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The characteristics of carbon quantum dots (CQDs) are significantly influenced 

by various factors such as preparation method, carbon source, doping and 

others.  Therefore, a comprehensive investigation into the optimal properties 

of CQDs is crucial for their targeted application. In this study, CQDs were 

synthesized from watermelon peels using a carbonization method. A thorough 

examination of their properties was conducted, considering key parameters 

such as the type of solvents used, carbon concentration, and pH values with 

consideration for their application in dye-sensitized solar cells (DSSC). The 

solvatochromic effect was observed, manifesting as variations in the 

photoluminescence (PL) spectra when CQDs were prepared in different 

solvents. PL measurements conducted at different excitation wavelengths, 

revealed that the emissions of CQDs were distinctly influenced by the polarity 

of the solvents. Dynamic light scattering (DLS) analysis confirmed that the size 
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of CQDs ranged approximately from 5.80± 0.4 to 9.74± 0.5 nm, a correlation 

validated by high-resolution transmission electron microscope (HRTEM) 

results. In the study on carbon concentration, the findings demonstrate a 

pronounced impact on the stability of CQDs particles. Zeta potential findings 

indicated that the stability of CQD particles peaked at low carbon 

concentration, with zeta potential values of -62.4 mV and -64.3 mV for CQDs 

dispersed in ultrapure water and methanol, respectively. Additionally, 

fluorescence intensity increased parallel with carbon concentrations, and the 

study identified that CQDs synthesized at 0.05-0.07 g/ml concentrations 

exhibited superior stability in colloidal form. In exploring different pH 

conditions, consistent pH-independent PL peak emissions were observed, yet 

the intensities displayed a pH-dependent trend, amplifying from acidic to 

neutral and diminishing from neutral to alkaline conditions. Moreover, in 

addressing drying concerns, the study revealed the occurrence of the coffee-

ring effect at pH 2.5, while uniform deposition was achieved at pH 7.5. This 

phenomenon was discussed based on Derjaguin, Landau, Verwey, Overbeek 

(DVLO) theory. For the application of CQDs in DSSCs, CQDs in methanol 

demonstrated the highest efficiency of 1.23%, surpassing CQDs in ultrapure 

water (0.038%) and the control sample N719 dye (0.34%). 

Keywords: Carbon quantum dots, photoluminescence, photovoltaic, zeta 

potential 
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Ciri-ciri titik kuantum karbon (CQDs) dipengaruhi secara signifikan oleh 

pelbagai faktor seperti kaedah penyediaan, sumber karbon, pendopan, dan 

lain-lain. Oleh itu, penyelidikan menyeluruh terhadap sifat optimum CQDs 

adalah penting untuk aplikasi yang ditentukan. Dalam kajian ini, CQDs 

disintesis daripada kulit tembikai menggunakan kaedah karbonisasi. 

Pemeriksaan menyeluruh terhadap sifat-sifat CQDs dijalankan, dengan 

mempertimbangkan parameter utama seperti jenis pelarut yang digunakan, 

kepekatan karbon, dan nilai pH dengan pertimbangan untuk aplikasi dalam sel 

suria terpeka warna (DSSC). Kesan solvatochromic diperhatikan, yang 

menampakkan variasi dalam spektrum fotoluminesens (PL) apabila CQDs 

disediakan dalam pelarut yang berbeza. Pengukuran PL dijalankan pada 

panjang gelombang pengujaan yang berbeza, mendedahkan bahawa 

pancaran CQDs dipengaruhi secara nyata oleh kekutuban pelarut. Analisa 
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serakan cahaya dinamik (DLS) mengesahkan bahawa saiz CQDs 

