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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

MATHEMATICAL MODELS AND OPTIMIZATION ALGORITHMS FOR
LOW-CARBON LOCATION-INVENTORY-ROUTING PROBLEMWITH

UNCERTAINTY

By

LIU LIHUA

July 2024

Chairman : Lee Lai Soon, PhD
Faculty : Science

This thesis considers the low carbon Location-Inventory-Routing Problem (LIRP) by

addressing the challenges of demand uncertainty through the application of stochas-

tic and fuzzy methods. Multi-objective mathematical models are developed to solve

the conflict between total supply chain cost, carbon emission cost, and customer satis-

faction in logistics management. This thesis also aims to solve the low-carbon LIRP

model with uncertainty factors such as carbon trading, customer demand, shortages,

and soft time windows using advanced algorithms. Three LIRP models involving mul-

tiple distribution centers and periods are proposed. The first model is a fuzzy chance-

constrained programmingmodel that considers factors such as cost, out-of-stock inven-

tory, carbon trading mechanisms, and fuzzy customer demand. The other two models

are bi-objective mixed integer nonlinear programming models with soft time window

constraints developed to minimize costs and maximize customer satisfaction under un-

certain demand, which include stochastic and fuzzy demand, respectively. Given the

NP-Hard nature of the three models proposed in this thesis, two metaheuristic algo-

rithms have been developed. A hybrid Particle Swarm Optimization-Bacterial For-

aging Algorithm is developed for solving the single objective LIRP model. Further-
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more, an improved non-dominated sorting genetic algorithm with an elite strategy II

(IMNSGA-II) has been developed to solve the two bi-objective models, surpassing

existing literature’s algorithms such as Pareto Envelope-based Selection Algorithm II

(PESA-II) and NSGA-II. Empirical validation using benchmark dataset and real-world

data from three logistics companies in China demonstrates significant improvements in

supply chain efficiency and cost reduction. When compared to the Supply Chain Guru

X (SCGX) software, the proposed algorithms offer higher practical applicability.

Keywords: Fuzzy, Low-Carbon, Location-Inventory-Routing Problem, Stochastic,
Uncertainty.

SDG:GOAL 9: Industry, Innovation, and Infrastructure, GOAL 12: Responsible Con-
sumption and Production, GOAL 13: Climate Action.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

MODEL MATEMATIK DAN ALGORITMA PENGOPTIMUMANMASALAH
KARBON RENDAH LOKASI-INVENTORI-PENGHALAAN DENGAN

KETIDAKPASTIAN

Oleh

LIU LIHUA

Julai 2024

Pengerusi : Lee Lai Soon, PhD
Fakulti : Sains

Tesis inimempertimbangkanMasalah Lokasi-Inventori-Penghalaan (MLIP) rendah kar-

bon denganmenangani cabaran ketidakpastian permintaanmelalui aplikasi kaedah stoka

dan kabur. Model matematik berbilang objektif dibangunkan untuk menyelesaikan

konflik antara jumlah kos rantaian bekalan, kos pelepasan karbon dan kepuasan pelang-

gan dalam pengurusan logistik. Tesis ini juga bertujuan untuk menyelesaikan model

MLIP karbon rendah dengan faktor ketidakpastian seperti perdagangan karbon, per-

mintaan pelanggan, kekurangan, dan tetingkap masa lembut menggunakan algoritma

lanjutan. Tiga model MLIP yang melibatkan pelbagai pusat pengedaran dan tempoh

dicadangkan. Model pertama ialah model pengaturcaraan terhad peluang kabur yang

mempertimbangkan faktor seperti kos, inventori kehabisan stok, mekanisme perda-

gangan karbon dan permintaan pelanggan kabur. Dua model lain ialah model pen-

gaturcaraan tak linear integer bercampur bi-objektif dengan kekangan tetingkap masa

lembut yang dibangunkan untuk meminimumkan kos dan memaksimumkan kepuasan

pelanggan di bawah permintaan yang tidak menentu, yang masing-masing termasuk

permintaan stokastik dan kabur. Memandangkan sifat NP-Hard bagi ketiga-tiga model

yang dicadangkan dalam tesis ini, dua algoritmametaheuristik telah dibangunkan. Satu
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algoritma hibrid pintar pengoptimuman kawanan zarah-algoritma mencari makan bak-

teria dibangunkan untuk menyelesaikan model MLIP dengan objektif tunggal. Tam-

bahan pula, algoritma genetik pengisihan tidak didominasi yang dipertingkatkan den-

gan strategi elit II (IMNSGA-II) telah dibangunkan untuk menyelesaikan dua model

dwi-objektif, mengatasi algoritma kesusasteraan sedia ada seperti Algoritma Pemilihan

berasaskan Sampul Pareto II (PESA-II) dan NSGA-II. Pengesahan empirikal menggu-

nakan set data penanda aras dan data dunia sebenar daripada tiga syarikat logistik di

China menunjukkan peningkatan ketara dalam kecekapan rantaian bekalan dan pengu-

rangan kos. Jika dibandingkan dengan perisian Supply Chain Guru X (SCGX), algo-

ritma yang dicadangkan menawarkan kebolehgunaan praktikal yang lebih tinggi.

KataKunci: Kabur, RendahKarbon,Masalah Lokasi-Inventori-Penghalaan, Stokastik,
Ketidakpastian.

SDG: MATLAMAT 9: Industri, Inovasi dan Infrastruktur, MATLAMAT 12: Peng-
gunaan dan Pengeluran Bertanggungjawab, MATLAMAT 13: Tindakan Memerangi
Perubahan Iklim.
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CHAPTER 1

INTRODUCTION

1.1 Overview

To improve the financial performance and market edge of businesses, the logistics ser-

vice network is a crucial component in the orchestration of supply chain operations. In

logistics, achieving a balance between benefits and costs is a central challenge posed

by the Location-Inventory-Routing Problem (LIRP). Achieving an optimal operational

state for the logistics system requires a delicate equilibrium, making it essential to ap-

proach the study of the LIRP from a comprehensive, systemic viewpoint.

