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This study provided some new methods to solve initial value problems (IVPs) and boundary
value problems (BVPs) of fractal-fractional differential equations (FFDEs) using operational
matrix (OM) and artificial neural networks (ANNs). This research is centered on deriving two
methods and formulating two novel definitions of fractal-fractional differential and integral
operators. The first part of this thesis presents a new definition of the generalized Caputo
differential and integral operators with fractional order and fractal dimension. Utilizing
the OM based on orthogonal polynomials (Legendre and Jacobi), a numerical method for
addressing various types of FFDEs is provided. This thesis emphasizes the existence theory
and numerical solutions of multi-order boundary and initial value FFDEs. In these chapters,
we explore convergence, existence, and uniqueness of solutions to FFDEs, aiming to determine
the existence and uniqueness of at least one solution. Additionally, an error-bound analysis
is conducted to confirm the validity and convergence of the method. The OM simplifies
FFDEs into algebraic systems, resulting in straightforward and easily solvable problems.
Subsequently, the performance of the proposed technique in addressing real-world problems
is demonstrated. In the second part of the thesis, we developed the Hilfer fractal-fractional
derivative definition. Similarly, the OM with the tau method for Hilfer fractal-fractional
differentiability is generalized for solving FFDEs based on orthogonal polynomials. Numerical
results suggest that the proposed method is quite accurate compared to other existing methods.
The Jacobi polynomial, with its two parameters, ξ and ϑ , leads to distinct collections of
orthogonal polynomials. Adjusting these parameters generates different types of orthogonal
polynomials, each with unique characteristics. We also investigated numerical illustrations
by varying the values of fractional and fractal parameters as well as the number of terms
from truncated shifted Legendre polynomials (SLPs) and shifted Jacobi polynomials (SJPs).
Our OM techniques based on SLPs and SJPs require only a few terms to obtain an accurate
solution. In the third part, ANNs based on a generalized power series method in the generalized
Caputo fractal-fractional derivative (GCFFD) are derived to approximate solutions of linear
and non-linear FFDEs. Finally, ANNs employing a combination of power series methods
in the GCFFD are developed to approximate solutions of higher-order linear FFDEs with
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both constant and variable coefficients. Initially, the algorithm utilized a truncated series.
The values of the unknown coefficients in this truncated power series were then determined
using an optimization technique to minimize the criterion function. This discovery indicates
convergence toward optimal model coefficients as the learning process advances. Compared
to other traditional methods, the suggested approach has proven to be more accurate. The
definitions and techniques provided surpass traditional methods in accuracy, representing a
significant advancement in the field.

Keywords: Operational matrix, Fractal-fractional differential equations, Artificial neural
networks, Generalized Caputo fractal-fractional derivative, Hilfer fractal-fractional derivative

SDG: GOAL 4: Quality Education
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keperluan untuk ijazah Doktor Falsafah

