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ABSTRACT:  

Malaysia's economic growth is significantly driven by its industrial sector, which includes high-

risk industries prone to chemical accidents and toxic gas emissions. The shelter-in-place (SIP) 

strategy, which advises residents to stay indoors during chemical releases, has become a critical 

response measure. However, its effectiveness in Malaysia varies due to factors like building 

integrity, population density, chemical usage, and weather conditions that influence gas dispersion. 

This study assesses SIP's effectiveness in Malaysia by examining various contextual factors and 

highlighting the role of public awareness and preparedness. It uses case studies and best practices 

globally to propose improvements in building codes, construction practices, and public education 

to optimize SIP's effectiveness. This comprehensive analysis aims to enhance Malaysia's 

emergency response strategies, ensuring better community protection against chemical hazards. 

The study critically explores the strengths and limitations of SIP and provides recommendations 

for enhancing public safety protocols, thus contributing to the broader discourse on emergency 

preparedness in the face of industrial risks.  

 

1. Introduction 

Malaysia's economic prosperity is significantly bolstered 

by its dynamic industrial sector, which encompasses 

manufacturing, petrochemicals, and other high-risk 

industries [1–4]. This industrialization, while a key 

driver of economic development and job creation, also 

brings with it an increased risk of chemical accidents and 

toxic gas emissions [5,6]. The history of industrial 

accidents in Malaysia, including notable incidents of 

toxic gas releases [7,8], underscores the urgent need for 

effective public protection strategies to safeguard 

communities against potential chemical hazards. 

Shelter-in-place (SIP) has emerged as a critical tactic in 

the arsenal of emergency response measures for such 

scenarios. SIP involves residents and individuals in the 

vicinity of a chemical release staying indoors, closing all 

windows and doors, and sealing any gaps where 

contaminants might enter, to minimize exposure to toxic 

substances. This measure, when effectively 

implemented, can significantly reduce the health risks 

associated with accidental releases of hazardous 

chemicals into the atmosphere [9,10]. 

However, the effectiveness of SIP is not uniform and can 

be influenced by a multitude of contextual factors 

specific to Malaysia. These include the architectural 

integrity and design of buildings, the density of 

population areas prone to such risks, the nature and 

volume of chemicals used in local industries, and the 

prevailing weather conditions that can affect the 

dispersion of toxic gases [11–13]. Moreover, the level of 
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public awareness and preparedness to respond to 

emergency instructions plays a crucial role in the success 

of SIP measures [14,15,10]. 

This study aims to critically assess the application and 

effectiveness of SIP in the Malaysian context, exploring 

how these various factors contribute to or detract from its 

success as a public protection strategy. Through an 

examination of case studies, literature, and best practices 

from around the globe, this paper seeks to identify the 

strengths and limitations of SIP in Malaysia. It will 

highlight key areas where improvements can be made, 

from enhancing building codes and construction 

practices to improving public education and 

communication during emergencies. By understanding 

the intricacies of SIP's application in Malaysia, this study 

will offer recommendations aimed at optimizing its 

effectiveness, ensuring that communities are better 

protected in the event of chemical emergencies. 

In doing so, the study will address several critical 

questions: How have past toxic gas incidents been 

managed in Malaysia, and what lessons can be learned? 

What are the specific challenges to implementing SIP in 

Malaysia's diverse urban and rural settings? And, most 

importantly, how can Malaysia enhance its SIP protocols 

to better protect its citizens from the dangers of toxic gas 

exposures? Through a comprehensive exploration of 

these questions, this paper aims to contribute valuable 

insights to the ongoing discourse on emergency 

preparedness and public safety in the face of chemical 

hazards in Malaysia. 

2. Building Integrity and Toxic Gas Leak Dynamics 

The premise of SIP as an effective emergency response 

hinges significantly on the structural integrity of 

buildings within which individuals seek refuge [16,17]. 

In Malaysia, the diversity in building construction 

materials and practices raises important considerations 

for SIP's viability [18–22]. Research indicates that a 

significant number of Malaysian buildings, especially 

residential ones, are constructed using concrete or brick 

materials [23]. Although these materials are readily 

accessible and available, their effectiveness in creating 

airtight seals to prevent the infiltration of toxic gases due 

to the building designs remains uncertain. The porosity 

and seal integrity of windows, doors, and ventilation 

systems in such buildings can vary widely, impacting 

their ability to serve as effective barriers against 

hazardous substances [24,25,12]. 

