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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philisophy

EXPONENTIATED-BASED BURR TYPE X DISTRIBUTIONS WITH
CENSORED DATA AND COVARIATE

By

OH YIT LENG

January 2024

Chairman  : Lim Fong Peng, PhD

Faculty : Faculty of Science

In an attempt to create distributions with greater flexibility to accommodate survival
data with various hazard function forms, a number of extended Burr type X
distributions have been developed recently. For instance, the Weibull Burr type X, beta
Burr type X, and gamma Burr type X distributions. Previous studies have demonstrated
that the hazard functions of these distributions can take various forms, such as
increasing, decreasing, and bathtub, but not unimodal, which is frequently observed in
survival analysis. In order to solve this issue, the aim of this study is to propose three
distributions with greater flexibility in fitting hazard functions in various forms,
particularly the unimodal: exponentiated Weibull Burr type X, exponentiated beta Burr
type X, and exponentiated gamma Burr type X distributions. We begin by deriving the
probability density function and cumulative distribution function of the three proposed
distributions as well as their important statistical characteristics, including the quantile
function, moment, moment generating function, order statistics, and Renyi entropy. To
explore the performance of the three proposed distributions, simulation studies with
various sample sizes and censoring rates for data with and without censored data and
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covariate are conducted after it. This study considers two types of censoring: random
censoring and type-I censoring. Besides, for the simulation studies, we consider cases
with single covariates. For these simulation studies, the inverse transform approach is
used to simulate the event time. Meanwhile, we estimate the parameters of each of the
three proposed distributions using the maximum likelihood estimation approach.
Lastly, we use three real data sets: two complete data sets and one with censored data
and covariates, to demonstrate the effectiveness and adaptability of the three suggested
distributions. The two complete data sets are Data Set 1, which represents the failure
time of 84 aircraft windshields, and Data Set 2, which represents the remission time of
128 patients with bladder cancer. Data Set 1 has an increasing hazard function, whereas
Data Set 2 has a unimodal hazard function. Data Set 3 contains the recurrence time of
86 bladder cancer patients with censored data and three covariates. The findings of this
study have demonstrated that the hazard functions of the three proposed distributions
can take the forms of increasing, decreasing, bathtub, and unimodal. Additionally, even
with censored data and covariate are present, the parameters of the three proposed
distributions can be estimated using the maximum likelihood estimation approach.
Finally, the three proposed distributions fit the two complete data sets better than
various extended Burr type X distributions and their sub-models, and they are
formidable rivals to all other competing distributions, including the non-nested
distributions used in this study, as demonstrated in the real data applications.
Nevertheless, the three proposed distributions can be used to fit survival data with

unimodal hazard function as demonstrated in applications of Data Set 3.

Keywords: Beta-G, Burr Type X, Exponentiated, Gamma-G, Weibull-G

SDG: GOAL 3: Good Health and Well-Being
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

TABURAN BURR JENIS X BERASASKAN EXPONEN DENGAN DATA
TERSENSOR DAN KOVARIAT

Oleh

OH YIT LENG

Januari 2024

Pengerusi : Lim Fong Peng, PhD
Fakulti : Fakulti Sains

Baru-baru ini, banyak taburan lanjutan taburan Burr jenis X telah dijanakan bagi tujuan
menciptakan taburan dengan fleksibiliti yang lebih tinggi untuk menyeleras data
mandirian dengan pelbagai bentuk fungsi bahaya. Sebagai contoh, taburan Burr jenis
X Weibull, taburan Burr jenis X beta, dan taburan Burr jenis X gamma. Kajian
sebelumnya telah menunjukkan bahawa fungsi bahaya taburan ini ada berbagai
bentuk, seperti meningkat, menurun, dan tab mandi, tetapi tidak unimod, yang sering
muncul dalam analisis mandirian. Untuk menyelesaikan masalah ini, tujuan kajian ini
adalah untuk menperkenalkan tiga taburan dengan fleksibiliti yang lebih tinggi dalam
menyeleras fungsi bahaya dalam pelbagai bentuk, terutamanya unimod: taburan Burr
jenis X Weibull eksponen, taburan Burr jenis X beta eksponen, dan taburan Burr jenis
X gamma eksponen. Kami bermula dengan membentangkan fungsi ketumpatan
kebarangkalian dan ungkapan fungsi taburan kumulatif bagi ketiga-tiga taburan yang
dicadangkan serta ciri-cri penting statistik mereka, termasuk fungsi kuantil, momen,
fungsi penjanaan momen, statistik urutan, dan entropi Renyi. Untuk meneroka prestasi

