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1 | INTRODUCTION

Collagen is a type of fibrous protein and connective tis-
sue that predominates in animal connective tissue and
seems to be present in different forms in tissues of all mul-
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Abstract: Collagens are conventionally derived from bovine and porcine
sources. However, these sources were commonly associated with infectious
diseases such as bovine spongiform encephalopathy, foot and mouth disease,
autoimmune and allergic reactions, and religious constraints. The significant
amount of collagen available in marine species, especially fish skins, scales,
fins, and bones, shows that marine species can be a potential alternative source
to mammalian collagen. Therefore, this review aims to give a clearer out-
look on the processing techniques of marine collagen and its physicochemical
and bioactive properties as a potential alternative to mammalian collagen. The
two most suitable extraction methods for marine collagen are pepsin-soluble
extraction and ultrasound-assisted extraction. Additionally, marine collagen’s
physicochemical and bioactive properties, such as antioxidants, wound healing,
tissue engineering, and cosmetic biomaterial have been thoroughly discussed in
this review.
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Practical Application: Collagen extracted from marine sources showed its
potential in physicochemical and bioactive properties, including antioxidants
and wound-healing capabilities, as an alternative to mammalian collagen. The
significant amount of collagen found in marine species, particularly in fish skins,
scales, bones, and sea cucumbers, suggests that marine sources could be a viable
alternative to land mammal collagen due to their abundance and accessibility.
The ultrasound-assisted extraction technique has improved the extracted marine
collagen’s physicochemical and bioactivity properties and quality properties.

ticellular species (Schmidt et al., 2016). Within the body,
fibroblast cells spontaneously create collagen. However, as
people age and because of bad lifestyle choices, their body’s
capacity to make collagen decreases. Therefore, collagen
from other sources is necessary (Isnaini et al., 2024). It is
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vital in providing structural integrity, strength, and support
to various tissues and organs, such as skin, bones, tendons,
ligaments, cartilage, and blood vessels (Furtado et al.,
2022). Collagen constitutes approximately 25%—30% of the
overall protein content for most species, and it performs
different functions depending on its position (Arumugam
et al., 2018).

Over the years, the global demand for collagen has
evolved. Collagen has wide industrial applications, includ-
ing pharmaceuticals, food industries, cosmetics, and
biomedicine, and thus, it is known to be one of the essential
biomaterials (Lim et al., 2019; Xu et al.,, 2021). How-
ever, collagen from mammalian sources carries the risk of
transmission of zoonotic diseases such as BSE, infectious
spongiform encephalopathy (TSE), foot and mouth dis-
ease (FMD), and autoimmune and allergic reactions (Jafari
et al., 2020; Salvatore et al., 2020). However, there are out-
breaks and religious issues associated with these sources.
Besides, collagen extraction from poultry slaughter waste
has also been investigated, but with less emphasis due to
the possibility of avian influenza transmission and the pos-
sibility of disease transmission to humans, such as BSE
(Schmidt et al., 2016). Due to these issues, the study of
marine animals has increased, ranging from various fish
species to other marine-derived organisms such as jelly-
fish, sponges, and mollusks, in light of the growing need
for collagen-based treatment techniques and the scarcity
of safe supplies of collagen (Diogo et al., 2024).

Therefore, researchers have now sought new sources
of collagen to address these concerns. Marine species
appeared as potential means due to their accessibility,
lack of religious issues, and the prospect of high colla-
gen yields, less likely to spread, are biocompatible, have
a lower molecular weight, are less expensive to produce,
and are more accessible for the human body to absorb, they
provide a viable and sustainable source of alternative col-
lagen (Hadfi & Sarbon, 2019; Prajaputra et al., 2024; Thuy
et al., 2014). There is also no evidence of potentially trans-
missible diseases (Coppola et al., 2020). Additionally, fish
waste and some by-catch species, such as small fish, jel-
lyfish, sea cucumber, squid, starfish, and sponges, have
been reported to have a significant amount of collagen
(Coppola et al., 2020; Sulaiman & Sarbon, 2020). Interest-
ingly, fish collagen is reported to have similar attributes to
porcine collagen (Bhagwat & Dandge, 2016), thus making
it a potential alternative to mammalian collagen. Gen-
erally, fish skin, scales, bones, and fins are abundant in
type I collagen, the main structural protein in vertebrates
(Bhuimbar et al., 2019). Researchers have extracted col-
lagen from many different marine sources, including the
skin of squid (Doryteuthis singhalensis) (Veeruraj et al.,
2015), sea cucumber (Shaik et al., 2024; Zhong et al.,

2015), waste materials of fringescale sardinella (Sardinella
fimbriata) (Hamdan & Sarbon, 2019), and shortfin scad
(Decapterus macrosoma) (Baderi & Sarbon, 2019).