KAEDAH OPERASI MATRIKS BERASASKAN POLINOMIAL ORTOGON DAN
RANGKAIAN NEURAL BUATAN UNTUK MENYELESAIKAN PERSAMAAN

PEMBEZAAN PECAHAN-FRAKTAL

Oleh

SHLOOF AML MELAD ASAN

Mac 2024

Pengerusi: Profesor Madya Norazak bin Senu, PhD
Fakulti: Sains

Kajian ini menyediakan beberapa kaedah baharu untuk menyelesaikan masalah nilai awal
(MNA) dan masalah nilai sempadan (MNS) persamaan pembezaan fraktal-pecahan (PPFP)
menggunakan matriks operasi(MO) dan rangkaian neural buatan (RNB). Kajian ini tertumpu
kepada memperoleh dua kaedah dan menerbitkan dua definisi pengoperasi fraktal-pecahan
pembezaan dan kamiran. Bahagian pertama tesis ini membentangkan definisi baharu mengenai
pembezaan Caputo teritlak dan pengoperasi kamiran dengan peringkat pecahan dan dimensi
fraktal. Menggunakan MO berdasarkan polinomial ortogon (Legendre dan Jacobi), kaedah
berangka untuk menyelesaikan pelbagai jenis PPFP diterbitkan. Tesis ini menekankan teori
kewujudan dan penyelesaian berangka untuk nilai awal dan sempadan multi-peringkat PPFP.
Dalam bab ini, kami mengkaji penumpuan, kewujudan, dan keunikan penyelesaian kepada
PPFP, yang bertujuan untuk menentukan kewujudan dan keunikan sekurang-kurangnya satu
penyelesaian. Di samping itu, analisis batas ralat dilakukan untuk mengesahkan kesahihan
dan penumpuan kaedah. MO memudahkan PPFP ke dalam sistem algebra, menghasilkan
masalah yang ringkas serta mudah diselesaikan. Seterusnya, prestasi teknik yang dicadangkan
dalam menyelesaikan masalah dunia nyata ditunjukkan. Dalam bahagian kedua tesis, kami
membangunkan definisi terbitan fraktal-pecahan Hilfer. Begitu juga, MO den gan kaedah
tau terhadap kebolehbezaan pecahan-fraktal Hilfer diitlakkan untuk menyelesaikan PPFP
berdasarkan polinomial ortogon. Keputusan berangka menunjukkan bahawa kaedah yang
dicadangkan lebih jitu berbanding kaedah lain sedia ada. Polinomial Jacobi, dengan dua
parameter, ξ dan ϑ , membawa kepada koleksi polinomial ortogon yang berbeza. Melaraskan
parameter ini menghasilkan pelbagai jenis polinomial ortogon, masing-masing dengan ciri
unik. Kami juga mengkaji ilustrasi berangka dengan mengubah nilai parameter pecahan dan
fraktal serta bilangan sebutan daripada polinomial Legendre teranjak(PLT) yang dipangkas
dan mengalihkan polinomial Jacobi teranjak(PJT). Teknik OM kami berdasarkan PLT dan PJT
hanya memerlukan beberapa sebutan untuk mendapatkan penyelesaian yang jitu. Di bahagian
ketiga, RNB berdasarkan kaedah siri kuasa teritlak dalam terbitan fraktal-pecahan Caputo
teritlak (TFPCT) diperoleh kepada penyelesaian anggaran PPFP linear dan tak linear. Akhirnya,
RNB yang menggunakan gabungan kaedah siri kuasa dalam TFPCT dibangunkan untuk penye-
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lesaian anggaran PPFP linear peringkat lebih tinggi dengan pekali tetap dan berubah. Pada
permulaan, algoritma menggunakan siri terpangkas. Nilai-nilai pekali yang tidak diketahui
dalam siri kuasa terpangkas ini kemudiannya ditentukan menggunakan teknik pengoptimuman
untuk meminimumkan fungsi kriteria. Penemuan ini menunjukkan penumpuan ke arah pekali
model optimum apabila proses pembelajaran berlaku. Berbanding dengan kaedah tradisional
lain, pendekatan yang dicadangkan telah terbukti lebih jitu. Definisi dan teknik yang diperoleh
melebihi kaedah tradisional dari segi kejituan mewakili kemajuan yang ketara dalam bidang.

Kata Kunci: Matriks operasi, Persamaan pembezaan Fraktal-pecahan, Rangkaian neural
buatan, terbitan fraktal-pecahan Umum Caputo, terbitan fraktal-pecahan Hilfer

SDG: GOAL 4: Kualiti Pendidikan
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CHAPTER 1

INTRODUCTION

Differential and integral operators are utilised to solve modeling related problems. Differ-

ential equations (DEs) are essential tools for modeling various issues in applied science

and technology that involves unknown functions and derivatives, including mathematical

models of electrical circuits, chemical reactions, mechanical systems, and fluid mechanics.

Ordinary Differential Equations (ODEs), Partial Differential Equations (PDEs), Fractional

Differential Equations (FDEs), and Fractal-Fractional Differential Equations (FFDEs) are

the four forms of DEs. DEs can be classified into linear and nonlinear categories. The

significance of nonlinear problems lies in the fact that the majority of phenomena in the

world are inherently nonlinear, requiring the use of nonlinear equations for their accurate

representation.

An analytical solution is obtained by solving a DE, expressing the dependent variable as

an algebraic equation in terms of the independent variable. This solution is presented in a

closed form. Conversely, a numerical solution involves approximations for a DE, typically

lacking a closed-form representation and relying on computational methods for estimation.

This thesis is divided into two parts. Firstly, we explain on various DEs methods

together with their real-world utilizations for solving linear/nonlinear systems of FFDEs.

The principal goal of this thesis is to introduce new fractal-fractional differential and

integral operators and develop new operational matrix modifications (spectral method) for

numerically solving fractal-fractional differential equations (FFDEs). Furthermore, we

present an Artificial Neural Networks (ANNs) approach to solve FFDEs. This chapter

covers the fundamentals of FFDEs, fractional mathematical models, operational matrices,

the tau method, and ANNs. It describes the problem statement, research objectives, and

thesis outline.
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1.1 Fractional Calculus

Fractional calculus (FC) is a mathematical discipline concerned with derivatives and

integrals of non-integer order. It is widely realized that fractional derivative-based

models are much better than integer order models in many situations. Being nonlocal,

the fractional derivatives provide excellent tool for understanding various materials and

processes’ memory and hereditary properties. This is the main advantage of fractional

derivatives compared to classical integer order derivatives. As a result of their numerous

real-world applications, fractional differential equations (FDEs) are becoming increasingly

important. For many years, fractional calculus was considered an abstract mathematical

concept.

However, the subject is now used in almost every science branch; numerous appli-

cations of the fractional derivative operator are used in many fields including viscoelastic

damping (Caputo, 1967), anomalous diffusion processes, signal processing, electrochem-

istry, fluid flow, chemistry, and others (Oldham and Spanier, 1974; Sun et al., 2018).

