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This study explores a significant advancement in glass-ceramics through the 

development of bioglass-ceramics derived from waste materials, aiming to enhance 

the mechanical properties of calcium fluoraluminosilicate (CFAS) based bioactive 

glass-ceramics for biomedical applications. While the 45S5 bioglass is known for its 

tissue bonding capability, its poor mechanical strength remains a drawback. To 

addresses this, CFAS bioglass-ceramics were synthesized from waste materials, 

specifically soda lime silica (SLS) glass and eggshells (ES), with an investigation into 

the effect of varying Al2O3 composition and sintering temperatures on the 44wt%SLS-

24wt%CaO-(20-x)wt%Na2CO3-6wt%P2O5-6wt%CaF2-(x)wt%Al2O3 system, where x 

= 0,3,6, and 9 wt%. The bioactivity was evaluated by immersing the ceramics in PBS 

solution to assess their ability to form a hydroxyl apatite (HA) layer. Cytotoxicity was 

determined using the MTT assay, indicating their suitability for biomedical use. 

Structural and microstructural properties were analyzed using X-ray Diffraction 

(XRD) and Scanning Electron Microscopy (SEM), with density measured by the 
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Archimedes’ method and chemical bonds identified by Fourier Transform Infrared 

Spectroscopy (FTIR). Results showed that bioglass-ceramics with 9 wt% Al2O3 which 

sintered at 950 °C exhibited excellent properties, a density of 2.734 g/cm3, increased 

crystallization of anorthite, fluorapatite and nacaphite and an optimal compressive 

strength of 136.58 MPa. The bioactivity test showed the formation of HA layer on the 

surface of the sample, which 28 days of immersion showed the thickest HA layer 

formation. Cell viability above 70% at concentrations ≤ 2.5 𝑤𝑡%, and a pH of 10.17. 

Additionally, the mechanical properties after immersion included a compressive 

strength of 130.81 MPa, a microhardness of 4.874 GPa, and a fracture toughness of 

5.709 MPa. These enhanced properties combined with their bioactivity and 

biocompatibility, suggest that CFAS bioglass-ceramics derived from waste materials 

show great promise for biomedical applications due to their improved performance. 

 

Keywords: Bioglass-ceramics, compressive strength, fluorapatite, in vitro, melt-

quench 

 

SDG: GOAL 3: Good Health and Well-Being, GOAL 9: Industry Innovation and 

Infrastructure, GOAL 12: Responsible Consumption and Production 
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PENYIASATAN SIFAT STRUKTUR, MEKANIKAL, DAN BIOAKTIVITI 

KALSIUMFLOROALUMINOSILIKAT (CFAS) BIOKACA-SERAMIK 
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Kajian ini meneroka kemajuan signifikan dalam kaca-seramik melalui pembangunan 

biokaca-seramik yang diperoleh daripada bahan buangan untuk meningkatkan sifat 

mekanikal kaca-seramik bioaktif berasaskan kalsium fluoaluminosilikat (CFAS) untuk 

aplikasi bioperubatan. Walaupun biokaca 45S5 terkenal dengan keupayaannya untuk 

mengikat tisu, kekuatan mekanikalnya yang lemah adalah kekurangan utama. Untuk 

menangani masalah ini, kaca-seramik bio CFAS disintesis daripada bahan buangan 

khususnya kaca soda lime silika (SLS) dan kulit telur (ES), dengan penyiasatan 

terhadap kesan komposisi Al2O3 yang berbeza dan suhu pensinteran pada system 

44SLS-24CaO-(20-x) Na2CO3-6P2O5-6CaF2-xAl2O3, di mana x=0, 3, 6, dan 9wt%. 