The extractability of collagen is a measure of the degree
to which collagen can be extracted using a specific solvent
or method. It highly depends on the type and concentra-
tion of solvent used (Bhuimbar et al., 2019; Hadfi & Sarbon,
2019), the extraction method (Ali et al., 2018), the pretreat-
ments applied (Xu et al., 2017), and the source of collagen
itself. Marine collagen is typically extracted using acid-
soluble collagen (ASC), pepsin-soluble collagen (PSC), and
ultrasound-assisted extraction methods.

In addition, the functional properties of collagen are
greatly affected by the source from which it is extracted,
its molecular structure, molecular weight, and processing
conditions (Ledn-Lopez et al., 2019). Interestingly, collagen
is known to have a great water absorption capacity, thus
making it an ideal component for texturizing, thickening,
and gel formation (Felician et al., 2018). Moreover, collagen
provides properties associated with its surface behavior,
such as emulsifying properties, foam formation, stabiliza-
tion properties, adhesion and cohesion, and film-forming
capacity (Felician et al., 2018). Furthermore, collagen is
a great surface-active agent and can penetrate lipid-free
boundaries (Ridzwan & Hashim, 2015). However, the use
of collagen in the industrial sector commonly depends
on the collagen’s thermal stability. Unfortunately, marine
collagen exhibits a relatively low denaturation tempera-
ture, typically ranging from 26.3°C to 35.9°C (Jafari et al.,
2020). This lower temperature threshold is associated with
the natural habitat of marine species and subsequently
imposes limitations on its suitability for use in biomaterials
(Hayashi, 2020).

Furthermore, collagen is known to be a promising
biomaterial since it also exhibits excellent bioactive prop-
erties. “Bioactive” is an alternative to “biologically active”
(Ishak & Sarbon, 2018). A bioactive material is a material
that somehow affects and induces a reaction or response
in living cells, which includes promoting bone forma-
tion, promoting or inhibiting cell adhesion in soft tissue,
modulating inflammation, and promoting wound healing
(Williams, 2022). Previous studies reported that marine
collagen’s biological properties and amino acid compo-
sition are analogous to mammalian collagen and thus
suitable to substitute mammalian or human collagen in
particular biomedical applications (Lim et al., 2019).

This paper presents a comprehensive review of the possi-
ble sources of marine collagen, advancement in extraction
processing techniques and its limitations, and proper-
ties as a potential alternative to mammalian collagen. It
includes a detailed synthesis of marine collagen obtained
through various recent extraction methods and a review of
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chemical, physical, and bioactive properties from the latest
findings.

2 | COLLAGEN

2.1 | Structure of collagen

The basic structural unit of a collagen molecule is com-
posed of three a-helical polypeptide chains that consist of
repeating triplets of glycine and two other amino acids,
typically proline or hydroxyproline (Coppola et al., 2020).
Currently, 28 distinct types of collagens have been iden-
tified and classified from type I to type XXVIII based on
the order of their discovery (Bou-Gharios et al., 2020).
Despite sharing a standard triple-helical structure, these
collagen types differ significantly in molecular composi-
tion, amino acid composition, and their organization at the
molecular and supramolecular levels. These polypeptide
chains contain about 1000 amino acids and a molecular
weight of around 100 kDa in each chain (Liu et al., 2015a).
These chains are arranged into primary, secondary, and ter-
tiary structures, eventually forming fibrils with a unique
shape (Coppola et al., 2020). Each collagen molecule is
approximately 360 kDa and 28 mm long, and the average
molecular weight of collagen is lower than that of other
proteins due to the high glycine content, known as the
minor amino acid (Liu et al., 2015a; Schmidt et al., 2016).
The structure of collagen molecules can be affected by
extraction methods, the solvent used, and the source of
collagen (Akram & Zhang, 2020).