With the intensification of global warming, people’s concerns about the increase in

carbon dioxide emissions are growing. The logistics supply chain, as a major source of

air pollution and greenhouse gas emissions, has become a key focus for governments

and large companies committed to reducing their environmental impact. Therefore,

LIRP considering low carbon emissions is of great significance.

When evaluating decision factors for the LIRP model, it is important to consider cer-

tain uncertainties. These may include stochastic or fuzzy demand, inventory shortages

stemming from various uncertain factors, and variability in delivery times due to the

potential for transportation disruptions.

1.2 Research Background

This section will further analyze the related concepts and theories of the LIRP in an

uncertain environment with low carbon.

1
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1.2.1 LIRP Modeling

The primary focus of the LIRP integrated optimization model is to minimize the overall

expenses of the system while ensuring that all resource constraints are met. The total

cost of the system typically includes location, transportation, and inventory costs. Lo-

cation cost refers to the expenses associated with constructing and operating an open

distribution center over a specific period. Transportation cost encompasses the total

expenditure required for moving goods between different nodes within the system. In-

ventory cost represents the combined expenses related to ordering, holding, and po-

tential losses due to stockouts at each node with inventory. If carbon emission cost is

considered, the total system cost should also include the cost due to carbon emission.

System resource constraints usually include: (i) constraints related to distribution cen-

ters (DCs)’ location, such as the number ofDCs, and capacity constraints; (ii) inventory-

related constraints, such as inventory capacity and backorder constraints; (iii) con-

straints related to the distribution path, such as vehicle carrying capacity, service time

window (TW), road network flow constraints; and (iv) constraints related to the ser-

vice, such as service level, service time constraints. In addition to considering supply

capacity, demand, and other relevant constraints and decision variables of the system,

various limitations and variable configurations are also taken into account in the inte-

grated optimization of LIRP.

Hence, the fundamental structure of the mathematical model for LIRP which is sum-

2
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marized from Le and Lee (2013) is as follows:

min Z = f(x) = CL + CI + CT + Ccarbon

s.t.



Constraints associated with location selection

Constraints related to inventory

Constraints associated with the distribution path

Constraints related to the service

Other constraints

Set variable

In this fundamental model structure, the primary aim is to minimize the overall cost of

the system. Here, Z denotes the total system cost, and f(x) represents the total sys-

tem cost function, which encompasses various components such as location cost (CL),

inventory cost (CI ), transportation cost (CT ), and carbon emission cost (Ccarbon). Fur-

thermore, it is possible to integrate and optimize service time elements to address multi-

objective problems. These may include maximizing customer satisfaction (CS) or en-

hancing system reliability and punctuality while simultaneously minimizing the total

supply chain cost (TSCC). Additionally, if there is a need to modify or adjust the objec-

tive function along with certain constraints, corresponding modifications can be made

accordingly.

Generally, the definition of a multi-objective optimization problem aiming to minimize

an objective value can be found in previous research by Prieto and Gomez (2021). Let

x = (x1, x2, . . . , xn)T represent the decision variable in a problem. The decision space

is denoted as Ω, and F : Ω → θ ⊆ Rm represents a set of real-valued objective func-

tions that map from the dimensional decision space Ω to the m dimensional objective

space θ. The objective space is referred to as Rm, while the feasible objective solution

3
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of the problem is denoted by {F (x) | x ∈ Ω} Prieto and Gomez (2021).

min F (x) = (f1(x), f2(x), . . . , fm(x))T

s.t.


Constraints

x ∈ Ω

1.2.2 Calculation Methods of Carbon Emissions

There are three methods available for calculating carbon emissions, and their applica-

tion should be based on a thorough analysis of the specific problem at hand. The three

methods are as follows:

1. Method one: the relevant carbon emission coefficient is determined, and the

carbon emission per unit product distance from the factory to the potential DCs

as well as from the potential DCs to the customer is set (Ning and Chan, 2007).

In the study conducted by Ning and Chan (2007), they examined the emissions

of carbon monoxide (CO), hydrocarbon (HC), and nitric oxide (NO) from lique-

fied petroleum gas vehicles in real-world on-road conditions. By calculating the

emission factors of CO, HC, and NO in vehicle exhaust based on standard engine

parameters, and converting them into CO2 emission factors through equations

(1.1)-(1.3). The coefficients in the equations are determined through regression

analysis of overall liquefied petroleum gas vehicle emissions data.

Q1 =2.8910 × 10−2 − 8.1472 × 10−4V + 8.3816 × 10−6V 2

− 3.2957 × 10−4a + 1.4195 × 10−4a2,

(1.1)

Q2 =1.3143 × 10−3 − 2.8063 × 10−5V + 2.1527 × 10−7V 2

+ 4.7141 × 10−5a + 1.1609 × 10−6a2,

(1.2)
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ln Q3 = − 6.3117 − 1.0142 × 10−1V + 1.3014 × 10−3V 2

+ 5.9183 × 10−1a − 1.6699 × 10−2a2,

(1.3)

where, Q1 is the volume concentration ratio of CO to CO2, Q2 is the volume

concentration ratio of HC to CO2, Q3 is the volume concentration ratio of NO

toCO2, V represents the vehicle’s instantaneous velocity in kilometers per hour,

and a represents the vehicle’s acceleration/deceleration.