Around the world, it has been discovered that models based on fractional derivatives out-

perform integer-order models. For three centuries, fractional calculus became traditional

but uncommon amongst science and engineering communities. The Riemann-Liouville,

Granwald-Letinkov, and Caputo definitions of the fractional derivative are arguably the

most used forms. These existing definitions are similar only in a few cases but are not

identical in general (Podlubny, 1998). These properties outline the behaviors of derivatives

and integrals of various orders:

1. When a function undergoes zeroth order differentiation or integration, the function

remains unchanged.

2. If the order of differentiation or integration is an integer number, the fractional and

ordinary operations are the same.

3. Just like the rules for regular derivatives and integrals, fractional operations follow

2
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linearity. For instance, for any form of fractional differentiation Dα :

Dα( f (x)+g(x)) =Dα f (x)+Dαg(x).

1.2 Fractal-Fractional Derivative

The fractal derivative extends the traditional concept of derivatives to accurately represent

the intricate and discontinuous characteristics found in fractal media such as magnetic

plasma Chen (2006), heat transfer, wool fibers, groundwater flow (Atangana and Qureshi,

2019), geometric (Akgül, 2021), and porous materials (Fan and He, 2012). The concept

of fractal-fractional derivatives introduces a fascinating extension to the traditional idea of

derivatives in mathematics. While the standard derivatives we are familiar with describe

how a function changes over a small, infinitesimal interval, fractal-fractional derivatives

delve into a realm where this change is not confined to integer dimensions. Instead, they

explore the idea that change can occur in dimensions that are fractions, or even non-integer

values. This notion opens up a rich and intricate understanding of how quantities evolve

and interact in systems where the traditional rules of calculus might not fully apply.

The fractal-fractional derivative (FFD) is an amalgamation of two preceeding con-

cepts: the fractal derivative and the fractional derivative. It encompasses two distinct

orders, namely fractional-order and fractal-order. Fractal-fractional (FF) differential and

integral operators are new concepts that appears superior to existing fractional operators

with constant orders. Selecting the fractional order leads to a fractal order system,

while opting for a fractal order equal to one results in a fractional order system. The

primary motivation for this research lies in the inherent association of fractal-fractional

order differential equations with memory-based systems, commonly found in biological

systems. Existing FD derivatives are represented by these derivatives, which have both

memory and fractal dimension Dα,β . The memory effect and fractal properties included

in the FD α and β play an important role in describing real-world phenomena and can

be explained using FD and FFD. These novel differential operators include the fractal

3
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derivative of a continuous function and power law, the exponential decay law, and the

extended Mittag-Leffler function. These operators can be converted to classical, fractal,

and fractional differential and integral operators in the limit cases, making them upper

classes of differential and integral operators. The fractal differential and integral operators

are recovered as the fractional order approaches zero. In a nutshell, it is expected that such

operators have the capacity to identify self-similarities.

1.3 Operational Matrices

Researchers in applied sciences field often encounter situations where it is not possible

to find precise analytical solutions to tackle differential or integral equations-related

problems. Thus, there is a strong need to develop effective numerical methods that can

provide approximate answers for these types of equations. Popular operational matrices

approaches that make use of polynomials and spectral procedures such as Collocation and

Tau methods resolve this issue by transforming both differential and integral equations

into system of algebraic equations. Polynomials are widely utilized in mathematics due

to their immense utility as they can be easily represented and solved using computers,

can be used to portray various types of problems, and can be integrated and differentiated

effortlessly. Examples of polynomial uses include construction of spline curves and highly

accurate estimation of specific functions. The literature agrees that operational matrices

methods can be effectively utilized to solve initial as well as boundary value issues for

fractional order differential equations.

In the realm of fractional calculus, the derivation of operational matrices for frac-

tional derivatives began with (Saadatmandi and Dehghan, 2010). This process involves

considering a set of basis functions and their fractional derivatives. By examining the

relationship between the original functions and their fractional derivatives, operational

matrices for fractional differentiation can be derived. These matrices enable efficient com-

putation of fractional derivatives in numerical methods, especially for solving fractional

4
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differential equations.

The goal is to create matrices that streamline the calculation of fractional deriva-

tives, facilitating their implementation and analysis in various applications. These matrices

are built using orthogonal polynomials, coupled with methods such as Collocation and

Tau, to convert differential and integral equations into systems of algebraic equations.

This conversion greatly simplifies their solution using computational software. The

choice of polynomials is due to their practicality and widespread utility in mathematics.

They are straightforward to define, computationally efficient, and capable of representing

diverse functions. Their ease of integration and differentiation makes them valuable tools.

Additionally, polynomials allow for the construction of spline curves by assembling them,

enabling accurate approximations of various functions.

1.4 Artificial Neural Networks

Artificial neural networks (ANNs) have high learning ability. They have numerous

advantages including high adaptability and fast error computation, and is usually utilised

to solve ordinary differential equations, partial differential equations Lagaris et al. (1998),

fuzzy differential equation (Effati and Buzhabadi, 2012), and fractional differential

equations Raja et al. (2010b).

