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The boundary integral method is a well-established technique for the solution of
problem in engineering and applied science. This technique mainly involves with the
solution of an integral equation, which applies to the boundary of a domain.
Consequently, much smaller systems of equations are solved, which in turns will
improve in a computing effort. However, for complex geometry, as in the three-
dimensional case, dense meshes are required so that very large system of equations still
exists. This is true for the solution of the bubble dynamics problems. The problems have

a complicated geometry where the demand for computational time is high.

This thesis presents the implementations of new parallel and modified sequential
algorithms for solving cavitation bubble dynamics problems on a shared memory
multiprocessor computer system, the Sequent Symmetry 5000 SE30. The new parallel
and modified sequential algorithms arising from the formulation on linear and quadratic
elements are implemented. The implementation is applied to a 3D spherical bubble with

cons.ant potential in an infinite medium. Based on the numerical results, the algorithms
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for both linear and quadratic elements are compared. Overall, the comparison shows that
quadratic element is less efficient then linear element. The numerical integration
formulae used is the Gauss quadrature rules with 4, 6 and 8 Gauss points. However

using different Gauss points only slightly effect the performance of the solution.

The other bubble dynamics problem implemented is a single spherical cavitation bubble
growing and collapsing in an infinite medium near a rigid boundary. Both the new
parallel and modified sequential algorithms are implemented to see the suitability of
integral formulation of bubble dynamics problems for parallel implementation on shared

memory multiprocessor computer systems.

This research is of great importance in the study of cavitation damage due to the bubble

collapsing near a rigid boundary.
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Abstrak dissertasi yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH SELARI KAMIRAN SEMPADAN YANG DIAPLIKASIKAN KE
ATAS GELEMBUNG KAVITASI DINAMIK PADA SISTEM KOMPUTER
INGATAN SEPUNYA
Oleh
ROZITA BINTI JOHARI
April 2001
Pengerusi:  Profesor Madya Md Yazid bin Mohd Saman, Ph.D.

Fakulti: Sains Komputer dan Teknologi Maklumat

Kaedah kamiran sempadan adalah teknik yang telah dikenalpasti mantap untuk
menyelesaikan masalah kejuruteraan dan aplikasi sains. Teknik ini melibatkan
penyelesaian persamaan kamiran yang diaplikasikan keatas sempadan sesuatu domain.
Justeru itu, satu sistem persamaan yang lebih kecil akan diselesaikan. Ini
mengekonomikan kebolehupayaaan pengkomputeran. Walau bagaimanpun, untuk
geometri yang lebih kompleks seperti kes tiga-dimensi, jejaring yang lebih tumpat
diperlukan. Jadi sistem persamaan yang lebih besar masih wujud. Ini ternyata benar bila
menyelesaikan masalah gelembung dinamik. Masalah ini terdiri daripada geometri yang

lebih kompleks di mana ia memerlukan masa pengkomputeran yang lama.

Tesis ini menerangkan tentang pengimplementasian algoritma selari yang terbaru dan
algoritma berjujukan yang diubahsuai untuk menyelesaikan masalah kavitasi gelembung
dinamik pada sistem multipemproses ingatan sepunya Sequent Symmetry 5000 SE30.

Algoritma selari yang terbaru dan algoritma berjujukan yang diubahsuai hasil daripada



formulasi untuk unsur kuadratik dan linear telah diimplementasikan.
Pengimplementasian ini dilakukan ke atas gelembung sfera 3D dengan keupayaan malar
dalam bahantara tak terhingga. Berasaskan kepada keputusan berangka, algoritma untuk
kedua-dva unsur linear dan kuadratik dibandingkan. Pada keseluruhannya, hasil
perbandingan menunjukkan yang unsur kuadratik kurang cekap daripada unsur linear.
Formula kamiran berangka menggunakan peraturan kuadratur Gauss dengan 4,6 dan 8
tittk Gauss. Walau bagaimanapun, penggunaan titik Gauss yang berbeza kurang

menjejaskan prestasi pengiraan.

Satu lagi masalah gelembung dinamik yang diimplimentasikan adalah kavitasi
gelembung sfera yang membesar dan mengecil dalam bahantara tak terhingga
berhampiran dengan sempadan tegar. Algoritma selari terbaru dan algoritma berjujukan
yang diubahsuai diimplementasikan untuk melihat kesesuaian formula kamiran untuk
masalah buih dinamik apabila diimplementasikan secara selari pada sistem

multipemproses ingatan sepunya.