Subsequently, the emission factors for CO2 in grams per kilometer can be com-

puted within the context of real-world vehicle operation, taking into account in-

stantaneous vehicle velocity and changes in acceleration/deceleration:

Q = Q1 + Q2 + Q3. (1.4)

2. Method two: the fuel efficiency for each unit of distance ρ at customer node (i, j)

is directly linked to the vehicle load QX , as shown by Xiao et al. (2012). This

correlation can be represented mathematically as follows:

ρ(QX) = a(Q0 + QX) + b. (1.5)

It is essential to calculate the fuel consumption per unit distance in both unloaded

(ρ0) and fully loaded conditions, taking into account the dead weight (Q0) and

maximum load capacity (Qk) of the distribution vehicle.

ρ0 = aQ0 + b, (1.6)

ρ∗ = a(Q0 + Qk) + b, (1.7)

obtain

a = ρ∗ − ρ0
Qk

. (1.8)

In summary, it is possible to formulate the calculation of a vehicle’s fuel effi-
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ciency per unit distance as ρ(QX):

ρ(QX) = ρ0 + ρ∗ − ρ0
Qk

QX . (1.9)

The production of carbon emissions is a result of fuel combustion, and the fuel

consumption of the distribution vehicle depends on both its distance traveled and

its cargo capacity.

The total carbon emissions, denoted as Qc, for the distribution of section (i, j)

node can be computed using the following method:

Qc = ρ(Qij)ωdij = (ρ0 + ρ∗ − ρ0
Qk

Qij)ωdij . (1.10)

3. Method three: the calculation of route carbon emission is complex, but the car-

bon emission mainly comes from fuel consumption in the process of transporta-

tion/distribution. Therefore, Demir et al. (2011) has undergone testing and mod-

ifications by Boriboonsomsin and Barth (2008). The integrated emission mea-

surement model involves the calculation of fuel consumption followed by the

computation of carbon emissions based on the fuel volume. Assuming that the

vehicle accelerates to a certain speed and then keeps a constant speed in the trans-

portation or distribution process, the basic formula of fuel consumption GF can

be obtained as follows.

GF = [ζ + β1RT v + β2a2v/1000]v
2 + as

a
. (1.11)

In Equation (1.11), ζ represents the idling fuel consumption constant. β1 repre-

sents the engine fuel efficiency factor at constant speed, while β2 represents the

fuel consumption factor for acceleration. v is the velocity, a is acceleration, and

s is the running distance. RT stands for traction, and traction is the force or pull

that displaces the truck. It should be noted that if the vehicle is stalled, the idle

fuel consumption is 0, and if there is no acceleration, a = 0. RT is calculated as
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follows:

RT = f1 + f2v2 + Wa/1000 + WGg10−5. (1.12)

In Equation (1.12), f1 represents the resistance value related to rolling resistance.

f2 represents the drag value related to the aerodynamic drag. W is the total mass

including the dead weight of the vehicle. G represents the road slope value, and

G is negative when going downhill. g represents the acceleration due to gravity.

It should be noted that the speed v in the equation is the final running speed of

the vehicle, and the speed is not required to accelerate from 0. RT is discussed

further below:

(i) If the traction RT ≤ 0, in which case the fuel consumption is the fuel

consumption rate during idling, i.e:

GF = ζts. (1.13)

In Equation (1.13), ts represents the residence time of the vehicle such

as loading and unloading at DC, and GF = 0 if the vehicle is flared out

ζ = 0.

(ii) If the traction force is 0, and if there is acceleration during vehicle opera-

tion, then the fuel consumption is:

GF = [ζ +β1(f1 +f2 +Wa/1000+WGg10−5)+β2Wa2/1000]
√

2s/a.

(1.14)

In Equation (1.14), s is the distance accelerated by the vehicle.

(iii) If the traction force is 0, and if the vehicle is moving at a constant speed,

the fuel consumption is

GF = [ζ + c1v + c2v]s
′

v
. (1.15)

In Equation (1.15), c1 represents the fuel consumption coefficient due to
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rolling resistance, c2 represents the fuel consumption coefficient due to air

resistance, and s
′ is the distance of constant speed forward.

In summary, themeasurement formula for carbon emissions in transportation/distribution

is as follows:

CER = θGF. (1.16)

1.2.3 Customer Satisfaction Function

The calculation of the CS function is divided into two cases, which can be determined

based on either the delivery time or the delivery distance of goods. In the case of

logistics transportation within the same city, the CS function based on time is employed

when the customer specifies the delivery time range in hours. Conversely, for long-

distance transportation scenarios, where the customer expects the transportation time

range to be measured in days, the CS function based on distance is utilized. These two

calculations are performed as follows:.

Case 1: Time-based CS function..

According to the proposed approach by Shu et al. (2021) assumed that the expected de-

livery TW of customers is [ET ′
j , LT ′

j ], and the acceptable delivery TW to avoid penalty

costs is [eTj , lTj ]. However, as a result of epidemic prevention and control measures,

distribution centers are susceptible to shortages and insufficient capacity. Therefore,

the majority of customers are willing to accept a slightly earlier or later delivery time

than their preferred delivery window. Assuming S = 1, it indicates a lack of goods

and insufficient capacity. In this particular scenario, the acceptable delivery window

for customers is represented as [eTj , lTj ], where the x-axis denotes the delivery time

tj and the y-axis represents the CS function V (tj). Figure 1.1 depicts the relation-

ship between delivery time and CS. As can be seen from Figure 1.1, under special

circumstances, when the deliveryman delivers the goods within the [ET ′
j , LT ′

j ] and

the customer is served within the time interval, their satisfaction is rated as 1. If the

deliveryman delivers the goods outside the [eTj , lTj ], CS is reduced to 0. If the deliv-
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Figure 1.1: Graph of CS with TW.

eryman delivers the goods within the [eTj , ET ′
j ], CS will increase as the time difference

between the delivery time and the earliest delivery time expected by the customer de-

creases. If the deliveryman delivers the goods within the [LT ′
j , lTj ], CS will decrease

as the time difference between the delivery time and the latest expected delivery time

increases.

