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Abstract 

Due to untreated wastewater disposal from a growing population and industry, biological and chemical pollutants have accumulated in the 

environment. Benzene, toluene, and xylene (BTX) are among the most frequently encountered contaminants in industrial wastewater. Due to 
their toxic and carcinogenic nature, BTX-containing industrial wastewater requires proper treatment prior to discharge to open water. This 

study examined the monocomponent adsorption of BTX from an aqueous solution using polydimethylsiloxane (PDMS) foam. Adsorption 

performance was optimised under various experimental conditions, including the effects of contact time, adsorption dosage, and initial 
concentration. The adsorption capacity of PDMS foam followed the order X > T > B, and the equilibrium of adsorption was reached in 6 h. 

The adsorption isotherms were analysed using the Langmuir, Freundlich, and Temkin models to evaluate their suitability for fitting the 

experimental data. The kinetics of the process were assessed employing both the pseudo-first-order and pseudo-second-order models. The 
adsorption data exhibited a good fit with Freundlich isotherms and a pseudo-second-order kinetic model. Based on experimental findings, 

PDMS foam shows great promise as an effective adsorbent for removing BTX from water. 

 Keywords: PDMS foam; gas foaming process; BTX removal; adsorption isotherm; adsorption kinetic.  

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

 

Introduction  

Access to freshwater is essential for the sustenance of humans and wildlife. Despite the fact that approximately 97.5% of the 

Earth's total water resources are comprised of seawater, there remains a significant shortage of freshwater for human use. This 

shortage causes a significant challenge to communities worldwide. Access to safe drinking water is essential for promoting 

overall health and well-being. Individuals face heightened risks of waterborne diseases and other health complications without 

adequate access to clean water. As a result of the rapidly growing population and industrial activity, biological and chemical 

pollutants have accumulated in the environment due to the disposal of untreated wastewater [1,2]. The pharmaceutical 

industry, along with sectors including detergents, plastics, inks, paints, and adhesives, significantly contributes to the 

contaminant concentrations in wastewater. The disposable wastes of these industries contain petrochemical materials such as 

BTX, which refers to benzene, toluene, and xylene as they are used as starting materials. [3–5] Even at low concentrations, 

BTX is detrimental to human health on account of its exceptionally high toxicity and carcinogenic characteristics. 

Additionally, leukaemia, fatal deficiencies of the nervous system, and irritation of the skin, eyes, and mucous membranes may 

result from BTX exposure [3,6–9]. Thus, removing such harmful pollutants from wastewater is a critical global concern.  

The two main techniques applied to control BTX are destruction and recovery. Catalytic oxidation, thermal oxidation, and 

biodegradation are examples of destruction techniques, while absorption, adsorption, and membrane separation are examples 

of recovery techniques [10–16]. The sorption process has been demonstrated to be both technically and economically effective 

for removing organic compounds from water.  
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Various sorbents, such as commercial organoclay [10], activated sludge [17], activated carbon [18], and periodic mesoporous 

organosilica [19], have been used in the removal of BTX from wastewater. However, there are some difficulties in using these 

sorbents, such as complex preparation, low working capacity, and low recyclability. Moreover, removing sorbents from the 

solution requires pre-treatment methods like centrifugation or filtration, which limit large-scale application. Thus, there is a 

strict necessity to develop cost-effective, non-toxic, and eco-friendly adsorbents. 

Recently, there has been a lot of interest in porous polymeric materials like polydimethylsiloxane (PDMS) due to their 

excellent characteristics. PDMS foam has many applications in different fields because of its hydrophobicity, simple 

fabrication, low cost, remarkable reusability, large surface area, high flexibility, elasticity, and thermal stability. Some of its 

applications include sensors, microfluidics, adsorbents, absorbents, and oil/water separation [20–23]. PDMS foams have been 

manufactured using various methods, including porogen leaching [21,24–34], gaseous blowing agents [1,35,36], and emulsion 

techniques [37–43]. However, the porogen leaching approach requires toxic solvents and a long processing time. On the other 

hand, the surfactants used in the emulsion method must be eliminated because they affect the quality of the foam. 

Additionally, studies that employed the gas blowing approach to generate PDMS foam either coupled it with other techniques 

or added more hazardous substances, making the process more complicated, time-consuming, and non-eco-friendly. 