Bioaktiviti dinilai dengan merendam kaca-seramik dalam larutan PBS untuk menilai 

keupayaannya membentuk lapisan hidroksiapatit (HA), sementara ketoksikan 

ditentukan menggunakan ujian MTT, yang menunjukkan kesesuaiannya untuk 

kegunaan bioperubatan. Sifat struktur dan mikrostruktur dianalisis menggunakan 

pembelauan Sinar –X (XRD) dan Mikroskopi Elektron Imbasan (SEM), dengan 
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ketumpatan diukur menggunakan kaedah Archimedes dan ikatan kimia dikenalpasti 

melalui Spektroskopi Inframerah Transformasi Fourier (FTIR). Hasil kajian 

menunjukkan bahawa kaca-seramik dengan 9 wt% Al2O3 disinter pada suhu 950 ˚C, 

mempamerkan sifat yang sangat baik termasuk ketumpatan 2.734 g/cm3, peningkatan 

penghabluran anorthite,fluorapatite, dan nacaphit, serta kekuatan mampatan optimum 

136.58 MPa.Keputusan terbaik diperhatikan selepas 28 hari perendaman, yang 

dicirikan oleh pembentukan lapisan HA yang lebih tebal, daya hidup sel melebihi 70% 

pada kepekatan ≤2.5 wt% dan pH 10.17. Selain itu, sifat mekanikal selepas 

perendaman termasuk kekuatan mampatan sebanyak 130.81 MPa, kekerasan mikro 

sebanyak 4.874 GPa dan ketangguhan patah sebanyak 5.709 MPa. Sifat-sifat yang 

dipertingkatkan ini digabungkan dengan bioaktiviti dan biokeserasian mereka 

menunjukkan bahawa CFAS bioglass-ceramics yang berasal daripada bahan buangan 

mempunyai potensi besar untuk aplikasi bioperubatan kerana prestasi mereka yang 

lebih baik. 

 

Kata Kunci: Biokaca-seramik, kekuatan mampatan, fluorapatit, in vitro, cair-

pelindapkejutan 

 

SDG: Matlamat 3: Kesihatan dan Kesejahteraan yang Baik, Matlamat 9: Industri, 

Inovasi dan Infrastruktur, Matlamat 12: Penggunaan dan Penghasilan yang 

Bertanggungjawab 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

This chapter presents the introduction of research background of the biomaterials, the 

first bioactive glass invented. The introduce of the calcium fluoroaluminosilicate 

(CFAS) based bioglass ceramics. Besides, the problem statement and research 

objectives why this research is conduct also stated in this chapter. 

 

1.2 Research Background 

 

Biomaterial is substance that is engineered to interact with biological material. 

Biomaterials can be classified into two main groups: natural and synthetic 

biomaterials. Natural biomaterials are any material derived from plants or animals that 

are utilized to enhance, replace, or repair organs and tissues in the body. Natural 

biomaterials can be categorized into two distinct group: those based on protein-based 

biomaterials (collagen, gelatin, silk) and those based on polysaccharide-based 

biomaterials (cellulose, chitosan, glucose). However, a disadvantages of natural 

biomaterials like chitosan is that it can lead to rapid bone regeneration in its early 

stages. The process of bone formation after implanting these matrices occurs gradually 

over an extended period as reported by Garg et al. in 2011. The common drawbacks of 

natural biomaterials are brittle and poor mechanical properties (Liu et al., 2023). 

Synthetic biomaterials are biomaterials that are prepared by a process and not from the 
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natural sources. The common types of synthetic biomaterials can be classified into 

four: metals, polymers, ceramics, and composites. Figure 1.1 shows the classes of 

synthetic biomaterials and each of them has its own unique benefits and limitations for 

its application. 

 

 
 

Figure 1.1: Synthetic biomaterials classification and their properties (Kaur et al., 

2014). 

 

Due to technological advancements in the 20th century, bioceramics now used in the 

medical field (Rieger W, 2001; Emmanuel et al., 2024). Bioceramics are a class of 

biomaterials used as a reinforcing material, cementing substance, and as an implant to 

treat, repair, or replace the diseased or damaged hard tissue of the body. Usually, the 

hard tissue of the muscular system such as bone and teeth. There are also use in optical, 

energy and electronic. These materials are applied primarily due to their 

biocompatibility, moderate degradation, and high mechanical strength. Moreover, 

ceramics are having properties like low heat conductance, high melting temperatures 

and resistance to plastic deformation. These characteristics make bioceramics a 
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suitable substitute that is well-tolerated by the body. The success of these ceramic 

materials relies on their bio-functionality and biocompatibility (Kumar et al., 2018). 