V
(
tj
)

=



0, tj < eTj

tj−ET ′
j

eTj−ET ′
j
, eTj ≤ tj < ET ′

j

1, ET ′
j ≤ tj ≤ LT ′

j
LT ′

j−tj

LT ′
j−lTj

, LT ′
j < tj < lTj

0, lTj < tj

. (1.17)

Case 2: Distance-based CS function..

CS is determined by the proximity of the DC to its location.

f(dij) =


1, [0, Rmin]

1 − ( dij−Rmin
Rmax−Rmin

)β , [Rmin, Rmax]

0, [Rmax, ∞]

, (1.18)

where Rmin represents the acceptable transportation distance when the customer is
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very satisfied; Rmax denotes the delivery distance when the customer is very dissat-

isfied; dij is the actual distance between customer i and distribution center j; through

the customer i to the distribution center j coordinate measurement; β is the distance

sensitivity coefficient, and different values of β represent the customer’s sensitivity to

distance. When β < 1, the customer distance satisfaction curve is concave. When

β > 1, the customer distance satisfaction curve is convex. When β = 1, the customer

distance satisfaction curve is a straight line.

1.2.4 Fuzzy Variables and Operations

The inception of fuzzy sets is credited to Zadeh (1965), which represents a noteworthy

achievement in the advancement of fuzzy set theory and its practical problem-solving

applications. In 1978, the concept of possibility measure was introduced by Zadeh

(1978) as a method to quantify fuzzy events. However, despite its extensive accep-

tance, this measure does not possess self-duality. Nonetheless, both theoretical and

practical factors require the presence of a self-dual measure. To meet this urgent need,

the concept of confidence measure was introduced by Liu and Liu (2002). Addition-

ally, Li and Liu (2006) proposed a condition that is both necessary and sufficient for

assessing reliability. Credibility theory, which was initially established by Liu and Liu

(2003) and further developed in subsequent work by Liu and Liu (2009), has become a

well-established field in mathematics. In this thesis, the definition of the discrete fuzzy

variable provided in Liu’s seminal publication from Liu and Liu (2009) is adopted .

Definition 1.1 (Liu and Liu, 2002) A set function Cr is called a confidence measure if

it satisfies normality, monotonicity, self-duality, and maximality.

Definition 1.2 (Liu and Liu, 2009) Let Θ be a nonempty set, P be a power set of Θ, Cr

be a confidence measure, and let the triple (Θ, P, Cr) be called a confidence space.

Definition 1.3 (Liu and Liu, 2009) The fuzzy variable is defined as a (measurable)

function from the confidence space (Θ, P, Cr) to the set of real numbers.
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Definition 1.4 (Liu and Liu, 2009) Let f : Rn → R be a function, ξ1, ξ2, . . . , ξn fuzzy

variables over the credibility space (Θ, P, Cr). Then ξ = f(ξ1, ξ2, . . . , ξn) is a fuzzy

variable, for any θ ∈ Θ has ξ(θ) = f(ξ1(θ), ξ2(θ), . . . , ξn(θ)).

Different methods can be used to define the expected value operator of fuzzy variables.

Nevertheless, Liu and Liu (2002) introduced a comprehensive definition for this oper-

ator that applies to both continuous and discrete fuzzy variables.

Definition 1.5 (Liu and Liu, 2002) Let ξ be a fuzzy variable, then its expected value is

defined as

E[ξ] =
∫ +∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr.

The premise is that at least one of the two integrals is finite.

Let the triple (Θ, P (Θ), Pos) be the possibility space, where Θ denotes the nonempty

set,P (Θ) denotes the power set of Θ, and Pos denotes the possibility measure. Each

element in P (Θ) is called A fuzzy event, and for each event A, Pos(A) denotes the

likelihood that A occurs.

Definition 1.6 (Nahmias, 1978) Suppose ξ is a fuzzy variable on the possibility space

(Θ, P (Θ), Pos) whose membership function can be derived from the possibility mea-

sure Pos, i.e

µξ(x) = Pos({θ ∈ Θ | ξ(θ)} = x), ∀x ∈ R.

Definition 1.7 (Liu and Liu, 2009) If Pos({ξ < 0}) = 0 or Pos({ξ ≤ 0}) = 0, then

the fuzzy variable ξ is said to be nonnegative (or positive).

Definition 1.8 (Liu and Liu, 2009) Suppose ξ is a fuzzy variable on the possibility

space (Θ, P (Θ), Pos) and α ∈ (0, 1].

ξL
α = inf{r | Pos({ξ ≤ r}) ≥ α} and ξU

α = sup{r | Pos({ξ ≤ r}) ≥ α}

They are called the α pessimistic and α optimistic values of the fuzzy variable ξ, re-

spectively. The pessimistic value of α is the smallest of the values obtained by the fuzzy
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variable ξ with the confidence level α. The α optimistic value is the largest among the

values achieved by the fuzzy variable ξ with the confidence level α.

Definition 1.9 (Liu and Liu, 2009) By a triangular fuzzy variable we mean the fuzzy

variable fully determined by the triplet (a1, a2, a3) of crisp numbers with a1 < a2 < a3,

whose membership function is given by

µ(x) =



x−a1
a2−a1

, if a1 ≤ x ≤ a2
x−a3
a2−a3

, if a2 ≤ x ≤ a3

0, otherwise.

Definition 1.10 (Liu and Liu, 2009) Suppose that the triangular fuzzy variable ξ =

(a1, a2, a3), and its α pessimistic value and α optimistic value are expressed as follows.

ξL
α = a2α + a1(1 − α) and ξU

α = a2α + a3(1 − α), and its expected value is E[ξ] =
1
4(a1 + 2a2 + a3).

Theorem 1.1 (Liu and Liu, 2009) Suppose that ξ and ρ are mutually independent fuzzy

variables with finite expected values, then for any real numbers a and b, there isE[aξ+

bρ] = aE[ξ] + bE[ρ].