ketiga-tiga taburan yang dicadangkan, kajian simulasi dengan pelbagai saiz sampel
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dan kadar pengecualian untuk data dengan dan tanpa data tersensor dan kovariat
dijalankan kemudianya. Kajian ini mempertimbangkan dua jenis sensor: sensor rawak
dan sensor tipe I. Di samping itu, untuk kajian simulasi, kami mempertimbangkan kes
dengan satu kovariat sahaja. Untuk kajian simulasi ini, transformasi songsang
digunakan untuk mensimulasikan masa hayat. Sebagai tambahan, kami
menganggarkan parameter bagi ketiga-tiga taburan yang dicadangkan dengan
menggunakan pendekatan penganggaran kebolehjadian maksimum. Akhirnya, kami
menggunakan tiga set data sebenar: dua set data lengkap dan satu dengan data
tersensor dan kovariate, untuk menunjukkan fleksibiliti dan penyesuaian ketiga-tiga
taburan yang dicadangkan. Dua set data lengkap ialah Data Set 1, yang mewakili masa
kegagalan 84 tingkap kapal terbang, dan Data Set 2, yang merupakan masa remisi 128
pesakit dengan kanser pundi kencing. Data Set 1 mempunyai fungsi bahaya yang
meningkat, manakala Data Set 2 mempunyai fungsi bahaya unimod. Data Set 3
mengandungi masa pengulangan 86 pesakit kanser pundi kencing dengan data
tersensor dan tiga kovariat. Hasil kajian ini telah menunjukkan bahawa fungsi bahaya
ketiga-tiga taburan yang dicadangkan boleh mengambil bentuk meningkat, menurun,
tab mandi, dan unimod. Sebagai tambahan, walaupun dengan data tersensor dan
kovariate, parameter ketiga-tiga taburan yang dicadangkan boleh dianggarkan
menggunakan pendekatan penganggaran kebolehjadian maksimum. Akhirnya, ketiga-
tiga taburan yang dicadangkan sesuai dengan dua set data lengkap dengan lebih baik
berbanding dengan pelbagai taburan lanjutan Burr jenis X dan sub-model mereka, dan
mereka adalah saingan yang mengerunkan kepada semua taburan bersaing lain,
termasuk taburan tak bersarang yang digunakan dalam kajian ini, seperti yang

ditunjukkan dalam aplikasi data sebenar. Sebagai tambahan, ketiga-tiga taburan yang
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dicadangkan boleh digunakan untuk mencocokkan data mandirian dengan fungsi

bahaya unimod seperti yang ditunjukkan dalam aplikasi Data Set 3.

Kata Kunci: Beta-G, Burr Jenis X, Exponen, Gamma-G, Weibull-G

SDG: MATLAMAT 3: Kesihatan dan Kesejahteraan Baik
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Survival analysis is an analysis of the duration of time until the occurrence of an event
known as death (Collet, 2003). It is also well-known as reliability, duration, and event
history analyses. Survival analysis is introduced to determine the probability of an
individual surviving longer than a certain time and the rate of death at a particular time.
These can be determined from the survival and hazard functions, which are the two

crucial functions in survival analysis.

In survival analysis, there are three types of modelling: parametric, semi-parametric,
and nonparametric. For parametric modelling, the survival time is assumed to follow
a well-known distribution such as Weibull, exponential, Burr type X, and gamma
distributions. These distributions have one crucial feature, that is they take only
positive values. In contrast, nonparametric modelling, known as distribution-free
modelling, does not require any assumptions to be made about the underlying
distribution of the survival times. The Kaplan-Meier method is one of the most popular
nonparametric methods used in survival analysis. Lastly, semi-parametric modelling
combines parametric and nonparametric modelling, which consists of both parametric

and nonparametric components.

It is vital to fit the survival data with a suitable distribution in parametric modelling.
Although several distributions can be used to model survival data with various
characteristics, there are cases where the survival data could not be well fitted with the

existing distribution, especially survival data with bathtub and unimodal hazard



functions. Since the bathtub and unimodal hazard functions are very common in
survival analysis (Silva et al., 2010), developed new distribution with higher flexibility
in modelling survival data with hazard functions in different shapes has become

necessary.