ANNs is highly effective in function approximation because it tackles the matter us-

ing differential equations method (in specific as a differential function). Computational

intelligence methods are reliable, can improve accuracy and convergence rate, and require

less computational time (Sabir et al., 2020; Jafarian et al., 2017).

Artificial intelligence techniques based on neural network models have been exten-

sively used in various applied science and engineering problems such as financial

(Coakley and Brown, 2000), medical (Agatonovic and Beresford, 2000), image recog-

5
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Figure 1.1: Mathematical framework of ANN.

nition (Roy et al., 2015), biology Umar et al. (2021), process optimization and control

systems (Chambers and Mount, 2002), Mondal et al. (2023).

The fundamental element of an ANN is known as an artificial neuron (node). This

neuron comprises several key components, as depicted in Figure 1.1

1. Input: This refers to the signals or data received by the neuron from other neurons

or from the input layer of the network. These inputs are weighted based on their

importance or significance to the neuron.

2. Summing Junction: The neuron sums up the weighted inputs along with a bias

term. The bias allows the neuron to adjust the threshold at which it activates.

3. Activation Function: This function determines the output of the neuron based on the

sum of the weighted inputs and the bias. It introduces non-linearity into the network,

signifying that alterations in the first variable do not always lead to a consistent

change in the second variable, allowing the network to learn complex patterns and

relationships in the data. The criteria for an activation function involve possessing

a derivative, which denotes the alteration in the y-axis concerning changes in the

x-axis (commonly referred to as slope in Backpropagation), and being a monotonic

6
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function, implying it is consistently either non-increasing or non-decreasing. There

exists a multitude of activation functions documented in the literature; however, the

most prevalent ones are outlined as follows:

(a) Linear function:

f (x) = ax, a ∈ R.

Range: (−∞,∞).

(b) Sigmoid function:

f (x) = 1
1+e−x .

Range: (0,1).

(c) Hyperbolic tangent function:

f (x) = tanh(x) = ex−e−x

ex+e−x .

Range: (−1,1).

(d) Rectified linear unit (ReLU) function:

ReLU(x) =max{0,x}.

Range: [0,∞).

(e) Identity function:

f (x) = x.

Range: (−∞,∞).

7
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4. Bias: The bias term is a constant value added to the sum of the weighted inputs

before passing through the activation function. It helps the neuron to learn and adjust

its output.

5. Output: After the sum of the weighted inputs and the bias are passed through the

activation function, the neuron produces an output. This output is then passed on to

other neurons in the network as input.

Consider example of an ANN with four input values: 3, -4, 2, and 1, each with

weights of 0.13, 0.2, 0.6, and 0.1 as shown in Figure 1.2. For this particular setup,

the bias is set to zero. This example utilizes a common activation function known as

sigmoid. The neuron is involved in four processes, as was previously indicated, as follows:

Step 1: The input values are multiplied by their corresponding weights to begin the

8
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weighting process.

x1Ð→x1×w1 = 3×0.13 = 0.39,

x2Ð→x2×w2 = −4×0.2 = −0.8,

x3Ð→x3×w3 = 2×0.6 = 1.2,

x4Ð→x4×w4 = 1×0.1 = 0.1.

Step 2: The weighted inputs are summed, followed by the addition of the bias term.

x↦(
4
∑
i=1

xi×wi)+b

= 0.39−0.8+1.2+0.1+0 = 0.89

Step 3: Applying the sigmoid function.

f (x) = 1
1+e−x

= 1
1+e−0.89

= 0.709.

Step 4: Considering this value as the output of the last layer, the neuron’s output is 0.709.

In summary, an artificial neuron in an ANN is composed of inputs, a summing

junction where inputs are weighted and summed along with a bias term, an activation

function that determines the neuron’s output, and finally, the output itself, which is

passed on to other neurons in the network. These components work together to process

information and learn patterns from the input data. The Error (Loss) function serves as

a means to assess the performance of your algorithm in modeling your dataset. When

your predictions deviate significantly, the error function yields a higher value. Conversely,

when predictions are more accurate, it produces a lower value. While fine-tuning your

algorithm to enhance the model, the error function provides feedback on your progress. It

9
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essentially aids in gauging the disparity between predicted and actual values.

1.5 Orthogonal Polynomials

Approximation theory and computational schemes are the main areas that utilise orthog-

onal polynomials. Most popular orthogonal polynomials include Legendre polynomials,

Jacobi polynomials, Chebyshev polynomials, Laguere polynomials and Hermite polyno-

mials. In specific, this work will zoom in on shifted Legendre and shifted Jacobi polyno-

mials.