This work introduces a fast, easy, and effective method for preparing PDMS foam via gas foaming. There is minimal work 

available in the literature on the formation of PDMS foam using this method. Most reported works employed HCl and 

HNO3 as catalysts. For the first time, this work explored using green materials, namely acetic acid as a catalyst and 

NaHCO3 as a blowing agent, to produce PDMS foam. This process has minimal environmental impact, as no waste 

materials result from the preparation process. It is hypothesised that the foam has excellent selectivity, ensuring it only 

adsorbs the desired contaminants, leaving the surrounding water or environment unaffected, making it suitable for large-

scale applications. 

 Materials and Methods 

Materials  

 

A Sylgard-184 kit from Dow Corning is provided in two components: Sylgard-184 A (base) and Sylgard-184 B (curing 

agent). Acetic acid and sodium bicarbonate were purchased from R&M Chemicals. Benzene with 99.5% purity, toluene with 

99% purity, and mixtures of isomers of xylene with 98.5% purity were obtained from System Chemicals.  

Preparation of PDMS foams  

The PDMS foam was prepared based on prior work [44]. First, the PDMS base and curing agent were combined in a 10:1 

mass ratio, thoroughly mixing until a homogeneous prepolymer liquid formed. Then, sodium bicarbonate was added at 5% by 

weight and acetic acid at 10% by weight to the PDMS prepolymer. The mixture was stirred manually until it was uniform and 

the sodium bicarbonate was fully dispersed. The mixture was placed in a preheated oven at 100 °C, curing for one hour. After 

curing, the mould was removed from the oven, allowed to cool to room temperature, and then the formed PDMS foam was 

extracted. The foams were washed with water to remove any residual chemicals and allowed to air dry completely before 

further use. 

 

 

Characterisation  

The foam morphology was examined using a field emission scanning electron microscope (FE-SEM JEOL JSM-7600F, 

Tokyo, Japan). The obtained SEM images were analysed using Fiji/ImageJ software, V 1.8.0. The FTIR spectra were acquired 

on the Thermo Fisher Scientific Nicolet iS10 spectrometer, USA, in the region of 400–4000 cm-1.  

 

Adsorption experiments 

B, T, and X adsorption from aqueous solutions onto PDMS foams in mono-component systems was carried out via batch 

adsorption in gas-tight glass vials. Each vial contained the adsorbent (0.2 g) and the adsorbate solution (40 mL) with 

different concentrations at room temperature. Each experiment was carried out in triplicate.   A blank experiment was also 

performed in the absence of the adsorbent to evaluate and determine any potential loss of BTX due to volatilisation. The 

influence of key adsorption parameters (the amount of adsorbent used, the time of contact, and the initial concentration) on 

the uptake behaviour of BTX on PDMS foam was explored.   

The impact of contact time was examined at varying intervals within the range of 15–360 minutes. To assess the influence of 

adsorbent dosage, the amount of PDMS foam was varied from 0.04 to 1.4 g/40 mL on 100 ppm of B, T, and X solutions at 

25 °C for six hours. The impact of the initial BTX concentration on the uptake process was examined by altering the 

concentrations within the range of 50 to 500 mg/L for B and T and from 30 to 150 mg/L for X. The total time needed to 

reach equilibrium for adsorption was six hours.   

A Lambda 35 UV-Vis spectrophotometer (PerkinElmer Life) was used to determine the adsorbate concentration at the 

respective‎maximum‎wavelengths‎(λmax) of 254 nm, 261 nm, and 264 nm for B, T, and X.   

The adsorption capacity of BTX by PDMS foam was obtained by Equations (1) 

  (mg/g)  
        

 
                 (1) 

 

 

The removal efficiency of BTX by PDMS foam was obtained by Equations (2)  

   
     

  
       (2) 
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where qe (mg/g) is the adsorption capacity at equilibrium, C0 (mg/L) and Ce (mg/L) represent the initial and equilibrium 

concentrations of BTX, respectively, m (g) is the mass of PDMS foam, and V (L) represents the volume of the BTX solution.  