Several attempts have been made to explore new distributions with higher flexibility
that can fit hazard functions in different shapes (Singla et al., 2012; Pescim et al.,
2010). These new distributions developed through several generalized families of
distributions by adding more parameters into the baseline distribution. For example,
Paranaiba et al. (2011) proposed a five-parameter distribution, namely beta Burr type
Xl distribution, by using beta generalized family of distributions (Eugene et al., 2002)
along with Burr type XIlI as the baseline distribution. In the meantime, De Pascoa et
al. (2011) used the generalized gamma distribution (Stacy, 1962) and the
Kumaraswamy generalized family distributions (Cordeiro & de Castro, 2011) to
develop the Kumaraswamy generalized gamma distribution, a five-parameter
distribution. These new distributions then can be further reduced to some well-known
distributions. For instance, the beta generalized Weibull distribution (Singla et al.,
2012) can be reduced to the beta generalized exponential, beta Weibull, exponentiated
Weibull, generalized Rayleigh, beta exponential, generalized exponential, Weibull,
Rayleigh, and exponential distributions. Due to this, the new distributions are very
flexible and can be used as an alternative distribution in modelling different data types
(De Pascoa et al., 2011). It has been proven that the new distributions provide a better
model fit and higher flexibility than its sub-models (Carrasco et al., 2008; Singla et al.,

2012; Pescim et al., 2010).



On the other hand, some new distributions are obtained by adding more parameters to
the extended distributions. Abouelmagd et al. (2017) extended the Weibull Burr type
X distribution (lbrahim et al., 2017) and developed the exponentiated Weibull Burr
type X distribution. The proposed distribution is greatly flexible and able to model
survival data with different shapes of hazard rate functions, including constant,
decreasing, increasing, J-shape, unimodal and bathtub. Ibrahim and Khaleel (2018)
introduced an extended version of exponentiated Weibull known as exponentiated
Kumaraswamy exponentiated Weibull distribution. It has been proven that this
extended distribution has more sub-models than exponentiated Weibull distribution,
and its flexibility has improved. These have shown that developing new distributions
with higher flexibility in modelling various shapes of hazard functions is always of
interest to researchers. This study aims to propose three new distributions extending
the Burr type X distribution, namely exponentiated gamma Burr type X, exponentiated
beta Burr type X, and exponentiated Weibull Burr type X. These proposed
distributions are expected to be more flexible to cover more shapes of hazard functions,

especially unimodal hazard function and can be applied in different areas.

1.2 Problem Statement

Burr (1942) used the differential equation method to develop twelve cumulative
frequency functions, namely Burr type | to Burr type XII. Among these distributions,
Burr type X and Burr type XII have received the greatest attention and are often used

in survival analysis (Mead, 2014; Ragab & Kundu, 2006).

Burr type X distribution introduced by Burr (1942) is well-known as one-parameter
Burr type X. This distribution plays a vital role in many areas such as biological,

health, agricultural, engineering, and survival analysis. In literature, several studies on



Burr type X distribution have been established, such as Jaheen (1995), Ahmad et al.
(1997), Jaheen and Al-Matrafi (2002), Aludaat et al. (2008), Shayib and Haghighi
(2011), Khaleel et al. (2017), and Ahmed et al. (2021). Then Surles and Padgett (2001)
introduced a scaled Burr type X distribution (BX) by adding a scale parameter to the
one-parameter Burr type X distribution. The BX distribution is suitable for modelling
strength and survival data. It is appropriate to model survival data with increasing and
bathtub hazard functions. Besides, its hazard function can be non-monotone, which
can be useful in many areas (Ragab & Kundu, 2006). In addition, its probability
density and cumulative distribution functions are closed form. Hence, it can be applied
conveniently for data with or without censored observations (Ragab & Kundu, 2006).
In the past, several studies have explored Burr type X distribution, such as Ragab and

Kundu (2005, 2006).

Several generalizations of Burr type X distribution with various numbers of parameters
have been formed to improve the flexibility of BX distribution such as the gamma Burr
type X (GBX) (Khaleel et al., 2016), beta Burr type X (BBX) (Merovci et al., 2016),
exponentiated generalized Burr type X (EGEBX) (Khaleel et al., 2018), Weibull Burr
type X (WBX) (lbrahim et al., 2017), beta Kumaraswamy Burr type X (Madaki et al.,
2018), beta Burr type X (one parameter) (Khaleel et al., 2017), and exponentiated Burr

type X (Ahmed et al., 2021) distributions.