Moreover, many studies infer that the pepsin hydrolysis
method does not affect the secondary structure of the col-
lagen compared with the acid hydrolysis method (Ali et al.,
2018). However, all collagen has the same triple-helical
structure in the extracellular matrix, but it varies in length,
size, function, and distribution of the nonhelical compo-
nent (Silvipriya et al., 2015). A detailed review of collagen
and collagen-like structural proteins from sea sponges was
published by Ehrlich et al. (2018). The structural properties
of collagen have a direct impact on its functional prop-
erties, including strength, stability, solubility, viscosity,
and foaming properties. Moreover, the collagen structure-
function relationship refers to the connection between the
molecular structure of collagen and its various biological
functions and roles within the body. The collagen struc-
ture is highly organized. It consists of three polypeptide
chains, known as alpha chains, that are tightly twisted to
form a triple helix. Each alpha chain is a long sequence
of amino acids, primarily glycine, proline, and hydrox-
yproline, contributing to the distinctive triple-helical struc-
ture through their specific arrangements and interactions
(Ricard-Blum, 2011). The specific arrangement of amino
acids, the formation of triple helices, enzymatic cross-

linking, and interactions with other molecules play pivotal
roles in determining collagen’s mechanical properties,
tissue-specific functions, cell signaling, and overall contri-
bution to structural integrity and functionality (Tang et al.,
2022).

2.2 | Sources of marine collagen

2.2.1 | Marine vertebrates

Marine vertebrates, such as fish, are marine creatures with
a backbone or spinal column. Marine organisms have
been described as the safest and most beneficial alterna-
tive resources due to their large quantity, lack of religious
restrictions, absence of outbreak risk, and high collagen
yields (Ali et al., 2018). Moreover, collagen can be collected
from the fish’s skins, scales, fins, and bones (Hukmi &
Sarbon, 2018). Besides fish, marine collagen can also be
extracted from marine reptiles (turtles, crocodiles, etc.) and
marine mammals (otters, manatees, whales, etc.). How-
ever, until recently, only a few marine vertebrate species,
apart from fish, had been studied for collagen extraction:
turtles (Yang et al., 2016; Zou et al., 2017b) and crocodiles
(Szewczyk & Stachewicz, 2020).

The extraction of collagen from fish is much less compli-
cated, inexpensive, and time-saving than the extraction of
collagen from land-origin species (Silvipriya et al., 2015).
Based on most findings, collagen extracted from marine
vertebrates is mainly known as collagen type I. Type I colla-
gen, the most prevalent subtype, constitutes approximately
70% of the entire collagen family and is abundantly found
in connective tissues such as bones, skin, tendons, liga-
ments, cornea, and blood vessels (Salvatore et al., 2020).
Collagen used in the industry is known to be collagen type
I and is commonly derived from the bones and skins of
mammals, particularly porcine and bovine (Jafari et al.,
2020). Collagen type I is derived from most species’ skins,
tendons, bones, and muscles, whereas type II is from
fish cartilage (Benjakul et al., 2012). Countless marine
fish have been explored for collagen extraction, includ-
ing sea bass (Lateolabrax japonicas) (Kim et al., 2012),
lizard fish (Saurida spp.) (Jaziri et al., 2022), yellowback
seabream (Dentex tumifrons) (Thuy et al., 2014), fringescale
sardinella (Hamdan & Sarbon, 2019), clown featherback
(Petcharat et al., 2021), amur sturgeon (Zhang et al., 2019),
stingray (Ong et al., 2021; Shaik et al., 2021a), and more.

2.2.2 | Marine invertebrates

Marine invertebrates are marine creatures that do not
have a backbone, such as sea stars, sea urchins, corals,
sea cucumbers, jellyfish, and squids. Even though marine
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invertebrate species are widespread in the animal king-
dom, there are fewer documented findings regarding
collagen extraction from these sources compared with
marine vertebrates. Moreover, marine invertebrates’ colla-
gen is challenging to purify due to its species-dependent
complexity and, therefore, becomes a limitation for col-
lagen extraction from these sources (Ehrlich et al., 2018).
Until recent times, collagen from marine invertebrates has
been extracted from marine sponges (12.6%) (Tziveleka
etal., 2017), coral (20%) (Shelah et al., 2021), octopus (1.57%)
(Tapia-Vasquez et al., 2020), squid (3.26%) (Coelho et al.,
2017; Dai et al., 2018), sea urchins (7%) (Di Benedetto et al.,
2014; Ferrario et al., 2020), sea cucumber (Li et al., 2020b;
Shaik et al., 2024; Zhong et al., 2015) (72.2%), sea star
(2.26%) (Wijanarko et al., 2017), and jellyfish (4.31%) (Feli-
cian et al., 2019). However, among most species of marine
invertebrates documented, only sea cucumber exhibits a
high collagen content, which is more than 70% of collagen
(Li et al., 2020b).