dianggarkan dari 5.28± 0.4 hingga 9.74± 0.5 nm, korelasi ini disahkan oleh 

keputusan resolusi tinggi transmisi elektron mikroskop (HRTEM). Dalam kajian 

ke atas kepekatan karbon, hasil kajian menunjukkan impak yang ketara 

terhadap kestabilan zarah CQDs. Penemuan potensi zeta menunjukkan 

bahawa kestabilan zarah CQD mencapai puncaknya pada kepekatan karbon 

yang rendah, dengan nilai potensi zeta masing-masing -62.4 mV dan -64.3 mV 

untuk CQDs yang tersebar dalam air ultratulen dan metanol. Tambahan pula, 

intensiti fluoresens meningkat seiring dengan peningkatan kepekatan karbon, 

dan kajian mengenal pasti bahawa CQDs yang disintesis pada kepekatan 

0.05-0.07 g/ml menunjukkan kestabilan yang lebih baik dalam bentuk koloid. 

Dalam meneroka keadaan pH yang berbeza, pancaran puncak PL yang tidak 

bergantung pada pH diperhatikan, namun intensitinya menunjukkan 

kecenderungan bergantung pada pH, meningkat dari asidik ke neutral dan 

berkurangan dari neutral ke keadaan alkali. Selain itu, dalam menangani 

masalah pengeringan, kajian mendedahkan kejadian kesan cincin kopi pada 

pH 2.5, manakala penyerapan seragam tercapai pada pH 7.5. Fenomena ini 

dibincangkan berdasarkan teori Derjaguin, Landau, Verwey, Overbeek 

(DVLO). Untuk aplikasi CQDs dalam DSSC, CQDs dalam metanol 

menunjukkan kecekapan tertinggi sebanyak 1.23%, mengatasi CQDs dalam 

air ultratulen (0.038%) dan sampel kawalan pewarna N719 (0.34%). 

Kata kunci: fotoluminesens, fotovolta, potensi zeta, titik kuantum karbon 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background of the study 

Study of materials at nano-scale has gained a great attention as it fills gap 

between bulk and molecules or atoms, subsequently improving our 

understanding of fundamental properties and providing new physical effects. 

Traditional practice is to use semiconductor quantum dots (QDs), as they 

provide the information and attention over the years owing the unique 

combination of optical, chemical, and electrical properties (Gao et al., 2017). 

QDs had been thoroughly explored for their tunable fluorescence emission and 

quantum confinement effect, which had allowed them to be used in many 

applications for many years (Kumar et al., 2022). The photostability and optical 

characteristics, such as the emission wavelengths, are affected by changes in 

the particle sizes of semiconductor QDs. These QDs are primarily made of 

lead sulphide (PbS), cadmium selenide (CdSe), and zinc sulphide (ZnS). In 

addition to utilising direct raw materials, QDs are also made using chemical 

vapor deposition and laser ablation, both of which use catalysts made of heavy 

metals including cobalt, nickel, and titanium (Torres Landa et al., 2022; 

Hongsith et al., 2022; Zhang et al., 2021). In light of this, the production of 

conventional QDs may require the use of expensive and toxic materials as well 
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as challenging operating conditions. However, with strict regulatory ban on the 

use of heavy metals in the consumer products in global especially in Asian 

market has made major QDs move towards heavy metals free QDs and using 

low toxic materials like carbon and graphene in their products (Song et al., 

2022; Ni & Li, 2018). One of the alternatives is by synthesizing nanoparticle 

based on the carbon material, also known as carbon quantum dots (CQDs). 

 

CQDs are emerging as a promising class of materials with great potential in 

various fields such as optoelectronics, biomedicine, energy storage, and 

catalysis (Xu et al., 2019; Wang & Lu, 2022; Khan et al., 2022). CQDs are 

small (less than 10 nm), fluorescent carbon nanoparticles, which have unique 

electronic and optical properties. The carbon-based structure of CQDs makes 

them a sustainable and eco-friendly alternative to traditional semiconductors. 

CQDs are discovered in 2004 via purification of fluorescent single-walled 

carbon nanotube (Xu et al., 2004). The nano-sized carbon particles are broadly 

classified into two categories, which are CQDs with a size smaller than 10 nm 

and carbon nanoparticles (CNPs) with a size larger than 10 nm (Azam et al., 

2021).  