1.5.1 Shifted Jacobi Polynomials

Jacobi polynomials (JPs) was introduced by Carl Gustav Jacob Jacobi (1804-1851). to

tackle second order homogeneous differential equations of the form

(1−x2)ν ′′(x)+(ϑ −ξ −(ϑ +ξ +2)x)ν ′(x)+n(n+ξ +ϑ +1)ν(x) = 0. (1.1)

For ϑ ,ξ > −1 , and n ∈N then a polynomial of order n is solution of Eq.(1.1). It is defined

as the JPs (Bojdi et al., 2013; Doha et al., 2012) with two parameters, P(ξ ,ϑ)n (x), is defined

over the interval [−1,1] as,

P(ξ ,ϑ)n (x) = Γ (ξ +n+1)
n!Γ (ϑ +ξ +n+1)

n
∑
m=0
(n

m
)Γ (n+m+ξ +ϑ +1)

Γ (ξ +n+1)
(2x−1

2
)

m

. (1.2)

JPs have been verified to be orthogonal on the interval [−1,1] with respect to the weight

function (1− x)ξ (1+ x)ϑ . Using x = 2z
λ
−1 to convert the original interval of [−1,1] into

[0,λ ] will result to the two-parametric shifted JPs as given below,

P(ξ ,ϑ)
λ ,i (z) =

i
∑
k=0

(−1)i−k Γ (i+ϑ +1)Γ (i+k+ϑ +ξ +1)
Γ (k+ϑ +1)Γ (i+ξ +ϑ +1)(i−k)!k!λ k zk , i = 0,1,2,3, .... (1.3)

10
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P(ξ ,ϑ)
λ ,i (0) = (−1)i Γ (i+ϑ +1)

Γ (i+1)Γ (ϑ +1)
,

P(ξ ,ϑ)
λ ,i (λ) = Γ (i+ξ +1)

Γ (i+1)Γ (ξ +1)
,

and

max
z∈[0,λ ]

∣P(ξ ,ϑ)
λ ,i (z)∣ ⩽ ∆̂(i,κ),

where ∆̂(i,κ) = Γ (i+κ+1)
Γ (i+1)Γ (κ+1) and κ =max(ξ ,ϑ).

The orthogonality condition of JPs on [0,λ ] is as under

∫
λ

0
P(ξ ,ϑ)

λ ,i (z)P(ξ ,ϑ)
λ , j (z)W

(ξ ,ϑ)
λ

(z)dz = R(ξ ,ϑ)
λ , j θ(i, j) , (1.4)

where

θ(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if i = j,

0, if i ≠ j.
(1.5)

the weight function W (ξ ,ϑ)
λ

(z) has the following form

W (ξ ,ϑ)
λ

(z) = (λ − z)ξ zϑ , (1.6)

and

R(ξ ,ϑ)
λ , j = λ ξ+ϑ+1 Γ ( j+ξ +1)Γ ( j+ϑ +1)

(2 j+ξ +ϑ +1)Γ ( j+1)Γ ( j+ξ +ϑ +1)
. (1.7)

Orthogonality of JPs will result to any function y1 ∈C[0,λ ] may be mentioned as a linear

combination of shifted JPs as,

y1 =
∞
∑
k=0

ck P(ξ ,ϑ)
λ ,k (z). (1.8)

11
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It is important to obtain the truncated sum of shifted JPs to solve related numerical prob-

lems. Thus, Eq. (1.8) can be expressed as,

y1 ≃
n
∑
k=0

ck P(ξ ,ϑ)
λ ,k (z). (1.9)

Since Eq.(1.9) obtains the best result as nÐ→∞, thus, via Eqs.(1.4), (1.6), and (1.7), ck

can be obtained via,

1

R(ξ ,ϑ)
λ , j

∫
λ

0
W (ξ ,ϑ)

λ
(z)y1(z)P

(ξ ,ϑ)
λ , j (z)dz, j = 0,1, ....

In vector notation Eq.(1.9) has the following form,

y1 ≃ AT
N ΨN(z), (1.10)

where

AT
N = [c0, c1, ..., cn], ΨN(z) = [P(ξ ,ϑ)λ ,0 (z), P(ξ ,ϑ)

λ ,1 (z), ..., P(ξ ,ϑ)
λ ,n (z)] and N = n+1 is the vec-

tors size utilized as a scale to come out with relevant numerical schemes. The coefficient

vector is AT
N and finally ΨN(z) represents the function vector. We suggest readers refer to

(Doha et al., 2012) for a more detailed study of JPs. Other special orthogonal polynomials

linked to shifted Jacobi’s polynomials are as follows:

1. Pλ ,i(z) = P(0,0)
λ ,i (z), is the shifted Legendre polynomials by putting ξ =ϑ = 0 in (1.3).

2. Tλ ,i(z) =
Γ (i+1)Γ ( 1

2)
Γ (i+ 1

2)
P
(− 1

2 ,−
1
2)

λ ,i (z), is stated to have shifted Chebyshev polynomials by

giving ξ = ϑ = −1
2 in (1.3).