In addition, collagens derived from marine inverte-
brates provide various types of collagens, including type
I (coral, sea cucumber, sea urchin, and squid), type II
(coral, squid, jellyfish, and octopus), and type IV (sea
sponge), depending on the source. Ehrlich et al. (2018)
outlined the structural diversity, properties, and applica-
tion of collagen and collagen-like structural proteins from
sponges in biomedical, material science, and technology.
In addition, the morphological, biochemical, and biophys-
ical properties of collagen extracted from marine sponges,
particularly Axinella cannabina and Suberites carnosus,
have been characterized by Tziveleka et al. (2017). Marine
collagen is considered a safer and alternative biomaterial
than terrestrial sources of collagen. Previously, a study also
found a unique collagen fiber from soft coral with hypere-
lastic behavior similar to human tissue (Orgel et al., 2017;
Shelah et al., 2021).

2.3 | Extraction technique of marine
collagen

Collagen can be extracted through complex procedures,
beginning with preparing raw materials, pretreatment,
extraction, purification, and more steps (Figure 1). Gener-
ally, there are two ways of obtaining collagen: extraction
from animal tissue or artificial synthesis from chemical
or biological substances (Yang & Shu, 2014). However,
researchers were more engaged in extracting collagen from
animal tissue than synthesizing it. As a result, the signifi-
cant portions of collagen proteins available in the industry
come primarily from animal tissues. The commonly used
methods for collagen extractions are the neutral-salt-
soluble collagen extraction method (also known as the

salting-out method), the ASC extraction method, and the
PSC extraction method (Hadfi & Sarbon, 2019). In general,
both organic acids (acetic acid, chloroacetic acid, citric
acid, and lactic acid) and inorganic acids (hydrochloric
acid) can be used in the acid extraction method (Hukmi &
Sarbon, 2018). However, 0.5 M acetic acid is the most com-
monly used solvent for extracting ASC due to its higher
yield and affordability. Besides pepsin, papain enzymes
are also applicable to extracting collagen (Hadfi & Sarbon,
2019; Ran & Wang, 2014; Wahyuningsih et al., 2018).
Moreover, studies on ultrasound-assisted collagen
extraction methods are drawing more attention from
researchers due to the higher yield and time savings (Ali
et al.,, 2018; Shaik et al., 2021b). According to Josephin
et al. (2024), ultrasonication can also help shorten the
salt extraction process. The yield percentages of extracted
collagen have commonly defined the extractability of col-
lagen. The extractability of collagen is highly dependent
on the type (Bhuimbar et al., 2019) and concentration
of solvent used (Hadfi & Sarbon, 2019), the extraction
method applied (Baderi & Sarbon, 2019), the source (raw
material and tissue source) (Ahmed et al., 2019), and
the extraction period (Ali et al., 2018). However, due to
the extreme diversity of collagen types, it is challenging
to develop a standard extraction method for all types of
collagens from various tissues (EI Blidi et al., 2021).

231 |
material

Preparation and pretreatment of raw

Preparation usually involves cleaning, isolation of animal
components, and reduction of size. A reduction in raw
material size effectively facilitates the removal of contam-
inants and the extraction of collagen (Silva et al., 2014).
The raw material for collagen extraction typically con-
tains a variety of contaminants, such as non-collagen
proteins, ashes, lipids, and pigments, which will affect
collagen extractability (Szewczyk & Stachewicz, 2020).
Therefore, one or multiple pretreatments, such as removal
of non-collagenous protein, demineralization, and defat-
ting, are applied to eliminate contaminants, boost purity,
and improve the yield of the extracted collagen. Despite
their species, these preparations and pretreatment steps
are practical for all collagen sources.