Lemma 1.1 (Liu and Liu, 2009) Let the triangular fuzzy number r̃ = (r1, r2, r3),

whose membership function is represented by µr(x), have Pos{r̃ ≤ z} ≥ α for any

given confidence level α (0 ≤ α ≤ 1) if and only if z ≥ (1 − α)r1 + αr2.

Definition 1.11 (Liu and Iwamura, 1998) If the decision maker wishes to minimize the

pessimistic value of the objective function on the premise that the constraint conditions

are established at a certain confidence level, the following fuzzy chance-constrained

programming model can be developed:

min f̄

s.t.


Pos{f(x, ξ) ≤ f̄} ≥ β

Pos
{
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

}
≥ α
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whereα and β respectively are the confidence levels predetermined by decision-makers,

f(x, ξ) is the objective function, and gj(x, ξ) is the constraint function.

Definition 1.12 (Carlsson and Fullér, 2001) For a given fuzzy number ξ, its fuzzy pos-

sibility mean interval is denoted as [M∗(ξi), M∗(ξi)], where M∗(ξi) and M∗(ξi) are

the minimum and maximum possible mean values of ξ, respectively, and are defined as

:

M∗(ξi) =
∫ 1
0 αξ−

iαdα∫ 1
0 αdα

, M∗(ξi) =
∫ 1
0 αξ+

iαdα∫ 1
0 αdα

.

Then the fuzzy possible mean of the fuzzy number ξ is

M (ξi) = M∗ (ξi) + M∗ (ξi)
2

=
∫ 1

0
α
(
ξ−
iα + ξ+

iα

)
dα. (1.19)

If ξ is a standard triangular fuzzy number (ai, ai, āi) and its α level set ξi = [ξ−
iα, ξ+

iα],

α ∈ [0, 1], where ξ−
iα = ai + α(ai − ai), ξ+

iα = āi − α(āi − ai), then has

M (ξi) =
∫ 1

0
α
(
ξ−
iα + ξ+

iα

)
dα = ai + 4ai + āi

6
. (1.20)

Definition 1.13 (Cheng, 1998) If fuzzy demand ξi is represented by standard triangu-

lar fuzzy number, then ξi = (ai, ai, āi) represents customer demand, and the member-

ship function of ξi is as follows:

µ(x) =


L(x), ai ≤ x ≤ ai

R(x), ai ≤ x ≤ āi

0, others

, (1.21)

where ai, ai, and āi are real numbers, L(x) = x−ai
ai−ai

and R(x) = āi−x
āi−ai

are left-right

type functions, respectively.

1.2.5 The NSGA-II Algorithm

NSGA-II excels in solving multi-objective optimization problems by efficiently ex-

ploring the PF and delivering a well-balanced set of solutions. NSGA-II is an ex-
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tension of NSGA, as proposed by Srinivas and Deb (1994), which incorporates non-

dominated sorting, crowding degree calculation, crowding degree comparison opera-

tor, and elitism strategy. The complexity of one generation of the algorithm can be

evaluated based on its basic operations and their worst-case time complexities: (i) the

time complexity of non-dominated sorting is O(M(2N)2); (ii) the time complexity

of crowding distance assignment is O(M(2N)log(2N)); (iii) base on ≺n, the time

complexity is O(2Nlog(2N)). Therefore, the overall complexity of the algorithm is

O(MN2), which is determined by the non-dominated sorting part of the algorithm

(Deb et al., 2002).

Non-dominated sorting uses the concept of Pareto optimal solution to rank the indi-

viduals in the population. The higher the non-dominated state, the higher the level of

the individual, to select the excellent individuals, so that they have a greater chance to

enter the next generation. The pseudocode is as follows:

14



© C
OPYRIG

HT U
PM

fast-non-dominate-sort(P ) Deb et al. (2000)

for each p ∈ P

Sp = ϕ

np = 0 for each q ∈ P

if p dominates q then

Add q to the set of solutions dominated by p

else if (q ≺ p) then

np = np + 1

if np = 0 then

prank = 1

F1 = F1 ∪ {p}

Initialize the front counter i = 1

while Fi ≠ ϕ

Q = ϕ

for each p ∈ Fi

for each q ∈ Sp

nq = nq − 1

nq = 0 then

qrank = i + 1

Q = Q ∪ {q}

i = i + 1

Fi = Q

The crowding degree is only applicable to the comparison between individuals of the

same dominance level. The crowding degree of each individual is calculated by each

objective function of each individual, and then the crowding degree of each individual

is obtained, and the excellent degree of individuals is compared by the crowding degree.

The pseudocode is as follows:
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crowding-distance-assignment(I) Deb et al. (2000)

Number of solutions in I l = |I|

for each i, set I[i]distance = 0

for each objective m

sort using each objective value I = sort(I, m)

so that boundary points are always selected

for i = 2 to l − 1

I[i]distance = I[i]distance + (I[i + 1]m − I[i − 1]m)/(f max
m − fmin

m )

The pseudocode for the main loop program is as follows:

Non-dominated sorting Genetic Algorithm II (NSGA-II) Deb et al. (2000)

Rt = Pt ∪ Qt

F=fast-non-dominated-sort(Rt)

Pt+1 = ϕ and i = 1

until |Pt+1| + |Fi| ≤ N

crowding-distance-assignment(Fi)

Pt+1 = Pt+1 ∪ Fi

i = i + 1

Sort(Fi,≺n)

Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]

Qt+1=make-new-pop(Pt+1)

t = t + 1

1.3 Problem Statement

Significant logistics and network development advancements have led to a growing em-

phasis on logistics distribution. Traditionally, the focal point of logistics management

has encompassed strategic, tactical, and operational facets, which entail the meticu-

lous selection of DCs’ location, inventory control measures, as well as vehicle rout-

ing arrangement. Consequently, modern logistics enterprises are faced with critical

decision-making processes, including the selection of DCs’ locations, optimal inven-
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tory management for these DCs, and efficient routing for goods delivery to customers.