The challenge is further compounded by the dynamic 

nature of toxic gas releases. The physical and chemical 

properties of the released gas—such as its density 

relative to air, solubility, and reactivity—significantly 

influence how the gas behaves once released into the 

environment [26,27]. Gases that are heavier than air, for 

example, tend to accumulate at ground level and can seep 

into buildings more readily, especially in areas with poor 

ventilation or inadequate sealing [28]. 

Environmental conditions at the time of the leak also play 

a pivotal role. Wind speed and direction can affect gas 

dispersion patterns, while temperature and humidity 

levels can influence the gas's concentration and 

persistence in the air [29–31]. Leaks occurring under 

stagnant air conditions, where there is little to no wind to 

disperse the gas, pose a heightened risk as the 

concentrated gas cloud can envelop buildings, 

challenging the effectiveness of SIP measures [32]. 

Moreover, the interaction between the built environment 

and gas dynamics necessitates a nuanced understanding 

of risk assessment and mitigation strategies. For instance, 

buildings designed with advanced ventilation systems 

and air filtration technologies offer a higher level of 

protection by actively reducing indoor contaminant 

levels [33]. However, the widespread implementation of 

such technologies in Malaysia is limited by cost and 

practicality considerations, especially in older buildings 

or economically disadvantaged areas [34,35]. 

Addressing these challenges requires a multifaceted 

approach. Enhancing building codes to prioritize 

airtightness and incorporating passive and active 

ventilation strategies can significantly improve SIP 

outcomes [36,37]. Equally important is the development 

of comprehensive risk assessment tools that consider 

both the specific characteristics of potential toxic gases 

and the local building practices. Such tools can guide 

emergency planners and responders in making informed 

decisions about when and where SIP is most likely to be 

effective [13,38,12,39]. 

Furthermore, public education campaigns tailored to the 

Malaysian context can empower residents with the 

knowledge to improve the seal integrity of their homes 

and understand the limitations of SIP in different 
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scenarios [40,41]. This includes practical advice on 

emergency sealing techniques, the use of air purifiers, 

and the importance of staying informed about local 

industrial activities and the types of chemicals in use 

[42–44]. 

In brief, the effectiveness of SIP in Malaysia is intricately 

linked to the interplay between building integrity and the 

dynamics of toxic gas leaks. By addressing these critical 

factors through improved construction practices, targeted 

public education, and advanced risk assessment 

methodologies, Malaysia can enhance its resilience to 

chemical emergencies and better protect its citizens from 

the dangers of toxic gas exposure. 

3. Case Studies and Literature Review 

A thorough examination of past toxic gas incidents in 

Malaysia provides invaluable insights into the practical 

application and efficacy of SIP strategies. By dissecting 

documented cases and analyzing relevant academic 

studies, this section evaluates the real-world outcomes of 

SIP, identifying successful applications and areas for 

improvement. Additionally, a comparative analysis with 

countries possessing similar industrial profiles and 

emergency management frameworks offers a broader 

perspective on SIP's global best practices [40]. 

3.1 Malaysian Case Studies: 

i. Petrochemical Plant Leak (2016): An unfortunate 

incident occurred at the Petronas Chemicals Fertiliser 

Sabah Sdn. Bhd. facility. During maintenance work, 

an ammonia leak resulted in two fatalities and affected 

three other workers [45]. Despite the severity of the 

situation, no SIP advisory was issued. However, in the 

event of such incidents, the immediate 

implementation of SIP can significantly reduce the 

risk of exposure to hazardous substances, thereby 

safeguarding the health and safety of workers and the 

surrounding community [40]. 

ii. Pasir Gudang Industrial Chemical Spill (2019): This 

incident involved the release of hazardous gases from 

illegal chemical waste dumping, affecting over 5,000 

individuals with symptoms of poisoning and 

necessitating mass evacuations [46,8,47,48]. No SIP 

advisory was issued during this crisis, which 

highlights a missed opportunity for reducing exposure 

and underscores the need for rapid dissemination of 

information and public compliance [49]. Analysis of 

this case reveals challenges in public awareness and 

preparedness, with the absence of SIP instructions 

potentially contributing to the incident's health impact 

[48]. 