Removal of non-collagenous protein

Removal of non-collagenous proteins (albumins, glob-
ulins, and glycoproteins) can be achieved by applying
neutral salt (NaCl) (Silva et al., 2014) and alkaline and acid
pretreatments (Schmidt et al., 2016). The acidic pretreat-
ment using hydrochloric acid (HCI) was more compatible
with raw materials with fewer entangled collagen fibers,
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such as pig and fish skins (Schmidt et al., 2016). However,
based on various studies, researchers were more engaged
in alkaline pretreatments than acidic pretreatments due to
better efficiency. Sodium hydroxide (NaOH) and calcium
hydroxide (Ca (OH),) are the practical solutions for alka-
line pretreatment (Schmidt et al., 2016). Even so, many
researchers have been found to use a 0.1 M NaOH solu-
tion to remove non-collagenous proteins before collagen
extraction. These were because NaOH is better at inducing
substantial swelling, which enhances collagen extraction
by improving the transfer rate of mass in the tissue matrix
(Schmidt et al., 2016).

NaOH solution at 0.1 M concentration has been used
to remove non-collagenous protein from Shortfin Scad
(Decapterus macrosoma) waste materials (Sulaiman & Sar-
bon, 2020), Miiuy Croaker (Miichthys miiuy) scales (Li
et al., 2018), squid outer skin (Doryteuthis singhalensis)
(Veeruraj et al., 2015), and Hybrid Sturgeon skin (Wei et al.,
2019). A study indicated that pretreatment with NaOH
at 0.05 to 0.1 M efficiently removes non-collagen protein
without disrupting ASC at temperatures 4°C, 10°C, 15°C,
and 20°C (Liu et al., 2015b). In contrast, pretreatment
with NaOH at higher concentrations of 0.2-0.5 M resulted
in substantial losses to ASC, whereas pretreatment with
0.5 M NaOH caused structural changes to ASC at temper-
atures of 15°C and 20°C (Liu et al., 2015b). Additionally,
applying a NaOH solution with a 0.3 M concentration has
been documented to remove non-collagenous protein from
the skin of sole fish (Arumugam et al., 2018). A 0.1 M
NaOH solution is the most preferred solvent for removing
non-collagenous protein from raw material before collagen
extraction to improve yield and boost collagen purity.

Demineralization

Demineralization is the process of removing mineral salts,
such as calcium, from raw materials. Raw materials with
significant mineral content, such as bone, cartilage, and
scales, usually need to undergo this process to boost col-
lagen extraction efficacy and purity (Jafari et al., 2020).
In addition, the demineralized raw material will exhibit
a porous structure with an improved surface area, facil-
itating the collagen extraction process (Silva et al., 2014).
Ethylenediaminetetraacetic acid (EDTA) (Hadfi & Sarbon,
2019), hydrochloric acid (HCI), and acetic acid (Silvipriya
et al., 2015) are applicable to remove the minerals from
the sample. Most researchers were found to be using a
0.5 M EDTA solution as the demineralization solvent. Due
to its chelating function, EDTA is efficient in calcium or
mineral removal (Josephin et al., 2024; Meyer, 2019). A
study reported that a 0.5 M EDTA solution has been used
to demineralize Shortfin Scad (Decapterus macrosoma)
waste material (Sulaiman & Sarbon, 2020), Fringescale
Sardinella (Sardinella fimbriata) waste material (Hamdan
& Sarbon, 2019), squid cartilage (Dai et al., 2018), and Miiuy
Croaker (Miichthys miiuy) scales (Li et al., 2018).

Defatting

The defatting process is a method of fat removal from raw
material with high fat content, which can be performed by
soaking the raw material in an alcohol solution. Therefore,
it is vital to perform a defatting process to obtain high-
purity collagen. For example, it was reported that collagen
extracted from shortfin scad waste material possesses a
more significant amount of fat (0.38%) as compared with
commercial collagen (0.04%) due to the absence of a

85U8017 SUOWIWIOD BA1E8.1D) 8|cealidde 8y Aq peusenob a.e sejolie YO 9SO S8|nJ 10} ARIq1T 8UUO AB|IM UO (SUONIPUOD-pUe-SWR)LIY A8 | 1M Ale.q1jBul [Uo//:Sthiy) SUORIPUOD pue S | 8L 88S *[5202/80/50] UO ARiq1T8uluo /8|1 esAele N YeoH JO SIisu| feuotieN AQ €22/ T T¥8E-0SLT/TTTT OT/I0p/w0d A3 (1M Areiq1jpuluoyyl//sdny woly pepeojumoq 6 ‘#1202 ‘TY8E0S.T



Journal

of i
5210 Wl LEY and sc‘ense MARINE COLLAGEN: PROCESSING TECHNIQUE, PHYSICOCHEMICAL, AND BIOACTIVE PROPERTIES

defatting process (Sulaiman & Sarbon, 2020). Butyl alco-
hol, ethanol, hexane, and acetone are suitable solvents for
this process.