3. Uλ ,i(z) =
Γ (i+2)Γ ( 1

2)
Γ (i+ 3

2)
P
( 1

2 ,
1
2)

λ ,i (z), is stated to have shifted Chebyshev of second kind if

ξ = ϑ = 1
2 in (1.3).

4. Cξ

λ ,i(z) =
Γ (i+1)Γ (ξ+ 1

2)
Γ (i+ξ+ 1

2)
P
(ξ− 1

2 ,ϑ−
1
2)

λ ,i (z), is stated to have shifted Gegenbauer (Ultras-

pherical) polynomials by setting if ξ = ϑ in (1.3).

5. Vλ ,i(z) =
Γ (2i+1)
Γ (2i−1) P

( 1
2 ,−

1
2)

λ ,i (z), is stated to have shifted Chebyshev polynomials of third

12
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kinds by giving ξ = 1
2 , ϑ = −1

2 in (1.3).

6. Wλ ,i(z) =
Γ (2i+1)
Γ (2i−1) P

(− 1
2 ,

1
2)

λ ,i (z), when ξ = −1
2 , ϑ = 1

2 in (1.3) it is said to have shifted

Chebyshev polynomials of the fourth order.

1.5.2 Shifted Legendre Polynomials

If both ξ and ϑ parameters are set as zero, the SJ polynomials will be transformed into

shifted Legendre (SL) polynomials. SL polynomials have significance because their weight

function is one. These kind of polynomials is given as follows,

Li(t) =
i
∑
l=0

Ωi,l t l , i = 1,2,3, ...

where

Ωi,l =
(−1)i+l Γ (i+ l+1)
Γ (i− l+1)λ l (l!)2

.

These polynomials are orthogonal on [0,λ ], the orthogonality relation of these polynomi-

als is given as,

∫
λ

0
Li(t)L j(t)dt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ

2i+1
, if i = j,

0, if i ≠ j.
(1.11)

Based on the orthogonality of these polynomials, we can derive a smooth function such as,

g(t) =
∞
∑
i=0

ci Li(t),

where ci can be obtained by relation

ci =
2i+1

λ
∫

λ

0
g(t)Li(t)dt.

13
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1.6 Basic Definitions and Preliminary Concepts

This section introduces the well-known fractal and fractional calculus definitions, such as

the Riemann-Liouville (RL), Caputo, generalized Caputo, Hilfer, Caputo fractal-fractional,

and Riemann-Liouville fractal-fractional operators. This section will also discuss some

special functions, such as the Gamma and the Mittag-Leffler functions, which play

important roles in fractal and fractional calculus.

The numerical solutions of FFDEs have been the subject of research in numerical

analysis. Various types of numerical methods have been developed for solving FFDEs. In

general, multi-order FFDE is described as,

Dα,β y(t) = F(t,y(t),Dµ1,β1 y(t), ...,Dµk,βk y(t)), (1.12)

or

Dα,β y(t) =
k
∑
i=0

ci Dµi,βk y(t)+ f (t), (1.13)

with its initial conditions:

y(i)(0) = di , i = 0,1, ...,n,

where n <α < n+1, 0 < µ1 < µ2 < ... < µk <α , 0 < β1 < β2 < ... < βk < β , and f (t) is a known

function. Consider a system of multi-order fractal-fractional differential equations:

Dα1,β1 y1(t) =G1(t,y1(t), y2(t), ..., ym(t))

⋮ ⋮ ,

Dαm,βm ym(t) =Gm(t,y1(t), y2(t), ..., ym(t))

(1.14)
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subject to initial conditions:

y(i)r (0) = di,r , i = 0,1, ...,n, r = 1, ..,m. (1.15)

1. Gamma Function

The Gamma function, denoted by the Greek capital letter Γ (x), is one of the impor-

tant functions that is thought to be an extension of the factorial function for positive

real numbers.

Γ (n) = (n−1)!, n ∈N.

Definition 1.1

Γ (x) = ∫
∞

0
tx−1 e−t dt, Re(x) > 0.

These are a few of the most important properties of Gamma function (Owolabi and

Atangana, 2019) are given by

Γ (x+1) = xΓ (x), Re(x) > 0.

Γ (x) = (x−1)!, x > 0,

and

Γ (1
2
) = ∫

∞

0
e−t t−

1
2 dt =

√
π.

2. Beta Function

The Beta function, denoted by B(u,v), is another special function defined by an

improper integral (see for e.g. (Owolabi and Atangana, 2019))

B(u,v) = ∫
1

0
tu−1 (1− t)v−1 dt.
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The relationship between the Gamma and Beta functions is given by:

B(u,v) = Γ (u)Γ (v)
Γ (u+v)

.

3. Mittag-Leffler Function

It is a special function that extends the exponential function and is frequently used in

the solutions of fractional differential equations and systems of FFDEs (Owolabi &

Atangana, 2019):

Eα(x) =
∞
∑
n=0

xn

Γ (αn+1)
, α > 0.

As a special case, if α = 1. Then

Eα(x) =
∞
∑
n=0

xn

Γ (n+1)
=
∞
∑
n=0

xn

n!
= ex.