3.2 International Comparative Analysis: 

Drawing lessons from international experiences 

enriches the understanding of SIP's application. For 

instance: 

i. United States - Richmond, California Refinery Fire 

(2012): The response to this refinery fire, which 

emitted a large plume of toxic smoke, included SIP 

orders for nearby residents. The incident emphasized 

the significance of community preparedness and the 

effectiveness of early warning systems [50,51]. 

Malaysia can learn from Richmond's community 

engagement practices and the implementation of 

advanced alert systems to enhance SIP 

responsiveness. 

ii. China - Tianjin Chemical Explosion (2015): The 

catastrophic explosion in Tianjin resulted in 

significant chemical exposure. The emergency 

response highlighted issues similar to those faced in 

Malaysia, such as the need for timely public 

information and the challenges of managing large-

scale evacuations [52]. Insights from Tianjin suggest 

the importance of integrating SIP strategies with 

evacuation plans, especially for incidents involving 

widespread contamination [53,54]. 

iii. United States - Altivia Plant Toxic Gas Leak (2023): 

A toxic gas leak at Altivia Chemicals' La Porte, Texas 

plant resulted in eight individuals being hospitalized. 

In response to the emergency, the city issued a SIP 

order affecting several neighbouring industrial 

facilities. This measure aimed to minimize exposure 

to the hazardous gas among workers and nearby 

residents. The leak was traced back to a ruptured 

pressure release device, prompting the shutdown of all 

operations at the La Porte site to ensure safety. The 

SIP order was effectively managed and lifted 

approximately one hour after its implementation, 

demonstrating the importance of timely and 

coordinated emergency response measures in 

mitigating the impact of toxic gas releases [42,55,56]. 

3.3 Lessons Learned and Benchmarks: 
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The review of case studies within Malaysia and 

comparisons with international incidents reveal 

several key lessons: 

i. Importance of Public Awareness and Education: 

Consistent public education on SIP procedures and 

emergency preparedness is critical. Malaysia can 

enhance its SIP outcomes by adopting ongoing 

education campaigns and leveraging media to 

disseminate information effectively [57,58]. 

ii. Need for Robust Early Warning Systems: The 

implementation of advanced early warning and real-

time monitoring systems can significantly improve 

SIP effectiveness by ensuring timely advisories are 

issued [59–61]. 

iii. Integration with Evacuation Plans: SIP should not be 

viewed in isolation but as part of a holistic emergency 

response strategy that includes evacuation options for 

scenarios where SIP may not be sufficient 

[18,10,62,63]. 

iv. Building and Infrastructure Readiness: Improving the 

seal integrity of buildings and ensuring that critical 

infrastructure is equipped for SIP can mitigate the 

risks associated with toxic gas exposure 

[40,64,65,10]. 

By examining these case studies and incorporating 

international best practices, Malaysia can refine its SIP 

strategies to better protect its citizens from the dangers of 

toxic gas leaks. This review underscores the necessity of 

a multifaceted approach to emergency preparedness, 

combining public education, infrastructure 

improvements, and robust early warning systems to 

enhance the overall effectiveness of SIP measures. 

4. Strengths and Limitations of Shelter-in-Place 

(SIP) 

4.1 Strengths of SIP 

i. Rapid Deployment: One of the most significant 

strengths of SIP is its ability to be quickly 

implemented. In the event of a toxic gas release, 

authorities can immediately advise the public to 

shelter in place, a directive that can be rapidly 

disseminated through various communication 

channels such as social media, text alerts, and sirens. 

This immediacy can be crucial in minimizing 

exposure to hazardous substances [12,38]. 

ii. Low Resource Dependency: SIP requires relatively 

few resources compared to large-scale evacuations. 

It leverages existing infrastructure (i.e., people's 

homes and buildings) as protective shelters, 

avoiding the logistical complexities and resources 

needed for transporting, housing, and supporting 

displaced populations [66,67,12,68]. 

iii. Minimization of Exposure: By staying indoors, 

individuals can significantly reduce their exposure 

to toxic gases, especially when buildings are 

adequately sealed. This is particularly effective in 

the initial hours following a release when the 

concentration of toxic substances in the air outside 

may be at its highest [69,70,10]. 