However, several studies have reported the use of
10% butyl alcohol and ethanol for the defatting process.
Approximately 10% butyl alcohol has been employed to
remove fat from the skin of puffer fish (Lagocephalus iner-
mis) (Iswariya et al., 2018), hybrid sturgeon skin (Wei et al.,
2019), and the outer skin of squid (Doryteuthis singhalen-
sis) (Veeruraj et al., 2015). However, the material-to-solvent
ratio (typically 1:10) and treatment period vary across
these studies. Another documented example involves 20%
butyl alcohol on sole fish skin (Arumugam et al., 2018).
Moreover, ethanol has frequently been utilized in vari-
ous concentrations for fat removal from different sources.
The study reported that 10% ethanol concentration was
employed for removing fat from salmon skin (Alves et al.,
2017), whereas 99.5% ethanol concentration was used for
Bester sturgeon skin (Zhang et al., 2014). In comparison,
20% ethanol concentration was applied to duck feet (Kim
et al., 2016) and quail’s (Coturnix japonica) feet (Yousefi
et al., 2017). Hexane has been reported to be used in the
defatting process for loach skin (Misgurnus anguillicau-
datu) (Wang et al., 2018), and Amur sturgeon cartilage
(Acipenser schrenckii) (Zhang et al., 2019). Conversely, ace-
tone was used for fat removal from porcine skin (Li et al.,
2020Db).

2.3.2 | Salting-out method

The salting-out method, also known as salt solubilization
extraction, is a widely used approach for the recovery of
collagen molecules (Josephin et al., 2024). Adding salt ions
to the solution neutralizes the collagen molecules’ surface
charge, reducing their electrostatic interactions and caus-
ing them to precipitate. This process elevates the ionic
strength, increasing the affinity of the hydrophobic regions
within the protein chains (Hiransuchalert et al., 2021).
Standard neutral salt solutions such as NaCl, Tris-HCIl,
phosphate, citrate, or alkali solutions are employed in this
method (Noorzai & Verbeek, 2021). The collagen extracted
from bigeye tuna (Thunnus obesus) skins, the salting-out
method with NaCl (1.5 M), resulted in a yield of 14.14%
(Lin et al., 2019a). Another study on collagen extracted
from the heads of Atlantic cod (Gadus morhua) and Pol-
lock (Pollachius virens) showed low yields 0f 1.9% and 2.3%,
respectively (Grefstad, 2022). Despite being regarded as
the least preferred collagen extraction method, different
types of collagens can be separated using the relation-
ship between the salt concentration and collagen sources
(Noorzai & Verbeek, 2021).

2.3.3 | ASC extraction process

Collagen extracted using an acid solution is known as ASC.
In general, either organic (acetic acid, chloroacetic acid,
citric acid, and lactic acid) or inorganic acid (hydrochlo-
ric acid) can be used in the acid extraction method (Sukeri
et al., 2021). Among these acids, acetic acid with a concen-
tration of 0.5 M has been widely employed in research for
extracting collagen from marine organisms, primarily due
to its high extractability. Acetic acid accelerates the hydrol-
ysis process in the acid method by disrupting salt bonds
and Schiff bases between molecules, leading to the expan-
sion and dissolution of collagen fibers while also breaking
the hydrogen bonds that initially stabilize the triple helix
structure of collagen (Isnaini et al., 2024). It was found
that the concentration, type, and pH value of the acid used
affect collagen extractability. The extraction of the ASC
process involves denaturing collagen fibrils and matrix
components due to acidity, causing tissue swelling and eas-
ier access to collagen fibers. Acid breaks down collagen
via hydrolysis, creating soluble gelatin fragments. Adjust-
ing pH or adding salts makes these fragments precipitate,
allowing separation through centrifugation or filtration.
This method uses acidic conditions to extract and recover
collagen for various uses (Oslan et al., 2022).