The biocompatibility of a device or material is its ability to achieve that before it can 

be used in the human body as implants. The bioceramics mainly classified into three 

subclasses as shown in Figure 1.2: bioinert, bioactive, and biodegradable ceramics.  

 
 

Figure 1.2: The classification of bio-ceramics 

 

Bioinert materials such as alumina, zirconia was having stable physiochemical 

properties and makes good compatibility with the hard tissues (Kumar et al., 2018). In 

other words, the body will not react and reject by the body tissue when they are implant 

into the body. As a result, they are commonly used in orthopaedic surgery today. Their 

advantages have excellent mechanical strength such as high hardness and low friction. 

This makes them good strength to resist fracture which can be applied as a structural-

support implant such as bone screw and bone plates. However, they have many 

drawbacks such as release of metal ions to surrounding tissues, failure of metalwork 

resulting to need for subsequent surgery, and distortion of imaging modalities 

(Godavitarne et al., 2017). These drawbacks have led to the development of 

biodegradable alternatives.  
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Biodegradable materials are materials that degrade over a long time following how 

long it implant in the body. The biodegradable has many names or terms have been 

used to describe them including resorbable, absorbable, and degradable. This 

biodegradable is not just overcome the disadvantages of bio-inert materials, but they 

also can be degraded or replaced by host tissue over a given time. Godavitarne et al 

(2017) states that they are a lot of advantages of biodegradable materials. These 

advantages include the absence of any potential to induce inflammatory or toxic 

reactions upon implantation, the possession of suitable mechanical properties for 

specific application, and non-toxic degradation products that can be metabolized and 

safely eliminated from the body, and others. Biodegradable material such as calcium 

phosphate and hydroxyapatite always use for tooth and bone. However, they sometime 

are fragile. Due to this, bioactive materials such as bioglass are considered as the most 

promising biomaterials, due to the show positive effect on living tissues. 

 

Bioactive glass or also known as 45S5 bioglass were discovered by Larry Hench in the 

late 1960s (Hench, 2006). The idea for the material came to him during a bus ride in 

1967. He started discussing his research with Colonel Klinker, a fellow bus traveller 

who had recently returned to the United States after serving in Vietnam as an Army 

medical supplier officer. Klinker then explained the amputations he had seen in 

Vietnam, arising from the rejection of metal and plastic implants by the body. 

 

Once Hench came after the conference to Florida, he sent a proposal to the U.S 

Command of Army Medical Research and Design. In 1968, he obtained funding, and 

Hench started his synthesize of small rectangles of what he named 45S5 glass in 

November 1969. At the VA Hospital in Gainesville, Ted Greenlee, an assistant 
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professor of orthopaedic surgery at the University of Florida, successfully inserted 

them in rat femurs (Hench, 2006). With this successful experiment, bioglass was born 

and the first compositions studied. The first discovery of bioglass specifically consist 

of 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O and 6.0 wt% P2O5 (Jones, 2008; 

Fernandes et al., 2018; Araujo et al., 2020).  

 

These elements play a crucial role in the composition of bioglass and contribute to its 

unique properties. SiO2 act as a network former in bioglass (Fernandes et al., 2018) 

and it helps in the formation of bioactive glass network. CaO is an important 

composition in bioglass as it promotes the formation of hydroxyapatite which when 

bioglass comes in contact with body fluids hydroxyapatite is formed and allowing the 

bioglass to bond with bone tissue and promote bone regeneration (Filip et al., 2022). 

Na2O is added to bioglass to adjust its properties such decrease the glass melting 

temperature and thermal expansion coefficient (Fernandes et al., 2018). Besides, it also 

can enhance the bioactivity of the bioglass by promoting the release of Na+ which can 

stimulate cellular responses and aid in the formation of new bone tissue. P2O5 is an 

essential element for bone formation and mineralization, and it enhances its bioactivity 

and promotes the bonding of the bioglass with bone tissue (Adam et al., 2021). 