 

CQDs can be synthesized from a variety of carbon sources, including biomass, 

and carbon-rich precursors. Among the various waste biomasses, fruit peels 

have garnered considerable interest due to their abundance, low cost, and 

high carbon content. Watermelon peels, in particular, have gained attention as 
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a potential precursor for the synthesis of CQDs. Watermelon peels are a 

readily available waste product generated in large quantities by the food 

industry. They are composed of organic compounds that contain carbon 

atoms, making them to easily become the CQDs. The primary components of 

watermelon peels are carbohydrates, which are organic compound made up 

of carbon, hydrogen, and oxygen atoms (Sorokina et al., 2021). The main 

carbohydrate present in watermelon peels are cellulose, hemicellulose, lignin, 

and other organic compounds. These peels have attracted attention not only 

for their potential use in sustainable energy production but also for their 

conversion into value-added materials such as CQDs. 

 

Some solvents can promote aggregation or induce changes in surface 

chemistry, leading to a reduced stability. The problem can be mitigated by 

study the solvent-dependent stability, aiding in the development of stable and 

well-dispersed CQDs (P. Chen et al., 2022). In addition, different applications 

may require CQDs to be dispersed or used in specific solvents. Therefore, in 

this research, CQDs have been synthesized by different type of solvents. This 

helps us to identify solvents that are compatible with CQDs and promote their 

dispersion, stability, and optimal performance in specific applications. The 

choice of solvents can influence the stability and aggregation behaviour of 

CQDs.  
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The investigation of different carbon concentrations and different pH on the 

properties of CQDs is essential to comprehensively understand their 

synthesis, structural variations, and resulting characteristics. Variations in 

precursor levels affect the size distribution, photoluminescence (PL) 

behaviour, surface chemistry, aggregation tendency, and stability of CQDs by 

systematically changing the carbon source concentrations throughout 

synthesis (Liu et al., 2021). This exploration not only enables the optimization 

of synthesis procedures to tailor CQDs for specific applications but also sheds 

light on the underlying mechanisms governing their unique optical and 

physicochemical properties.  

 

In recent years, there has been a growing interest in the application of CQDs 

in various fields, including photovoltaics and optoelectronics (Kim et al., 2022) 

(Batabyal et al., 2023). For example, CQDs have been used as sensitizers in 

solar cells, and as light-emitting materials in optoelectronic devices (Gaurav et 

al., 2022; Huang et al., 2020). In this thesis, the CQDs were synthesized via 

carbonization method from watermelon peels. The optical, structural, and 

physical properties of the samples are characterized to study the effect of 

different solvents, carbon concentrations and pH values. Finally, their potential 

application towards dye-sensitized solar cell (DSSC) where CQDs act as a co-

sensitizer are investigated and studied.  
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1.2 Motivation and problem statements 

The motivation behind studying the synthesis of CQDs is to explore the 

influence of solvent choice, carbon concentration and pH on the properties and 

characteristics CQDs. CQDs have gained significant attention due to their 

unique optical, electronic, and chemical properties, making them promising 

candidates for various applications such as optoelectronics, bioimaging, 

sensing, and energy storage (Stepanidenko et al., 2021; Fan et al., 2022; Kaur 

& Verma, 2022).  

 

The decision to utilize watermelon peels as a carbon source was influenced 

by multiple considerations, encompassing factors such as their availability, 

sustainability, and the presence of functional groups. Possessing a significant 

carbon content, crucial for the synthesis of CQDs, renders them a favourable 

initial material for such processes. As a by-product of agriculture, they 

represent a cost-efficient source of carbon for CQDs synthesis, concurrently 

addressing environmental apprehensions and imbuing value into disregarded 

resources. Additionally, the incorporation of functional groups, such as 

hydroxyl (-OH) and carboxyl (-COOH), within watermelon peels augments the 

reactivity of the carbon source, thereby facilitating the synthesis and tailoring 

of CQDs to meet specific properties. 