 

Adsorption isotherm  

The adsorption isotherm describes the equilibrium between the concentration of an adsorbate in a solution and the amount of 

that adsorbate adsorbed onto a solid surface. The adsorption isotherm shape reflects the solute's adsorption behaviour and the 

adsorbent's surface properties. The most commonly used adsorption isotherms are the Langmuir, Freundlich, and Temkin 

models, extensively studied and applied in various areas, such as environmental research, biotechnology, and 

materials science [45,46]. For the study of the adsorption isotherms, three different models were utilised in their linear form:  

 

the Langmuir model (Equations 3)  
  

  
  

 

      
  

  

    
        (3) 

the Freundlich model (Equations 4) 

               
 

 
             (4) 

Temkin isotherm model (Equations 5) 

 

                             (5) 

 

Where: qmax (mg/g): maximum adsorption capacity of BTX, KL, KF and KT: constants of Langmuir, Freundlich, and 

Temkin, respectively. Also, n and B1: constants related to the intensity of the adsorption and adsorption heat, in that order 

[47–49]. 

 

Kinetic Studies  

Adsorption kinetics are mathematical expressions that explain the duration needed for the adsorption process to achieve 

equilibrium. Kinetic models can be used to make predictions about the behaviour of chemical reactions under different 

conditions. They are an essential tool for understanding the mechanisms of chemical reactions and also provide data for 

the design and modelling of this process [50–52]. Two distinct kinetic models were applied to analyse the kinetic batch 

experimental data:  

 

The pseudo-first-order kinetic model (Equations 6)  

                     
 

     
                 (6) 

 

 

The pseudo-second-order kinetic model (Equations 7) 
 

  
 

 

      
   

 

  
                          (7) 

 

Where: qe (mg/g): adsorption quantity at equilibrium, qt (mg/g): adsorption amount at any time t (min), K1 (min-1) and K2 

(g/mg.min): rate constants of the pseudo-first-order and pseudo-second-order, respectively [48,53]. 

 

Results and Discuss 

Preparation of PDMS foams  

The PDMS foam was produced through the gas-blowing process. Heating the mixture in the oven led to the crosslinking of 

the polymer (Figure 1). In addition, the decomposition of NaHCO3 and the reaction between acetic acid and NaHCO3 took 

place, releasing the CO2 gas responsible for the porous structures generated in the PDMS foam.  

 

Fig. 1: Crosslinking reaction of PDMS foams [54] 

 Characterisation  

Morphology  

The morphology of the PDMS foam, synthesised using 2:1 NaHCO3:acetic acid ratios and cured at 100°C, exhibits 

homogeneous and uniform porosity (Figures 2A and B). The figures show connected micropores with diameters less than 100 

μm‎ and‎ spherical‎ interconnected‎ macropores‎ with‎ sizes‎ between‎ 100‎ μm‎ and‎ 1000‎ μm.‎ The‎ pore‎ homogeneity may be 
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explained by the simultaneous emission of CO2 throughout the curing stage, resulting in the simultaneous generation of cells 

and making the pores in the foam uniform. Figure 2 (C) shows the foam pore-size distributions determined based on the 

FESEM‎image.‎Most‎of‎the‎pores‎are‎less‎than‎600‎μm‎in‎diameter,‎with‎a‎peak‎between‎100‎μm‎and‎200‎μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 A) FESEM photograph of PDMS foams. B) Photograph of of PDMS foam. C) pore size distribution of PDMS 
foam.

 

 

 

Fourier transform infrared spectroscopy (FTIR) 

The functional groups present in the foam were determined through analysis of the FTIR spectra of the PDMS foam, as 

depicted in Figure 3. The significant peak at 1009 cm-1, which is the distinctive peak of the backbone of PDMS foam, is 

attributed to the stretching of Si-O-Si bonds. The main absorption bands in the FTIR spectra of PDMS foam are illustrated in 

Table 1 [27,54,58]. 

 

A) B) 

C) 
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Table 1 Main absorption bands in the FTIR spectra of PDMS foam 

 

 
Fig. 3 FTIR spectra of PDMS foam 

 

Adsorption study 

  

Effect of Contact Time 

The influence of contact time on the adsorption of 100 mg/L of B, T, and X is illustrated in Figure 4. The adsorption 

capacities rapidly increased for the first 120 minutes due to the availability of vacant active sites, but increased slightly with 

increasing contact time as occupying the remaining adsorption sites became difficult due to repulsive forces between the 

adsorbate molecules adsorbed on the PDMS foam surface and those left in solution. After six hours, no significant changes in 

adsorption capacity indicated that the adsorption equilibrium was reached.  The adsorption rate was in the order of X > T > B. 