Penyelidikan ini amat penting dari segi pengetahuan tentang kemusnahan kavitasi

disebabkan oleh gelembung yang pecah berhampiran sempadan tegar.
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CHAPTER 1

INTRODUCTION

Over the past few years, the rapid availability of faster and cheaper processors has led to
the development of a variety of parallel processing machines in which the processors are
linked together in some way. With the availability of such systems, it has become
possible to design software to exploit the advantages of the architecture (Almasi and

Gottlieb, 1994).

Image processing, artificial intelligence, robotic, speech recognition, numerical
modeling and simulation of scientific and engineering problems are some of the
application areas that demand faster processing devices. Serial machines have been
pushed to their limits in such applications; parallel machines however have been very

successful when applied to these problems.

Users of parallel computing systems tend to be those with large mathematical problems
to solve, with the demand for power reflecting a desire to obtain results faster and more
accurate. Unfortunately, many of the existing algorithms were developed with a
uniprocessor in mind, and the transition from a serial to a parallel environment is

therefore, not straightforward.

The increasing speed and expanded storage capacity of modern high-performance

computers, together with new advanced numerical methods and programming technique,



have greatly improved the ability to solve complex engineering and scientific problems.
Usually these problems involve the numerical solution of partial differential equations,
with large numbers of degrees of freedom, and their solutions require high computing
cost. A lot of work has been done on partial differential equation formulations of
boundary value problems using finite elements or finite differences, see for example the

review paper by Ortega and Voight (1985).

The solution of an integral equation, which applies only to the boundary of a domain, is
known as boundary integral method (BIM). It is also referred to as the boundary element
method (BEM). The BIM is a powerful numerical method and has been extensively used
for many years solving different engineering problems (Kosztin and Schulten, 1997,
Banerjee, 1994). The BIM is a technique which often presents important advantages
over domain type solutions since it provides a great economy in computational efforts by
discretizing only the boundary of the domains. Consequently, much smaller systems of
equations are to be solved. However for complex geometry, as in the (3D) three-
dimensional case, dense meshes are required so that quite large system of equations still

remains, which make the solving steps slow.

The principal advantage of such a reformulation is that the dimensionality of the
problem is reduced by one. For example, (2D) two-dimensional partial differential
equation is replaced by a (1D) one-dimensional problem. It involves discretization into
line segments on the boundary, in contrast to finite element and finite difference
procedures, which require meshes over the plane domain area within the boundary. For

problems involving an infinite domain, the boundary integral formulation is particularly



advantageous because the behavior at infinity is usually automatically included without

having to discretized an artificial ‘remote’ boundary as with other methods.

Davies (1995) identified three phases in BIM.
(1) The matrix set-up phase
(i)  The solution of linear equation phase

(iii)  The recovery phase.

All the three phases exhibit a parallelism, which may be mapped onto a suitable parallel

architecture.

1.1 Survey on Parallel Boundary Integral Method

The development of parallel computers has received considerable attention by users of
BIM. Simkin (1982) had noted that parallel computer should provide a suitable
environment for integral formulations of boundary-value problems, but he did not
describe an implementation. Symm (1984) described the first parallel implementation of
boundary integral method. Symm’s implementation comprised of an indirect approach
with constant elements for the solution of the Dirichlet problem in a circle on the ICL
distributed array processor (DAP). DAP is a type of machine exhibits features which are

typical of the SIMD class of architectures.

The parallel implementation of any particular problem requires that a suitable mapping

of the problem onto the parallel architecture. It is often the case that the parallelism in a



problem that is not easily identified with a particular parallel architecture and it may
well require a considerable amount of ingenuity on behalf of the user to exploit it. In
some circumstances, however, the parallelism inherent in the problem is easily identified

with that of the parallel architecture and this is particularly true of integral formulations.

Various authors have described certain aspects of the parallel computation of BIM.
Earlier, most researchers concentrated on the linear equation phase. For example, the
method of substructures in elastostatic provides a coarse-grained parallelism which has
been exploited using a vector processor (Bozek et al, 1983; Kline et al., 1985; Kane et
al, 1990). Calitz and du Toit (1988) use an integrated phase in an axisymmetric

electromagnetic problem.

Kim and Amann (1992), using the method of asynchronous iterations give parallel
solution of equations in the area of micro hydrodynamics. Guru Prasad et al. (1992)
considers a variety of equation solvers including preconditioned conjugate gradient

methods.

Davies (1988a, 1988b, 1989, 1996, 1997) describes a complete fine-grained
implementations, in which all phases exploit the parallelism. Variety of linear and
quadratic element of potential problems are implemented on the ICL DAP. A coarse-
grained implementation of the potential problem on network of transputers was
considered by Davies (1991). Effendi et al. (1992) implemented the solution of problems
in quantum chromodynamics on the QCDPAX machine, which is a parallel purpose-

built architecture. Drake and Gray (1989) also considered a coarse-grained