 

The choice of solvent during the synthesis process can have a profound impact 

on the size, morphology, and surface chemistry. Solvents with varying polarity 
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and dielectric constants can influence the emission wavelength, intensity, and 

stability of CQDs. Therefore, understanding the effects of different solvents on 

CQDs synthesis can help optimize their properties for specific applications. 

Thus, improve the performance of optical properties. Investigating these effects 

can help identify optimal solvents for tuning the optical properties of CQDs for 

specific applications of DSSC. 

 

The ability to tailor the optical characteristics of CQDs using various carbon 

concentrations is a further issue that needs to be solved. This is due to carbon 

concentration influences the size distribution, shape, and aggregation 

behaviour of the CQDs. This study can provide insights into the relationship 

between carbon concentration and the resulting CQDs morphology. As 

consequence, it is possible to adjust the energy bandgap thereby influencing 

the emission and absorption wavelengths of the CQDs. Investigating these 

effects can help understand the relationship between carbon concentration 

and the optical properties of CQDs.  

 

Next, the study is focus on the influence of pH on surface chemistry and 

functional groups of CQDs. pH level can influence the protonation and 

deprotonation of surface functional groups, affecting surface passivation, 

optical properties, and chemical stability (Guo et al., 2018). It is feasible to 

understand how pH affects the development of surface functional groups and 
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their impact on the characteristics of CQDs by examining the effects of pH on 

surface chemistry.  

 

Also, as the pH of CQDs varied, the study of drying problems can be 

investigated based on the DLVO (Derjaguin, Landau, Verwey, Overbeek) 

theory. The theory involves the van der Waals forces attraction and 

electrostatic repulsion the charges surface interacting with liquid medium, in 

this case, the CQDs dispersed in solvents. Finally, the optimized samples 

based on the systematic study will be tested on dye-sensitized solar cell 

(DSSC) with the expected efficiency of 1-2%. This expected value was 

considered higher compared to previously reported CQDs + N719 dye (0.19 

%) and CQDs only (0.10 %) (Ghan et al., 2019). 

 

1.3  Objectives of the study 

The general aim of this study is to explore the synthesis and characterization 

of CQDs extracted from watermelon peels. The novelty of this work lies in its 

sustainable approach towards producing CQDs from agricultural waste, 

thereby offering an eco-friendly and cost-effective alternative to traditional 

synthesis methods. Another novelty that can be highlighted is the evaluation 

of CQD dispersions stability by correlating the zeta potential measurements 

with colloidal stability parameters such as aggregation behaviour and particle 

size distribution.  
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The specific objectives are as follows: 

1. to synthesize colloidal CQDs from watermelon peels via carbonization method. 

2. to examine the effect of different type of solvents, carbon concentration, and 

pH on the optical, structural, and physical properties of the CQDs. 

3. to evaluate the potential application of CQDs on the dye-sensitized solar cell 

(DSSC). 

 

1.4  Thesis outline 

This thesis starts with Chapter 1 where the introduction of the CQDs, 

background of the study and the objectives of the research are presented. In 

Chapter 2, a brief explanation of the background theory of CQDs, low 

dimensional system, synthesis method, and properties of solvents are 

described. A description of carrier recombination, generation of electron and 

holes will be reviewed to give more information related to this research. Next, 

in Chapter 3, the methodology of including materials used to synthesize 

CQDs, characterization methods, and sample preparation will be explained. 

Also, in Chapter 3 explains the theory used in this research. In Chapter 4, the 

characterization results will be analysed and elaborated comprehensively. The 

results include the effect of different type of solvents in the stability of CQDs, 

carbon concentration, and pH. The application on the DSSC also will be 

described in the chapter. Finally, in Chapter 5, the conclusion and suggestions 

for future works will be discussed. 
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