4.2 Limitations of SIP 

i. Prolonged Indoor Stays: SIP can necessitate extended 

periods indoors, which may not always be feasible or 

safe, depending on the building's suitability and the 

duration of the hazard. Extended stays can lead to 

challenges in accessing fresh air, food, water, and 

medical supplies, particularly for individuals with 

health conditions that require regular care or 

medication [25,71,10]. 

ii. Psychological Impacts: The stress and anxiety 

associated with SIP situations, especially when 

prolonged and without clear communication, can have 

significant psychological impacts on individuals. This 

includes feelings of isolation, fear, and uncertainty, 

which can be exacerbated in individuals with pre-

existing mental health conditions [72–75]. 

iii. Communication Failures: Effective SIP 

implementation heavily relies on timely and clear 

communication from authorities. The risk of 

communication failures—due to overloaded systems, 

power outages, or misinformation—can undermine 

SIP directives, leading to confusion and non-

compliance among the public [76–78]. 

iv. Vulnerable Populations: Certain groups face unique 

challenges with SIP. Individuals with disabilities may 

find it difficult to ensure their shelter is adequately 

sealed or may require specific medical equipment that 

SIP conditions can disrupt [79,80].  

v. Variability in Building Integrity: The effectiveness of 

SIP is highly dependent on the structural integrity and 

airtightness of buildings. In areas where buildings are 

not designed to minimize air infiltration, the 

protection SIP offers can be significantly reduced. 
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This variability raises concerns about the equitable 

protection of all community members, regardless of 

their living conditions [36,18,25,10]. 

4.3 Addressing the Limitations 

To enhance the efficacy of SIP, it is crucial to 

address these limitations through targeted strategies: 

i. Improving Public Communication: Develop robust 

communication plans that utilize multiple platforms to 

ensure reliable, clear, and consistent messaging 

throughout the duration of a SIP advisory [81,82]. 

ii. Enhancing Building Readiness: Advocate for building 

codes that improve the sealability and ventilation of 

structures, particularly in new constructions and high-

risk areas [83,84]. 

iii. Supporting Vulnerable Groups: Create specific 

protocols and support systems for vulnerable 

populations, ensuring they have the necessary 

resources and assistance to effectively SIP [85,86]. 

iv. Psychological Support Services: Incorporate mental 

health support into SIP planning, offering access to 

counselling services and guidance on managing stress 

and anxiety during prolonged indoor stays [72,86,87]. 

By critically examining the strengths and limitations of 

SIP and implementing strategies to address its 

challenges, emergency management authorities can 

optimize this response measure to protect public health 

and safety during toxic gas releases more effectively. 

5. Recommendations for Enhancement  

i. Public Awareness Initiatives 

• Targeted Information Campaigns [88,89]: Develop 

and deploy targeted public information campaigns 

that cater to diverse segments of the population, 

including schools, businesses, and residential 

communities. Utilize a variety of media platforms — 

social media, television, radio, and print — to 

disseminate information on SIP procedures, the 

importance of emergency preparedness, and the 

limitations of SIP in certain situations. 

• Community Engagement and Training [90,91]: 

Organize community engagement sessions and 

training workshops to educate the public on practical 

SIP measures, such as how to effectively seal a room 

and the essentials of creating an emergency 

preparedness kit. Collaborate with local community 

leaders and organizations to facilitate these sessions, 

ensuring wide-reaching impact. 

ii. Building Regulations Revision 

• Enhancement of Building Codes [92]: Work with 

relevant regulatory bodies to review and update 

building codes, focusing on improving the 

airtightness of structures and the compatibility of 

ventilation systems with SIP requirements. 

Encourage the incorporation of passive ventilation 

systems that can be manually controlled to 

minimize air infiltration during a SIP advisory 

[93,94]. 