This behaviour is attributed to several factors, namely solubility, the number of substituents, and the molecular size of BTX. 

The water solubility of BTX is in the order of X < T < B. As the least soluble compound, X is less surrounded by water 

molecules, making it easier to interact with the PDMS foam, leading to a higher adsorption capacity. The number of CH3 

substituents also increases from zero (B) to two (X), which in turn increases the molecular size of the compound (X > T > B). 

The larger the size of the molecules, the higher the interaction between the molecules and the PDMS foam, reflecting the 

adsorption rate order [59–63]. The increase of the methyl group (an electron-donating group) on the aromatic ring increases 

the electron density of the benzene ring, thus increasing the affinity of BTX to PDMS foam in the order X > T > B [59–63]. 

 
Fig. 4 The effect of contact time on the adsorption of 100 mg/L of  B, T, and X by PDMS foam 
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Effect of Adsorbent Dosage  

 

The dependence of B, T, and X adsorption capacity and adsorption efficiency on the PDMS foam dosage while maintaining 

other process variables constant is demonstrated in Figure 5, Figure 6, and Figure 7, respectively. The increase in the PDMS 

dosage led to a decrease in adsorption capacity, which was associated with the unsaturation of available active sites due to an 

increase in adsorbent dose at the same volume and concentration of BTX solution. However, the removal efficiency increases 

as the PDMS dosage increases. The increase in removal efficiency is associated with the increased availability of active sites. 

The intersection point in the graph is considered the optimum dose because it represents a balance between B removal 

efficiency and adsorption capacity. Hence, 0.2 g was selected as the optimum dose and was applied in further analyses.   

 

 
Fig. 5 Effect of adsorbent dose on the adsorption capacity of PDMS foam for the removal of B 

 

 

 
Fig. 6 Effect of adsorbent dose on the adsorption capacity of PDMS foam for the removal of T 

 

 

 
Fig. 7 Effect of adsorbent dose on the adsorption capacity of PDMS foam for the removal of X 
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Effect of Initial BTX Concentration  

 

Figure 8 presents the impact of the initial BTX concentration on the adsorption capacity of PDMS foam. The qe values 

increased with increasing adsorbate concentrations. Typically, this behaviour can be attributed to the increased driving force 

induced by the concentration gradient. As the BTX molecules in the solution increase, more BTX molecules surround the 

active sites of the PDMS foam, thus increasing the probability of BTX-PDMS interaction.  

 
Fig. 8 Effect of initial BTX concentrate on the adsorption capacity of  PDMS foam 

 

 

Adsorption Isotherms Models 

 

Three isotherm models, namely, Langmuir, Freundlich, and Temkin isotherms, were examined to interpret an interaction of 

BTX with the PDMS foam. Figure 9 displays the adsorption isotherms, while Table 2 provides the related adsorption 

parameters. Based on the correlation coefficient R2 values, the Freundlich model exhibited a better fit to the experimental 

data, meaning that the adsorption of BTX onto PDMS foam occurred at heterogeneous surfaces through a multilayer sorption 

system involving physical forces. The value of the parameter n in the Freundlich model indicates the favorability of the 

adsorption. Adsorption is favourable if the values of n are higher than unity. Therefore, BTX is favourably adsorbed by the 

PDMS foam, and their interaction is strong. The findings are compatible with other research studies [53,64]. The maximum 

adsorption capacity of several adsorbents for BTX is illustrated in Table 3. 

 

Table 2 Adsorption parameters calculated from Langmuir, Freundlich, and Temkin isotherm models 

 
Parameter  B T X 

Langmuir  qmax (mg/g) 46.948 243.902 23.529 

 
KL (L/mg) x 103 3.02471 0.76756 35.76538 

 
R2 0.9435 0.8839 0.8348 

Freundlich  qmax (mg/g) 37.682 75.102 26.688 

 
q(exp) (mg/g) 25.605 45.460 17.593 

 
n 1.0972 1.0814 2.0032 

 
KF mg/g(L/mg)1/n  0.2603 0.2398 2.1878 

 
R2 0.9939 0.9978 0.9967 

Temkin  B1 (J/mol) 8.665 13.279 4.762 

 
KT (L/g) 0.043 16.576 2.282 

 
R2 0.9639 0.8677 0.8730 

 