Figure 1.2 illustrates a common configuration of a supply chain network.

Figure 1.2: A Standard Supply Chain Network Structure.

The supply chain network design and optimization problem (objective) is constructed

as a mathematical model problem (modeling). Based on the support of data (input),

mathematical optimization technology is used to solve and analyze (method), and the

better decision scheme is found (output). This is the kind of thinking we need to have

in the study of supply chain network design.

Firstly, the primary focus in supply chain design and optimization lies in the devel-

opment of a rigorous mathematical model. LIRP embodies an integrated optimization

problem that encompasses location, inventory, and routing within supply chain logis-

tics. It necessitates the determination of the DCs’ location, the establishment of effi-

cient transportation routes for delivering goods to customers, and the calculation of the

optimal inventory level or period at the DCs.
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Secondly, it is also crucial to consider the issue of low-carbon emissions in the LIRP

model. Research shows that over 70% of carbon emissions from road vehicles come

from the global transportation sector (https://m.huanqiu.com/article/42Q8BXIhAVV).

Therefore, it is important to strategically plan delivery routes in order to minimize the

release of carbon emissions.

Thirdly, consideration of uncertainties is paramount in the assessment of decision fac-

tors within the LIRP model. The assumption of a static and unchanging customer de-

mand over time is impractical, necessitating the consideration of stochastic or fuzzy

demand. Unpredictability within the supply chain and a lack of foresight into DC’s

capacity introduce uncertainty that can lead to inventory shortages. Uncertain delivery

times ultimately impact CS.

Therefore, this study aims to propose a methodology for harmonizing carbon emissions

with CS in the field of logistics management. Given the current environmental and

market challenges, it is imperative to prioritize the reduction of carbon emissions while

ensuring customer contentment. The incorporation of various factors such as carbon

trading, uncertainty customer demand, shortage and STWmakes the LIRP model more

comprehensive. The accuracy of the intricate mathematical model is validated through

the utilization of advanced optimization heuristic algorithms. Furthermore, application

of the mathematical model to an actual logistics case enhances its practical value and

demonstrates its applicability in real-world scenarios.

1.4 Research Questions

Solving LIRP requires making the following decisions:

1. How to choose the location? In the case of comprehensive consideration of var-

ious factors, the location and number of DCs are decided, and the transportation

costs and operating costs of the facilities are reduced as much as possible.

2. How to calculate the delivery period? If the cycle length is known, it is necessary
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to decidewhen to deliver the product towhichDC. If the cycle length is unknown,

a decision needs to be made on the frequency of delivery throughout the planning

cycle.

3. How to calculate the number of allocations? The distribution volume encom-

passes both the order volume from the factory to the DC and the subsequent

delivery volume from the DC to individual customers. Considering the uncer-

tain demand information, which may be random or fuzzy, it becomes imperative

to determine optimal inventory levels at DCs and establish appropriate delivery

frequencies for each customer during each shipment.

4. How can one acquire a transportation strategy? When employing less-than-

truckload transportation, how can the optimal driving routes for each vehicle

be determined? Among these considerations, the initial two choices primarily

tackle inventory management concerns, while the latter decision relates to orga-

nizing the transportation plan and falls within the realm of solving optimization

problems in transportation. The selection of routes plays a crucial role in lo-

gistics operations as it requires choosing an appropriate path for timely delivery

to specified destinations based on customer requirements and within acceptable

cost parameters.

5. How to take low carbon into account in the LIRP model? Is it directly taken into

account in the economic cost objective function or set up as a separate objective

function?

6. How to express CS in the mathematical formula? How can CS be taken into

account in the LIRP model?

7. What uncertainties are being considered? How is it expressed mathematically in

the LIRP model?

8. How to change the fuzzy programmingmodel of LIRP into a deterministicmodel?

19



© C
OPYRIG

HT U
PM

9. How to design the algorithm to solve the low carbon LIRP model with uncer-

tain factors? When heterogeneous vehicles are selected, how do select vehicles

minimize carbon emissions?

1.5 Research Objectives

The main objective of the research is to propose mathematical models and optimiza-

tion algorithms for solving the low-carbon LIRP with uncertainty. To achieve this, the

specific objectives are:

1. to construct a fuzzy chance-constrained programming model for LIRP, consid-

ering cost factors, inventory stockouts, carbon trading mechanism, and customer

demand as fuzzy variables.

2. to propose a novel multi-objective LIRP model with soft time window (STW)

constraint requirements, accommodating the random normal distribution of cus-

tomer stochastic demand.

3. to propose a novel multi-objective fuzzy demand LIRP model, taking into ac-

count carbon emission and CS.

4. to propose a modified Particle Swarm Optimization-Bacterial Foraging Algo-

rithm (PSO-BFA) and an Improved Non-dominated Sorting Genetic Algorithm

with Elitist Strategy (IMNSGA-II) algorithms for solving the proposed LIRP

models.

5. to verify and validate the proposed models and algorithms using the simulated

and real-world dataset. Since the three models proposed in this thesis are all

NP-Hard problems, the model validation process involved the use of benchmark

instances and the examination of three real cases to illustrate the problem, fol-

lowed by the application of the proposed algorithms to solve the model.
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1.6 Scopes and Limitations

LIRP is a complex combinatorial optimization problem involving facility location, in-

ventory management, and path planning. Models and optimization algorithms for low-

carbon LIRP with uncertainty are used to model and solve the LIRP problem while

considering the reduction of carbon emissions and facing demand uncertainty.

The research scopes are as follows:

1. Uncertainty demand modeling: study how to effectively model the uncertainty

of demand, which can be used by fuzzy mathematics, stochastic programming,

and other methods.