• Incentives for Retrofitting [95,96]: Introduce 

incentives for homeowners and businesses to 

retrofit existing buildings to meet enhanced SIP-

related standards. This could include financial 

subsidies, tax rebates, or assistance programs 

aimed at making buildings more resistant to toxic 

gas infiltration. 

iii. Emergency Response Optimization 

• Comprehensive Emergency Plans [97,13,12]: 

Develop and regularly update comprehensive 

emergency response plans that include specific SIP 

protocols. These plans should detail efficient 

communication strategies, including the use of 

emergency alert systems to notify the public of SIP 

advisories, clear evacuation protocols for when SIP is 

not viable, and guidelines to support at-risk 

populations. 

• Interagency Coordination [98,99]: Strengthen 

interagency coordination among emergency services, 

health departments, environmental agencies, and 

community organizations to ensure a unified and 

effective response during toxic gas emergencies. 

Conduct regular joint exercises to test and refine 

emergency plans and SIP protocols. 

iv. Technological Advancements in Monitoring 

• Real-Time Air Quality Monitoring [100–102]: Invest 

in the expansion and upgrade of air quality monitoring 

networks to provide real-time data on toxic gas 

concentrations. Ensure that monitoring stations are 

strategically located near industrial areas and densely 

populated communities for optimal coverage and 

accuracy. 

• Advanced Gas Dispersion Modelling [11,29,103]: 

Utilize advanced gas dispersion models to predict the 

movement and concentration of toxic gases following 
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a release. Integrate these models with emergency 

management systems to inform decision-making 

processes, including the issuance of SIP advisories 

and the activation of evacuation plans when 

necessary. 

• Public Access to Information [104,105]: Develop a 

platform or mobile application that provides the 

public with access to real-time air quality data and 

emergency advisories. This tool can empower 

individuals to make informed decisions about their 

safety during toxic gas incidents. 

 

6. Conclusion  

Shelter-in-place (SIP) has emerged as a crucial tactic in 

safeguarding the Malaysian populace from the dangers 

posed by accidental releases of toxic gases. Its role in the 

nation's emergency response framework is undeniable, 

offering a rapid and resource-efficient means to mitigate 

exposure during chemical emergencies. However, the 

effectiveness of SIP is not a given; it is contingent upon 

a myriad of factors ranging from the structural integrity 

of buildings to the speed and clarity of communication 

during crises. The study has underscored that while SIP 

holds significant promise, its current application reveals 

gaps that must be addressed to fully realize its potential. 

The journey towards refining SIP in Malaysia involves a 

comprehensive approach that touches on various aspects 

of emergency preparedness and public safety. Critical to 

this endeavour is the need for ongoing evaluation and 

refinement of SIP strategies to ensure they remain 

responsive to evolving risks and technological 

advancements. Addressing the current shortcomings 

identified in this study—such as enhancing building 

airtightness, improving public awareness and 

compliance, optimizing emergency communication, and 

leveraging technological advancements for real-time 

monitoring—constitutes the immediate steps towards 

fortifying the SIP protocol. 

Moreover, the complexity of implementing effective SIP 

measures calls for a collaborative effort that transcends 

individual stakeholders. It necessitates a partnership 

between government agencies, the private sector, non-

governmental organizations, and the community at large. 

By fostering a culture of preparedness and resilience, 

Malaysia can cultivate a more informed and responsive 

populace capable of acting decisively during toxic gas 

emergencies. 

Customizing emergency protocols to align with 

Malaysia's unique demographic, geographic, and 

infrastructural context is paramount. This customization 

involves not just a technical recalibration of existing 

protocols but also a cultural shift towards a more 

proactive and preventive approach to disaster 

management. Empowering communities with the 

knowledge and tools to effectively implement SIP, 

coupled with infrastructure that supports such measures, 

will be key to minimizing the public health impacts of 

toxic gas releases. 

As Malaysia continues to advance its industrial 

capabilities, the potential risks associated with toxic gas 

leaks cannot be overlooked. Therefore, enhancing the 

SIP strategy is not merely an exercise in emergency 

response optimization but a necessary step towards 

safeguarding the nation's health, environment, and future 

prosperity. Through committed action, ongoing research, 

and adaptive policy-making, SIP can evolve into a more 

robust and effective element of Malaysia's emergency 

response framework, offering a beacon of safety and 

resilience in the face of chemical hazards. 
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