in
93

CCentralDir: :Locate
5. 15 The Dependence of Source Code Understandability on the 95

Hungarian Notation

xv

CASE

HN

LOC

LCOM

DIT

RFC

WMC

CC

CP

NOM

NOA

NOPA

NOPM

Fan-In

Fan-out

TFC

NOC

NRP
NOI

VOO++

VMCPP

LIST OF ABBREVIATIONS

Computer Aided Software Engineering

Hungarian Notation

Lines of Code

Lack of Cohesion between methods

Depth of inheritance in the inheritance tree

Response for Class

Weighted Methods per Class

Cyclomatic Complexity

Comment Percentage

Number of Methods in Class

Number of Attributes in Class

Number of Public Attributes in Class

Number of Public Methods in Class

Flow of Information In, Module, Class, or Method

Flow of Information Out of, Module, Class, or Method

Total of Function Calls

Number of Children for Class

Number of Return Points in a Method

Number of Instances for Class
A reverse engineering tool that visualizes object-oriented C++ source
code
A reverse engineering tool that visualizes and measures object-oriented
C++ source code

XVI

1.1 Background

CHAPTER 1

INTRODUCTION

"The degree to which you can express something in numbers

is the degree to which you really understand it." Lord Kelvin

The concepts of object-oriented paradigm like encapsulation, inheritance and

polymorphism made the object-oriented paradigm is more desirable by software

developers than the traditional programming. Many of the traditional programming

problems have been solved using the object-oriented paradigm (Pressman, 1997).

This technology requires not only new programming languages but also new

approaches and techniques to refine it. For example software metrics applied to the

traditional programming languages are no longer useful for the object-oriented

approach because of some fundamentally different issues (encapsulation, inheritance,

and polymorphism). As a result, new metrics have been introduced and applied to

measure the products of the object-oriented approach.

1.2 Reverse Engineering

Reverse engineering for software is the process of analyzing a program in an

effort to create a representation of the program at a higher level of abstraction than

the source code (Pressman, 1997). The key to reverse engineering is its ability to

abstract specifications from the detailed source code implementation (Pfleeger,

1998).

Most of the software reverse engineering tools extracts data and architectural

design from software products to increase the understanding of the subject system

(Rausi et al, 2ooo). The purpose of software reverse engineering product tools is to

extract the architectural components, to explore and visualize, to measure, and to re

document existing software systems.

1.3 Software Measurement

A key element of any engineering process is measurement. We use

measurements to better understand the attributes of the models that we create, but

most important, we use measurement to assess the quality of the engineered products

or systems that we build (Pressman, 1997).

In software engineering, software measurement tools gather software metrics

to understand the subject software, to provide guidelines that recommend an action to

improve the quality of software components, and to estimate a software product

quality.

2

1.4 Problem Statement

The aim of developing reverse engineering software product tools that

visualize software products is to graphically represent software attributes and

components to the software developer by extracting them from the subject software.

In object-oriented world the software components are classes, and visualizing the

classes involved in implementing a specific software system will allow the software

developer to explore the subject software classes and their relationships to each

other. Such tools are built to assist software developers to make good decisions

when evaluating the subject software by producing a graphical view of the

architectural components of a software system. As a resuh a high-level of abstraction

of the subject software will be produced showing the subject software system as a

whole ignoring the low-level entities that in fact, makes the subject software system

works.

On the other hand, software measurement tools treat the software products as

a source of data that needs to be collected and then presented in terms of numbers.

These tools lack the ability of representing software system components at a higher

level of abstraction. Up to now there are no available tools that would deal with the

subject software on both levels.

If software metrics are useful in a forward software engineering environment,

then they are quite vital in a reverse engineering environment (Zhou et. aI, 1999).

Incorporating software metrics with their thresholds into reverse engineering

software tools that visualize software products will be the ultimate solution to this

problem (evaluating subject software system on both levels), which in turn will

3

enrich the knowledge of the software developer graphically and numerically about

the subject software for better decisions.

1.5 Research Objectives

The objectives of this research are:

• To extend the functionality of a reverse engineering tool by incorporating

software metrics with their thresholds. The chosen tool for this purpose is

the available VOO++, Visualizing object-oriented C++ files. This tool has

been developed by Mresa (2000) to explore and visualize the architectural

components of object-oriented C++ program files. VOO++ developer has

recommended that measurement techniques can be incorporated into

VOO++ to estimate the quality of software systems and monitor its

progress (Mresa, 2000).

• To introduce a new object-oriented metric that measures the

understandability from the perspective of identifiers names. For this, a new

version of the reverse engineering VOO++ tool will be developed and

named VMCPP, Visualizing and Measuring C++ files. This tool will help

the software developer understand the subject software system by:

• Separating the metrics values of the subject software system

components into critical values and nonnal values.

• Visualizing the architectural components of a subject software

system using the Unified Modeling Language (UML).

4

1.6 Thesis Organization

The remainder of this thesis is structured into five chapters. Chapter 2

explores the object-oriented metrics in general with emphasis on product metrics.

Various object-oriented product metrics are discussed and explained in detail with

examples to show their use. After that some thresholds have been collected with

focusing on object-oriented product metrics. Chapter 3 explains the methodology

chosen for building VMCPP. Chapter 4 presents the design, development, and usage

of the VMCPP tool. Chapter 5 shows the validation of VMCPP and the results of

applying the thresholds on real software projects. In chapter 6, the conclusions are

discussed and the areas of future research as well as extensions to VMCPP are

identified.

5

CHAPTER 1

SOFTWARE MEASUREMENT:

METRICS, THRESHOLDS AND REVERSE ENGINEERING TOOLS

"You can't control what you can't measure" Tom DeMacro.

1.1 Software Measurement

Measurement can be defined as the process by which numbers or symbols are

assigned to attributes of entities in the real world, in such a way as to describe them

according to clearly defined rules (Fenton & Ptleeger, 1 996).

We use measurement equipments in our daily life to measure time, weight

temperature . . . etc. These equipments provide us with very valuable information. For

example, one could look at the home thermometer to decide whether the weather is

suitable for out-door picnic or not. So, he may describe that day's temperature as

"nice day," the word "nice" used to represent that day's temperature. People

naturally have some kind of scaling in their minds, so they can imagine the weather

without even going out and examine the weather by themselves.

In software engineering, software measurement tools are the equipments that

measure software systems. These tools gather software metrics to understand the

software system under developing, to provide guidelines that suggest a specific

action to improve the quality of different system components, and to estimate quality

of a software product

6

2.2 Classificatioa of Software Metrics

Software metrics are classified into two categories. The first one is the process

metrics, those metrics deal with the developing process phases; they are used to

estimate cost, time, and effort needed to complete a specific software project.

The second category is the product metrics, which is divided into two

sections, internal product metrics, and external product metrics. While the internal

product metrics deals mostly with the size, complexity, and style of the software

under developing, the external product metrics deals with functionality, usability, and

performance of the software. Figure 2. 1 shows software metrics classifications.

2.3 Objed-Orieated Product Metrics

Because of its flexibility, object technology has been widely adopted in the

first half of the nineties. Since then, object technology becomes the ultimate choice

for many software product builders. New engineering approaches have been

introduced in every phase of the software life cycle for this new technology.

For software measurement professionals, the need for new metrics to measure

object-oriented systems was raised dramatically, many new metrics have been

proposed to specifically evaluate and quantify the object-oriented process and its

products.

7