2. Low-carbon goal setting: Study how to set low-carbon goals and incorporate

them into the optimization objectives of the LIRP problem under the premise of

meeting demand.

3. Decision-making: study how to make reasonable decisions on facility location,

inventory management, and path planning in the case of uncertain demand, to

balance costs and service levels.

4. Multi-objective optimization: Study how to optimize multi-objectives between

uncertain demand and low-carbon goals, balancing carbon emissions, costs, and

service levels.

5. Algorithm design: design efficient algorithms suitable for LIRP with uncertainty

demand, such as heuristic algorithm, meta-heuristic algorithm, and so on.

6. Decision support system: develop computing tools and software that can assist

decision-making, helping managers in practical applications solve LIRP with

uncertainty demand.

The research limitations are as follows:
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1. Data acquisition: modeling of uncertainty demand requires a large amount of his-

torical data andmarket information, and the acquisition and accuracy of data may

affect the effectiveness of the model. The calculation of carbon emission data

will affect the accuracy and reliability of the model, and the challenges brought

by uncertainty need to be addressed.

2. Multi-objective conflict: there may be conflicts between low-carbon goals and

costs, service levels, and other goals, and how to effectively balance these goals

is a challenge.

3. Computational complexity: LIRP problems with uncertain demand and low-

carbon targets often have higher computational complexity, requiring the design

of efficient algorithms to solve them.

4. Practical application: the assumptions and parameter settings in the model may

have certain deviations from the actual situation, leading to the unsatisfactory

effect of the model in practical application.

5. Decision risk: in the case of uncertain demand and low-carbon targets, devel-

oping appropriate decision strategies may require considering more factors, in-

creasing the complexity of decision-making.

Therefore, the study of low-carbon LIRP problems with uncertain demand needs to

comprehensively consider the challenges and limitations of carbon emission model-

ing, low-carbon target setting, multi-objective optimization, data uncertainty, STW,

shortage etc., to provide more effective decision support for low-carbon logistics and

supply chain management in practical applications.

1.7 Research Methodology

• Literature analysis method: The definition of LIRP and its current research status

is understood by consulting relevant materials and literature, and the literature is

systematically reviewed by the PRISMA.
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• Mathematical modeling method: Fuzzy chance-constrained programming and

multi-objective programming modeling are used.

• Computer simulation method: the established model is analyzed, and the Matlab

software is used for simulation tests. The heuristic algorithms the modified PSO-

BFA and the IMNSGA-II are proposed to solve the problem, and then cases are

proposed to study and analyze them to verify the model and algorithm.

• Comparative analysis method: modified PSO-BFA is compared and analyzed

with the standard PSO and Bacterial Foraging Algorithm (BFA). IMNSGA-II

is compared with the algorithms Pareto Envelope-Based Selection Algorithm

II(PESA-II) and NSGA-II.

The Figure 1.3 presents a methodological framework describe the generalized steps to

covering chapters 2-6 of of the main chapters in this thesis.
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Figure 1.3: Research Methodology Framework.
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1.8 Significance of Study

In practical scenarios, the LIRP finds extensive applications. It encompasses a wide

range of industries, including the production of goods such as airplanes, cars, food,

and clothing in factories, as well as the selection of DCs in different regions to cater to

customer demands. The continuous supply of products from factories to distribution

centers and their subsequent distribution to customers necessitates careful considera-

tion of inventory replenishment strategies, path lengths, and distribution methods. This

becomes particularly critical in the context of today’s booming electronic product in-

dustry, where logistics activities are intricately linked to people’s daily lives. Hence,

providing accurate decisions regarding location, inventory, and routes holds significant

importance for managers.

The significance of this thesis can be attributed to the following four aspects:

1. The significance of theoretical research.

Numerous scholars have researched optimizing integrated logistics, focusing on

the integration of two out of the three key elements: location, inventory, and rout-

ing. Additionally, there have been efforts to achieve comprehensive integration

by considering all three elements simultaneously. The research on the fusion of

the two has a long history and has achieved fruitful results. For the LIRP prob-

lem with demand determination, scholars have used different algorithms to solve

it under certain constraints and obtained good decision results. Some scholars

have also studied the case of random and uncertain customer demand, but most

of them have established a single objective mathematical model, that is, the total

cost is the lowest. In this thesis, firstly, the single-objective LIRP model under

uncertain demand is established in Chapter 5, and it is analyzed and transformed

into a deterministic model by using the uncertain programming theory. Then,

based on the model, a bi-objective programming model considering stochastic

demand, STW, and low-carbon is established in Chapter 4, and the Pareto effi-

cient solution is solved to maximize CS and minimize TSCC under the condition
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of satisfying customer time windows. The Entropy-TOPSIS method is used to

sort and give the optimal decision. Finally, in the case of uncertain and fuzzy de-

mand, the bi-objective programming model in Chapter 6 considering customer

service level and low-carbon is added, and the theoretical knowledge of the first

chapter is used to analyze the model. These chapters promote the application

of optimization theory and techniques in low-cost production planning models

through the study of integrated optimization of LIRP under uncertain demand

and the use of uncertain programming theory to transform uncertain models into

certain models. Therefore, the LIRP aligns better with the inherent attributes

of the present intricate logistics system, thereby holding significant theoretical

guidance for investigating this issue.

2. An in-depth study of LIRP algorithm.

This study provides an in-depth analysis of the NP-Hard problem. The LIRP

is a challenging optimization problem that combines elements from the vehicle

routing problem (VRP), location problem, and inventory problem. It has been

proven to be NP-Hard, making it a subject of significant research interest and

difficulty within the academic community. This study examines the impact of

environmental protection requirements and uncertain customer demand on the

LIRP. Intelligent metaheuristic algorithms, namely PSO-BFA and IMNSGA-II,

are developed as potential solution methods. The findings of this study hold

significant reference value for further research on NP-Hard problems.