A study reported that collagen yield increased gradu-
ally with the increase in acetic acid concentration. The
optimum collagen output (19.27%) was observed at a con-
centration of 0.54 M and then declined when the acetic
acid concentration exceeded 0.6 M (Arumugam et al.,
2018). In contrast, Baderi and Sarbon (2019) found that the
yield of extracted collagen from shortfin scad (Decapterus
macrosoma) bone using 0.7 M acetic acid was compara-
tively higher (1.31%) than that of extracted collagen using
0.5 M acetic acid (1.01%). However, in Sukeri et al. (2021),
the yield of collagen extracted from cobia (Rachycentron
canadum) skin using a higher concentration of lactic
acid (1.0 M) was found lower (22.23%) than the collagen
extracted using 0.5 M lactic acid (36.70%).

Another study reported that lactic acid with a concentra-
tion of 0.5 M exhibited the most potent effect on collagen
extractability, resulting in a yield of 45% (wet basis). This
was followed by formic acid (32%), tartaric acid (31%),
acetic acid (31%), and citric acid (25%) at the same concen-
tration (Bhuimbar et al., 2019). Additionally, hydrochloric
acid and sulfuric acid with the same concentration demon-
strated the least efficiency, resulting in a negligible yield
(Bhuimbar et al., 2019). However, these findings conflicted
with another research study, which observed that the
highest yield of collagen extraction was achieved using
hydrochloric acid at pH 2.4 (42.36%), followed by acetic
acid at pH 2.7 (39.45%). In contrast, according to that study,
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TABLE 1 Extraction parameters, solvent utilized, and yield of ASC from different sources.
Extraction Yield (%)
Source Tissue source  parameters Extraction solvent (weight-based) Reference
Cobia (Rachycentron Skin Temperature: 4°C 0.5 M lactic acid 36.70 Sukeri et al. (2021)
canadum) Period: 24 hours 1.0 M lactic acid 22.23
Ratio (w/v): 1:10
Shortfin scad Bone Temperature: 4°C 0.5 M acetic acid 1.01 Baderi and Sarbon
(Decapterus macrosoma,) Period: 24 hours 0.7 M acetic acid 1.31 (2019)
Ratio (w/v): 1:5
Fringescale sardinella Waste material ~ Temperature: 4°C 0.5 M acetic acid 7.48 Hamdan and Sarbon
(Sardinella fimbriata) Period: 24 hours (2019)
Ratio (w/v): 1:2
Bigeye tuna (Thunnus Skin Temperature: 4°C 0.5 M acetic acid 13.50 Ahmed et al. (2019)
obesus) Period: 3 days
Medusa fish Skin Temperature: 4°C 0.5 M lactic acid 45.00 Bhuimbar et al.
(Centrolophus niger) Period: 72 hours (2019)
Ratio (w/v): 1:25
0.5 M formic acid 32.00
0.5 M tartaric acid 31.00
0.5 M citric acid 31.00
0.5 M acetic acid 25.00
Sole fish (Aseraggodes Skin Temperature: 10°C 0.5 M acetic acid 19.27 Arumugam et al.
umbratilis) Period: 32 hours (2018)
Ratio (w/v): 1:9
Loach (Misgurnus Skin Temperature: 4°C 0.5 M acetic acid 22.42 Wang et al. (2018)
anguillicaudatus) Period: 24 hours
Ratio (w/v): 1:30
Golden carp (Probarbus Skin Temperature: 4°C 0.5 M acetic acid 51.90 Ali et al. (2018)

Jullienti) Period: 48 hours
Ratio (w/v): 1:15

Channel Catfish Skin Temperature: 4°C

(Ictalurus punctatus) Period: 48 hours

Ratio (w/v): 1:50

lactic acid exhibited the most minor efficacy in collagen
extraction (Tan & Chang, 2018). This issue may have been
due to the differences in acid concentrations and the pH
mixtures, which affect collagen’s solubility (Tan & Chan,
2018). Table 1 summarizes the ASC extraction method
based on different parameters, solvents, and yields from
various sources.

2.3.4 | PSC extraction process

Collagen extracted using pepsin extraction is known as
PSC. This enzyme has an optimum pH between 1.5 and
2.5 (Yang & Shu, 2014). Pepsin hydrolysis does not affect
the secondary structure of collagen, particularly the triple
helix structure, because this enzyme only acts on non-helix
peptide chains of collagen protein (Schmidt et al., 2016). In
general, other proteolytic enzymes such as trypsin, papain,
alkaline protease, bromelain, pancreatin, and alcalase are

pH 2.4 hydrochloric 42.36 Tan and Chang
acid (2018)

also applicable for collagen extraction due to their ten-
dency to assist in the solubilization process by specifically
cleaving peptides in the telopeptide area of collagen (Lim
et al., 2019). However, pepsin is the most preferred enzyme
for collagen extraction. Generally, collagen isolated using
pepsin yielded significantly higher than acid-extracted
collagen (Schmidt et al., 2016).