Definition 1.2 (Miller & Ross, 1993).

The RL fractional derivative of order α > 0 and α,t ∈ R is defined as:

R
aDα

t y(t) = 1
Γ (n−α)

( dn

dtn )∫
t

a
(t − s)n−α−1 y(s)ds , t > a, (1.16)

where a ≥ 0 , n−1 < α < n and n ∈N.

Definition 1.3 (Podlubny, 1998).

The Caputo fractional derivative of order α > 0 is defined as:

CDα
a+y(t) = 1

Γ (n−α) ∫
t

a
(t − s)n−α−1 y(n)(s)ds , t > a, (1.17)

where n−1 < α ⩽ n and n ∈N.
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Definition 1.4 (Odibat & Baleanu, 2020).

The generalized fractional integral of a function y(t) of order α > 0, Iα,ρ
a+ y(t), is defined

by:

Iα,ρ
a+ y(t) = ρ1−α

Γ (α) ∫
t

a
sρ−1 (tρ − sρ)α−1 y(s)ds, (1.18)

(provided it exists) where ρ > 0 and t > a.

Definition 1.5 (Katugampola, 2014).

The generalized Riemann-type fractional derivative of order α > 0 is defined as:

RDα,ρ
a+ y(t) = ρα−n+1

Γ (n−α)
(t1−ρ d

dt
)n∫

t

a
sρ−1 (tρ − sρ)n−α−1 y(s)ds , t > a, (1.19)

where ρ > 0 , a ≥ 0 and n = ⌈α⌉.

Definition 1.6 (Odibat & Baleanu, 2020).

The new generalized Caputo-type fractional derivative of order α > 0 is defined as:

CDα,ρ
a+ y(t) = ρα−n+1

Γ (n−α) ∫
t

a
sρ−1(tρ − sρ)n−α−1(s1−ρ d

ds
)n y(s)ds , t > a, (1.20)

where ρ > 0 , a ≥ 0 ,n−1 < α < n, n = ⌈α⌉, and y(t) ∈Cn[a,b].

In addition, for the new generalized Caputo fractional derivative (Odibat and Baleanu,

2020; Jarad et al., 2017), we have:

CDα,ρC = 0, C is a constant. (1.21)

Moreover, if n−1 < α < n , k > n−1 and k ∉N,

CDα,ρ
a+ (tρ −aρ)k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ
α

Γ (k+1)
Γ (k−α+1) (tρ −aρ)k−α , k ∈N0 and k ⩾ ⌈α⌉ork ∈Nandk > ⌊α⌋,

0 , k ∈N0 and k < ⌈α⌉.
(1.22)
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Definition 1.7 (Atangana, 2017).

Let y(t) be differentiable on (a,b). If y is the fractal differentiable of order β on (a,b),

then the fractal-fractional derivative of y of order α and β in Caputo sense with power law

kernel is defined as:

CDα,β
a+ y(t) = 1

Γ (n−α) ∫
t

a
(t − s)n−α−1 dy(s)

dsβ
ds, (1.23)

where

dy
dtβ
= lim

t→s

y(t)−y(s)
tβ − sβ

,

and 0 < n−1 < β ,α ⩽ n.

Definition 1.8 (Atangana, 2017).

Let y(t) be differentiable on (a,b); if y is the fractal differentiable of order β on (a,b),

then the fractal-fractional derivative of y of order α and β in Riemann-Liouville sense

with power law kernel is defined as:

RLDα,β
a+ y(t) = 1

Γ (n−α)
d

dsβ ∫
t

a
(t − s)n−α−1 y(s)ds, (1.24)

where

dy
dtβ
= lim

t→s

y(t)−y(s)
tβ − sβ

,

and 0 < n−1 < β ,α ≤ n.

Definition 1.9 (Atangana, 2017).

Let y be continuous on an open interval I, the fractal-Laplace transform of order α is

defined by:

FLα
p (y(t)) = ∫

∞

0
tα−1 y(t)exp(−pt)dt, α > 0. (1.25)
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1.7 Problem Statement

In recent years, FFDEs have garnered considerable interest in science and engineering due

to their capacity to model numerous complicated phenomena (Atangana, 2017). Nonethe-

less, the numerical solutions of these equations remain difficult due to the non-local and

non-integer order of the associated derivatives. Thus, the existing numerical approaches

for solving FFDEs encounter several concerns, including low precision numerically, and

large processing costs. These negative aspects are considerable barrier to the accurate

and efficient resolution of FFDE-based real-world situations. Therefore, this research

aimed to produce effective numerical approaches for solving FFDEs. The proposed meth-

ods were based on generalising numerical approaches, including OM and ANN techniques.