3. The significance of practical guidance.

In this research, two algorithms are proposed to solve the model, and an ex-

ample is utilized to analyze the effectiveness of the algorithm and the model

in determining suitable decisions for real-world cases. The example data are

collected from three Chinese logistics companies: Jiamei Food Cold Chain Lo-

gistics in Fujian province, a small logistics distribution company in Jinan, Shan-

dong province, China, and ZB, a prominent food retail enterprise headquartered

in Wuhan. These companies specialize in distributing frozen food, juice, bever-
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ages, and other grocery items. This analysis can guide enterprises in systematic

optimization, resulting in decreased expenses related to location, inventory, and

transportation. Additionally, it enables the reduction of product delivery time,

improvement in operational efficiency, and enhancement of CS. Consequently,

it promotes the overall development of enterprises.

Furthermore, as research on this problem deepens, the application scope can be

expanded to address challenges and obstacles in other industries. Moreover, as

enterprises evolve, their logistics activities are increasingly becoming intelligent.

The integrated optimization of location, inventory, and routing can serve as a

guiding framework for enterprise logistics activities, enabling them to adapt to

the evolving organizational structures and management methods of the modern

era. This, in turn, facilitates enterprise innovation and the creation of additional

value.

4. Improve the development of green supply chain

This research introduces the integration of low-carbon emissions into the logis-

tics distribution network planning problem. The analysis begins by examining

the existing data on carbon dioxide emissions during vehicle driving and pro-

poses a suitable measurement method. Subsequently, a quantitative method for

estimating carbon dioxide emissions during transportation is developed, provid-

ing theoretical guidance for accurate estimation of carbon emissions.

The study carefully analyzes the carbon emission factors involved in the LIRP.

The main factors are selected and combined with the LIRP, going beyond the

consideration of economic costs. Instead, the goal is to achieve emission reduc-

tion within the economic cost framework.

This thesis presents research on the location-inventory-routing low-carbon lo-

gistics system. It is based on low-carbon economic theory and utilizes inte-

grated logistics theory and methods. The research reveals tactics for reducing
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carbon emissions in the administration and improvement of integrated logistics

and supply chain systems, thereby promoting the development of sustainable

supply chains.

1.9 Outline of Thesis

The thesis is composed of seven chapters, with each chapter dedicated to exploring

distinct facets as specified below:

Chapter 1 provides an overview of the research background, problem statement, re-

search questions, objectives, scope, and limitations, as well as the significance of the

research. This chapter primarily focuses on exploring fuzzy mathematical theory as it

forms the fundamental basis for this thesis while also delving into the extensive field

of LIRP and its solution algorithms.

Chapter 2 provides a comprehensive analysis of the existing literature on LIRP, focus-

ing specifically on the research scope outlined in Chapter 1.

Chapter 3 presents a study on the bi-objective programming algorithm for optimizing

inventory location and distribution routing under low carbon emissions and CS. In this

chapter, we proposed a novel improved non-dominated sorting genetic algorithm with

an elite strategy II (IMNSGA-II) approach to obtain Pareto solutions, which are then

ranked using the TOPSIS-Entropy method to provide optimal choices for decision-

makers. Additionally, benchmark data is provided for conducting simulation experi-

ments, followed by an in-depth analysis of the algorithm’s performance.

In Chapter 4, a bi-objective programming approach is proposed to optimize the LIRP

in a low-carbon environment, considering CS with stochastic demand. This approach

comprehensively incorporates various cost factors, such as fixed costs, transportation

expenses, inventory holding costs, penalty charges, and carbon tax trading fees. Fur-

thermore, it integrates the disallowed stockout constraint and the carbon trading mech-

anism while also accounting for stochastic demand following a random normal distri-
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bution associated with customer demand. A fresh products logistics and distribution

company in Jinan is taken as the case study and IMNSGA-II from Chapter 3 is used to

solve this model. Finally, the influence of carbon price on carbon emission and CS is

analyzed according to the sensitivity.

In Chapter 5, a multi-source low-carbon fuzzy chance-constrained programmingmodel

is presented to optimize the location, inventory, and routing of logistics centers by solv-

ing a mixed integer nonlinear programming (MINLP) problem. This model takes into

consideration uncertain variables such as cost, inventory shortages, carbon emission

trading mechanisms, and customer demand in the development of a LIRP model using

fuzzy chance-constrained programming. Subsequently, the problem of fuzzy chance-

constrained programming is transformed into a deterministic programming problem

utilizing uncertain programming theory. Finally, the optimal location and vehicle rout-

ing considering inventory constraints are obtained using the hybrid intelligent particle

swarm optimization bacterial foraging algorithm (PSO-BFA).

Chapter 6 integrates fuzzy demand, STW for different vehicles, and customer service

level into the framework of the low-carbon bi-objective LIRPmodel. This chapter con-

tributes to existing research in this field by optimizing the LIRP with fuzzy variables

and developing a fuzzy planning model for logistics center location inventory paths

considering customer demand as triangular fuzzy numbers, multi-periods, stockouts,

and STW. By employing the fuzzy expected value theory and the fuzzy possibility

mean method, the fuzzy planning problem is transformed into a deterministic plan-

ning problem. Furthermore, formulas are derived for determining the optimal target

inventory level and ordering cycle of logistics distribution centers based on the storage

strategy of fuzzy demand. To verify the effectiveness of the model, three sets of real-

world data from logistics companies in China are solved by IMNSGA-II from Chapter

3. Additionally, the actual data of a clothing distribution logistics company in China is

used to test the model and compared with the results obtained from Supply Chain Guru

X (SCGX).
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Finally, Chapter 7 focuses on summarizing the findings and discussing potential future

directions. This chapter presents a comprehensive overview of the primary contribu-

tions made in this thesis, acknowledges its limitations, and envisions potential advance-

ments for future research endeavors.
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