 

The initial idea of Larry Hench was to combine elements that are commonly found in 

the human body, in proportions that promote the fast dissolution of alkalis from the 

glass surface in water-based solutions. This solution is then followed by the formation 

of a calcium (Ca)-rich and phosphorus (P)-rich layer within the inner alkali-depleted 

silica layer (Hench, 1975). In fact, the first discovery of bioglass is when bioglass 

immersed in biological fluids, it undergoes a process where a layer resembling the 
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mineral phase of bone, known as hydroxyapatite (HA) is developed on the surface of 

the glass. They have the bone-bonding ability which is similar to the mineral apatite 

phase found in the bone tissue. Due to this, bioactive glass was widely used in medical 

applications due to their unique interaction with human body tissue. However, the main 

drawbacks of bioglass are their mechanical performance and brittleness which 

significantly limit them unsuitable for load bearing applications. 

 

Crystallization of bioactive glasses may be the best way to improve their mechanical 

properties. Bioactive glass-ceramics materials have higher strength and improved 

mechanical properties as compared to bioactive glasses. The crystallization behavior 

can be cause by the compositional changes and the sintering process. It has been 

reported that bioglass-ceramics in the SiO2-CaO-Na2O-P2O5 with Al2O3 addition 

containing apatite have a good mechanical property (Mohamad et al., 2016). Besides, 

glass-ceramics material is prone to crystallize at certain sintering temperature (Bellucci 

et al., 2010; Montazerian et al., 2024). Most of literature on bioactive glass only discuss 

in detail on the effect of reformulation of original composition on mechanical 

properties of the bioactive glass. 

 

In this study, the addition of a network former oxide like Al2O3 reduces the glass 

dissolution. This lower dissolution and the lower release in aluminium lead to the 

formation of the Si, O, Al layer (Mihardi & Mehdikhani, 2012). On the other hand, 

addition of network former could significantly reduce the bioactivity of the material. 

Calcium fluoride (CaF2) was added in the bioglass-ceramics system to induce the 

apatite formation and improve the bioactivity of bioglass-ceramics. The focus of this 

research is to study the effect of Na2O replacement by Al2O3 on the physical, structural, 
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and mechanical properties of the bioglass-ceramics. Other than that, the effect of 

sintering temperature on physical, structural, and mechanical properties of the 

bioglass-ceramics also been investigated. Therefore, the calcium fluoraluminosilicate 

(CFAS) was formulated with containing composition of SiO2-CaO-Na2CO3 -P2O5-

CaF2-Al2O3. 

 

Bioactivity and biocompatibility of CFAS also been conducted in this study. 

Bioactivity test is to confirm the formation of HA on the CFAS bioglass-ceramics 

surface after immersed in the phosphate buffer saline (PBS) solution. The formation 

of HA on the surface of CFAS bioglass-ceramics indicates its ability to support bone 

growth. This is because HA is the main component of bone and plays an important role 

in bone regeneration. To assess the biocompatibility, mechanical stability, and the 

safety it must undergo extensive investigation on the cytotoxicity test on newly 

developed material as an ideal for implant. cytotoxicity test is conducted outside of a 

living organism by using cell cultures. The test is to assesses the effect of CFAS 

bioglass-ceramics on cell-viability. 