Khaleel et al. (2016) proposed a three-parameter extended Burr type X distributions
whereas Merovci et al. (2016), and Ibrahim et al. (2017) proposed two four-parameter
extended Burr type X distributions. These extended Burr type X distributions are very
flexible. Their hazard function has a wide variety of shapes, including increasing,

decreasing, and bathtub shapes. However, these distributions do not provide a



reasonable fit in fitting survival data with unimodal hazard function. In this context,
the unimodal hazard function refers to a function that reaches a pick after some time
and then decreases. It often happens in survival analysis (Paranaiba et al., 2011;
Oluyede et al., 2018). A distribution must therefore be able to exhibit a unimodal
hazard function. Additionally, various distributions have been created by adding
additional parameters to the baseline distribution with the aim of increasing the
flexibility of the current distribution, such as new beta power very flexible Weibull
(Khan et al., 2023), modified exponential-Weibull (Al-Essa et al., 2023), and type |
half-logistic modified Weibull (Elbatal et al., 2019). As a result, this study proposes
three extended distributions: exponentiated Weibull Burr type X, exponentiated beta
Burr type X and exponentiated gamma Burr type X distribution by adding an
additional shape parameter to GBX, BBX, and WBX distributions. The additional
shape parameter is added to the distributions via the exponentiated type of distribution
(Gupta et al.,1998). We anticipate that the three proposed distributions will be more
flexible in modelling hazard functions of various shapes, particularly the unimodal
hazard function. Perhaps the flexibility and versatility of the proposed distributions
make them attractive as a tentative model for cases where the underlying distribution
is unknown and can be considered as an alternative model for some well-known

distributions.

1.3 Objective of the Study

This study aims to modify the existing extended Burr type X distributions to form three
extended distributions with high level of flexibility in modelling survival data with
different hazard functions, especially bathtub and unimodal. Several objectives have

been identified to achieve the aim of this study and the objectives are listed below.



1. To extend the existing extended Burr type X distributions by using the
exponentiated type of distributions to form the exponentiated Weibull Burr
type X, exponentiated beta Burr type X, and exponentiated gamma Burr type
X distributions and incorporate covariates into these distributions.

2. To derive the maximum likelihood estimates and statistical properties of the
three extended distributions.

3. To investigate the performance of the three extended distribution using
simulations studies with different sample sizes and parameter values in the
present of censored observations and covariates.

4. To illustrate the performance of the three extended distributions through three
real data sets: failure time of 84 aircraft windshields, remission time of 128

bladder cancer patients, and recurrence time of 86 blander cancer patients.

1.4 Organization of Study

This study is constructed and outlined as follows. We first explore several frequently
utilized distributions in survival analysis in Chapter 2, and then we look at the survival
function and hazard function. Subsequently, several important statistical properties
and useful functions used in this study are also covered in Chapter 2. Also in Chapter
2, we review the maximum likelihood method, likelihood function for censored data,
Cox proportional mode, censored data, and covariates. Apart from that, the extended
Burr type X distributions, such as the BBX, GBX, and WBX distributions, are
discussed in Chapter 2 along with numerous generalized families of distributions. In
chapter 2, we also explore the non-nested distributions of the Burr type X distribution.
The exponentiated Weibull Burr type XII (EWBXII), exponentiated Burr type XIlI

Poisson (EBXIIP), generalized Marshall-Olkin extended Burr-X11 (GMOBXII), and



beta Burr type XII (BBXII) distributions are among the non-nested distributions.
Following that, in Chapters 3, 4, and 5, we discuss the three extended distributions:
exponentiated Weibull Burr type X (EWBX), exponentiated beta Burr type X (EBBX),
and exponentiated gamma Burr type X (EGBX) distributions. In these chapters, we
derive their pdf, cdf, statistical properties, and likelihood function. Additionally, we
conduct simulation studies in these chapters to evaluate how well the three proposed
distributions perform for cases with and without censored data and covariate. In
Chapter 6, we adapt three real data sets to demonstrate the performance of the three
proposed distributions. Finally, Chapter 7 presents the findings and conclusions of this
study. This chapter also discusses the limitations of this study and provides suggestions

for future research.
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