Table 3 The maximum adsorption capacity of various adsorbents for BTX 

Adsorbent 
 

Maximum adsorption capacity, qmax (mg/g) References 

B T X 

Thermally modified lignite 2.719 3.161 3.716 [53] 
Zeolite Na-P1 0.032 0.0343 0.035 [65] 
 Smectite organoclay 0.52 0.69 0.75 [49] 
Commercial Organoclay 0.938 2.765 14.865 [10] 
Periodic mesoporous organosilica 0.6803 0.6207 0.6601 [19] 
CNT sponge 0.13 2.45 14.31  [66] 
PDMS foam 25.605 45.460 17.593 The present work  
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Fig. 9 Isotherm models for adsorption of BTX by PDMS foam Kinetic Studies

 

Figure 10 represents the linearised graph of a pseudo-second-order kinetic model for BTX. The parameters of the 

pseudosecond-order kinetic models for BTX are shown in Table 4. The correlation coefficient R2 values of pseudosecond-

order are much closer to unity. Furthermore, the theoretical values qe(cal) agree well with the corresponding experimental 

values qe(exp). Hence, the adsorption of BTX on PDMS foam is better described by the pseudo-second-order model. The 

findings are consistent with other research studies [64,65,67,68]. 

 
Fig. 10 Pseudo-second-order kinetic model for adsorption of BTX by PDMS foam 
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Table 4 Pseudo-second-order kinetic model parameters for the adsorption of BTX onto PDMS foam 

Adsorbate 

Initial concentration 

qe (exp) qe (cal) K2 

 

 

Rate 

R2 

 C0 (mg/L) (mg/g) (mg/g) (g/mg.h) (mg/g.h) 
 

B 100 7.25 8.63 0.001521 0.1133 0.9874 

T 100 8.92 11.03 0.000827 0.1006 0.9734 

X 100 12.62 15.63 0.000619 0.1512 0.9751 

 

Adsorption mechanism 

The mechanism responsible for the adsorption of BTX on PDMS foam can be identified as the CH –π‎ interaction,‎which‎

arises mainly from charge transfer between the PDMS methyl groups and the π- electrons of BTX (Figure 11). Methyl groups 

are electron-donating, meaning they can increase the electron density of the aromatic ring. The increased electron density in 

the aromatic ring can enhance the CH-π‎interaction.‎ In‎ this‎ interaction,‎ the‎hydrogen‎atoms‎ from‎CH‎groups‎on‎the‎PDMS‎

foam‎can‎be‎attracted‎to‎the‎π‎electron‎cloud‎of‎the‎aromatic‎ring.‎The‎higher‎electron‎density‎in‎the‎aromatic‎ring makes it 

more attractive to the hydrogen atoms, strengthening the CH-π‎interaction.‎In‎BTX‎compounds,‎X‎has‎two‎methyl‎groups,‎T‎

has one, and B has none, resulting in X having the strongest CH-π‎interaction‎with‎PDMS‎foam,‎followed‎by‎T‎and‎then‎B.‎

Another potential interaction can be related to the hydrophobic nature of the PDMS foam and BTX. BTX are nonpolar 

substances and thus are considered hydrophobic molecules [59,60,62]. PDMS foam, composed mainly of repeating 

dimethylsiloxane units, is hydrophobic due to its surface's abundance of methyl groups. Being of similar properties, the 

affinity of BTX towards the hydrophobic surface of PDMS foam resulted in a higher BTX-PDMS interaction and, thus, a 

higher adsorption capacity. 

 

 
Fig 11: CH-π‎interaction between a benzene molecule and PDMS foam 

 

Conclusions 

This paper investigated the adsorption of BTX onto PDMS foam from aqueous solutions. After six hours, adsorption 

equilibrium was achieved. The adsorption capacity increases in the order X > T > B. Due to the increase of the methyl group 

on the aromatic ring, the electron density increased, reinforcing the CH –π‎interaction‎between‎BTX‎and‎PDMS‎foam.‎The‎

Freundlich model was found to exhibit a better fit to the experimental data, meaning that the adsorption of BTX onto PDMS 

foam occurred at heterogeneous surfaces through a multilayer sorption system involving physical forces. The kinetics results 

revealed that the adsorption of BTX onto PDMS foam was best represented by the pseudo-second-order model. PDMS foam 

may constitute an efficient and environmentally friendly adsorbent for BTX removal.  
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