The field of differential equations has profoundly impacted numerous scientific dis-

ciplines, offering a mathematical framework for understanding changes across various

systems. Among these, fractal-fractional differential equations stand out for their potential

to model phenomena in fractal materials-structures that exhibit complex patterns at

every scale. Despite their significance, the investigation into solving fractal-fractional

differential equations remains surprisingly sparse. This gap in research is partly due to the

prevailing perception that fractional derivatives, which are crucial to this area of study,

are not adequately suited for fractal materials. This inadequacy stems from the current

limitations in the definitions of fractal-fractional derivatives. These definitions are not

only scarce but also insufficiently versatile, rendering them incapable of addressing a wide

range of problems inherent to fractal materials.

Consequently, there exists a critical need for comprehensive research aimed at de-

veloping new or improved definitions of fractal-fractional derivatives. Such advancements

would not only enable a more effective solution of fractal-fractional differential equations

but also significantly enhance our understanding and modeling capabilities of phenomena

in fractal materials. This thesis aims to bridge this gap by proposing novel approaches to
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define and solve fractal-fractional differential equations, thereby offering new perspectives

and tools for researchers dealing with fractal problems.

1.8 Objectives of the Study

The following are the main objectives of this thesis:

1. To define the definitions of generalized Caputo fractal-fractional differential, inte-

gral, and the Hilfer fractal-fractional differential operator.

2. To derive operational matrices of derivatives with fractional order and fractal dimen-

sion based on the definitions operators defined in objective 1 to solve various types

of multi-order linear/non-linear and systems of FFDEs.

3. To apply artificial neural networks with fractional order and fractal dimension that

utilized the generalized Caputo fractal-fractional derivative sense for solving linear

and nonlinear multi-order FFDEs with an order of range 0 < α ≤ 1.

4. To apply artificial neural networks in the fractal domain to find solutions for higher-

linear multi-order FFDEs with an order of α > 1 with variable and constant coeffi-

cients.

1.9 Scope of the Study

The research will focus on presenting two definitions for generalized Caputo and Hilfer

fractal-fractional differential and integral operators. The primary objective is to develop

operational matrix and artificial neural network approaches utilizing these new fractal-

fractional derivatives. These methods will be employed to solve system and multi-order

fractal-fractional differential equations, with the utilization of operational matrices based

on orthogonal polynomials and collocation points to simplify the problem into a system of

algebraic equations.
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1.10 Motivation

Fractal-fractional differential equations (FFDEs) are widely applicable, yet their solutions

have been thoroughly investigated. As computer technology advances, the need for ap-

propriate numerical methods to solve FFDEs becomes increasingly important. Although

the OM method and ANNs have proven effective for solving initial and boundary value

problems in fractional differential equations, their potential for FFDEs remains largely un-

explored. This thesis is motivated by the desire to fill this gap in research. Firstly, by intro-

ducing two new definitions of generalized Caputo and Hilfer fractal-fractional differential

and integral operators. Secondly, by extending the OM method and ANNs to effectively

solve FFDEs. These methods are utilized to handle a range of issues, including various

types of multi-order FFDEs. The proposed approaches are engineered to be pragmatic,

guaranteeing the precision of the outcomes obtained.

1.11 Outline of the Study

The study is divided into seven chapters as described in the following. The present chapter

introduces readers to the thesis, or in specific on fundamentals of fractional calculus,

FFDEs, operational matrices, orthogonal polynomials and ANNs that will be used in

the later chapters of the thesis. Chapter 1 discusses on explaining the fundamentals of

fractional calculus. Also, it describes the problem statement, research objectives, and

thesis outline. Chapter 2 provides literature review including brief history of fractional

calculus and the use of generalized Caputo and Hilfer fractional derivatives to solve

fractional differential equations, fractal-fractional calculus, operational matrices, and

artificial neural networks.

In Chapter 3, we start our investigation by introducing new fractal-fractional opera-

tors namely new generalized Caputo fractal-fractional differential and integral operators.

Then in section 3.2, we develop a computationally efficient method for solving different
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types of FFDEs using Legendre polynomials combined with the operational matrix. In

section 3.4, the method is combined with Jacobi polynomials to find approximate solutions

for various FFDEs. In section 3.6, examples of problems are provided to determine the

efficiency and accuracy of different methods including multi-order linear, nonlinear, and

systems of FFDEs with IVPs and PVPs. Results obtained in this section will be compared

with results from other studies.

The new fractal-fractional of Hilfer derivative for operational matrices is covered in

Chapter 4. In addition, we propose a new method for deducing an operational matrix of

derivatives using new FF definitions, which is the Hilfer FFD, for solving three classes

of different types of multi-order IVP and BVP FFDEs using both Jacobi and Legendre

polynomials. In Chapter 5, we solve FFD problems corresponding to multi-order FFDEs

using combined truncated generalized power series and ANNs. Chapter 6 uses artificial

intelligence techniques to estimate a solution for FFDEs of high-order linear with variable

and constant coefficients based on a mix of power series method and neural network (NNs)

approach. In each chapter, we discuss applications of the proposed concepts. Finally,

Chapter 7 provides the study’s conclusion and recommends future work.
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