 

The utilization of waste materials such as soda lime silica (SLS) glass and eggshell 

(ES) were introduced in this study to minimize the usage of pure materials such as 

silicon dioxide (SiO2) and calcium oxide (CaO). Besides reduce the cost of fabrication, 

the use of SLS glass and ES in synthesizing the CFAS bioglass-ceramics directly can 

overcome the dumping problem of glass and eggshells every year (Efa et al., 2024). 
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1.3 Problem Statement 

 

Over the years, the production costs for orthopedic applications have significantly risen 

due to various factors, including the increasing expenses associated with raw materials, 

manufacturing processes, and research and development. The first composition of 

bioglass is 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O and 6.0 wt% P2O5. Due to 

the high-cost production of bioglass-ceramics especially for CFAS bioglass, the 

compound of SiO2 can be replaced by alternative potential sources to utilize the waste 

materials as one way of recycling. The pure SiO2 is very expensive, and it has high 

melting point. Thus, by considering the SLS glass, it consists high composition of SiO2 

with low cost of raw materials and provide low melting point compared to pure SiO2 

(Khiri et al., 2020). This reduces the cost especially cost assumption melting process. 

 

Eggshells (ES) are always discarded even though they have many benefits. ES waste 

can cause harm to environment. Based on the previous research, the percentage of 

CaCO3 in ES are usually 94-97 wt% (Rovinaru et al., 2020; Saparuddin et al., 2020). 

CaO can be obtained by calcination the ES high contain in CaCO3 at 900 °C for 2 

hours. The use of ES as a source of CaO can be a great help in reducing the disposal 

problem and reduce the cost of material fabrication. 

 

Bioglass have amorphous structure and low mechanical strength. The development of 

bioactive-glass ceramics offers the potential to enhance mechanical performance, 

making them suitable for load bearing applications. CaF2 and Al2O3 can formed 

fluoarapatite and anorthite phases which have higher potential for application in 

medical due to the antibacterial effect of its F- ions (Hill et al., 2006) and increase the 
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strength and improve the mechanical properties (Harabi et al., 2017). Previous study 

varies Na2CO3/Al2O3 ratio with increase Al2O3 from 0 to 4 wt% on the mechanical 

properties and shows it can improve in the composition (Mohamad et al., 2016). While 

other study uses 12.5 wt% shows it still improve the mechanical properties but suppress 

the bioactivity (Dimitriadis et al., 2021). In this project, varied the composition of 

Al2O3 from 0 to 9 wt% to improve the mechanical properties and retain the bioactivity. 

The study of CFAS based bioglass-ceramics sintered at various temperatures is needed 

to find the optimum temperature of the bioglass-ceramics. Sintering temperature is a 

parameter that plays an important role to increase the crystallinity structure. Mirza et 

al (2017) states that the sintering temperature influence the densification process and 

rise in temperature resulting in densified morphology, reduction of pores, and greater 

mechanical strength (Mirza et al., 2017). 

 

Basically, bioactive glass has excellent bioactive properties, but the major 

disadvantages of bioglass is low mechanical strength. Bioglass shows impressive 

bioactivity and biocompatibility due to have an ability to develop an active 

hydroxyapatite layer on their surface which can bond with bone and soft tissues 

(Ghannam et al., 2005; Fiumme et al., 2018). Several studies on CFAS related to 

modifying glass to improve the mechanical properties (Mohamad et al., 2016, Loh et 

al., 2023). The immersion time is an important parameter where gives an effect to the 

bioactivity properties of CFAS bioglass-ceramics. 

 

In addition, bioactive glasses show attractive properties making them suitable bone 

substitute materials (Baino et al., 2018). For newly developed CFAS based bioglass-

ceramics, it is of certain interest to be compared and referenced to 45S5 bioglass as the 
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well-known standard amongst bioglass to predict and understand their properties. The 

biocompatibility of bioglass is identified as an excellent potential as primary testing 

before it can be used in the human body. 

 

1.4 Objectives 

 

The main objective of this study is to fabricate SiO2-CaO-Na2O-Al2O3-P2O5-CaF2 

(CFAS) based bioglass-ceramics and improve their mechanical strength. This study 

involved the modification of glass composition by refer the 1st bioglass system, using 

the conventional melt-quenching technique, development of the sintering process to 

find the optimum temperature, bioactive glass-ceramics to bond to bone rapidly and 

biocompatible for potential use in medical application. 

 

Based on the problem statement above, the objectives of this study were: 

1. To synthesis the CFAS based bioglass-ceramics derived from waste materials. 

2. To investigate the effect of Al2O3 composition and different sintering 

temperature on the physical, structural, and mechanical properties of CFAS 

bioglass-ceramics. 

3. To determine the bioactivity of the sample by immersed in phosphate buffer 

saline (PBS) solution from 7-28 days. 

4. To determine the biocompatibility of the CFAS bioglass-ceramics after 

immersion by using cytotoxicity test. 
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1.5 Scope of study 

 

Bioglass-ceramics are a type of bioactive material that merges the advantageous 

features of glasses and ceramics. They have garnered significant attention in the field 

of biomedical applications due to their unique properties. To achieve the objectives of 

the study, the scopes of the study as follow: 

1) A series of bioglass-ceramics with the composition of 44wt%SiO2-

24wt%CaO-(20-x) wt%Na2CO3 -6P2O5-6CaF2-(x)wt%Al2O3 where x = 0, 3, 6, 

and 9 (wt%), has been prepared using SLS glass, CaO, Na2CO3, P2O5 CaF2 and 

Al2O3 powders by melt-quenching technique. 

2) The study investigates the impact of sintering temperatures ranging from 650 

to 950°C on the structural, physical and mechanical properties of the bioglass-

ceramics. 

3) XRD is utilized for phase analysis, SEM for microstructural examination, and 

FTIR for analysing elemental bonding. 

4) Density measurements assess the compactness of the material, molar volume 

provides insights into the atomic arrangement within the material, and linear 

shrinkage is analysed to understand the extent of material shrinkage during 

sintering. 

5) A weight loss test is conducted to understand the elemental composition 

changes in the bioglass-ceramics, and pH measurements are taken to determine 

whether the material is acidic or alkaline 

6) Compressive strength testing evaluates mechanical robustness, Vickers 

microhardness testing assesses surface hardness, and fracture toughness testing 

measures the material’s resistance to crack propagation. 
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7) The bioactivity of the bioglass-ceramics is evaluated through hydroxyapatite 

layer formation, and cytotoxicity tests ensure biocompatibility and safety for 

biomedical applications. 

 

The expected outcomes identification of the optimal aluminium composition for 

enhanced bioglass-ceramic properties. Furthermore, understanding the influence of 

sintering temperature on structure, physical and microstructure. Then, improvement of 

mechanical properties within the range of cortical bone. Other than that, confirmation 

of bioactivity through hydroxyapatite layer formation. Also, it is non-toxic for used in 

human body. 

 

1.6 Outline of Thesis 

 

In chapter 1, the thesis begins with research background of biomaterial, bioceramics, 

and highlighting the bioglass-ceramics for this study. This chapter identify the problem 

and emphasize the importance of investigating SLS glass as a source of SiO2 and ES 

as a source of CaO. Furthermore, the chapter lays out the specific objectives to be 

addressed. Moving to chapter 2, a comprehensive literature review unfolds, delving 

into the unique attributes of SLS and ES as raw materials. The discussion broadens to 

encompass a review of bioglass, culminating in an exploration of bioglass-ceramics 

through an analysis of previous research. This chapter also review the formation of 

new phases such as fluorapatite and hydroxyapatite from bioglass-ceramics which is 

needed for biomedical applications. Chapter 3 elucidates the methodology used, 

elaborate in detail the sample preparation, in vitro bioactivity and cytotoxicity. The 

characterization technique used such as XRF, XRD, SEM, FTIR, density, molar 
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volume, linear shrinkage, weight loss, pH changes, compressive strength, Vickers 

microhardness, and fracture toughness are explained one by one from the fundamental 

of the equipment until the process how to characterize the sample by using the 

characterization. Chapter 4 presents the results and discussions of the five objectives, 

covering the synthesis of bioglass-ceramics, explore of Al2O3/Na2CO3 ratio, 

investigation of different sintering temperature from 650°C to 950°C, assessment of 

bioactivity and evaluation of cytotoxicity. Finally, the Chapter 5 conclude the obtained 

results and draw the conclusions also recommendations for future research endeavours.
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