However, collagen extraction using an acetic acid and
pepsin mixture yields higher yields and purity than extrac-
tion using acetic acid and pepsin alone (Delgado et al.,
2017). The use of 0.5 M acetic acid in conjunction with
pepsin at different concentrations (0.05%-10.0%) has been
extensively used in the extraction of PSC from various
species such as jellyfish (Khong et al., 2018), shortfin scad
(Decapterus macrosoma) waste material (Coppola et al.,
2020; Sulaiman & Sarbon, 2020), silver catfish (Panga-
sius sp.) skin (Hukmi & Sarbon, 2018), and golden carp
(Probarbus jullieni) skin (Ali et al., 2018). PSC extrac-
tion involves pepsin’s targeted enzymatic breakdown of
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Yield (%) Reference

TABLE 2 Extraction parameters, solvent utilized, and yield of PSC from different sources.
Extraction
Source Tissue source  parameters Extraction solvent

Shortfin scad (Decapterus Waste material ~ Temperature: 4°C

macrosoma) Period: 30 hours
Sharp nose stingray Skin Temperature: 4°C
(Dasyatis zuger) Period: 30 hours
Ratio (w/v): 1:40
Bigeye tuna (Thunnus Skin Temperature: 4°C
obesus) Scales Period: 48 hours
Golden carp (Probarbus Skin Temperature: 4°C
Jullient) Period: 48 hours
Ratio (w/v): 1:15
Miiuy croaker (Miichthys Scales Temperature: 4°C
Miiuy) Period: 48 hours
Ratio (w/v): 1:15
Silver catfish (Pangasius Skin Temperature: 4°C
sp.) Period: 30 hours
Lumpfish Skin Temperature: 4°C
Period: 24 hours
Jellyfish (Acromitus Oral arm Temperature: 4°C
hardenbergi) Period: 48 hours
Loach (Misgurnus Skin Temperature: 4°C
anguillicaudatus) Period: 24 hours
Catla (Catla catla) Skin Temperature: 4°C

Period: 48 hours
Ratio (w/v): 1:60

collagen, disrupting its structure and exposing collagen
fibers by removing non-collagenous parts. This process
forms soluble collagen fragments, or gelatin, separable
from undigested material using centrifugation or filtra-
tion. PSC extraction uses pepsin’s specificity to effectively
extract collagen for diverse uses (Kim et al., 2016).

In general, the factors that affect the extractability
of the PSC extraction process are the concentration of
pepsin used, the treatment period, the ratio of solid to
liquid used, and the source of collagen itself. Recently,
Yu et al. (2018) reported that the yield of PSC improved
from 66.35% to 79.93% when the pepsin concentration
increased from 0.08$ to 0.12%. Similarly, the collagen
yield extracted with 1% pepsin increased significantly
compared with the sample treated with a lower pepsin
level (value not specified) (Ali et al., 2018). Moreover,
collagen yield increased from 62.505 to 80.00% with the
increase in solid-to-liquid ratio and treatment time from
1:25 to 1:55 and between 4 and 8 hours (Yu et al., 2018).
However, when a high volume of pepsin is used for an
extended period, the yield of PSC might be lower as the
collagen is prone to cleavage, affecting the integrity of the
triple helix (Coppola et al., 2020). Table 2 summarizes the
PSC extraction method based on different parameters,
solvents, and yields from various sources.

0.5 M acetic acid with 0.10 Sulaiman and Sarbon

1.5% (w/w) pepsin (2020)
0.5 M acetic acid with ~ 34.84 Ong et al. (2021)
1.5% (w/w) pepsin

0.5 M acetic acid with 16.70
0.5% (w/v) pepsin 4.60

Ahmed et al. (2019)

0.5 M acetic acid with 79.27
1.0% (w/w) pepsin

Ali et al. (2018)

0.5 M acetic acid with 3.87
1.0% (w/w) pepsin

Li et al. (2018)

Hukmi and Sarbon
(2018)

Zhuang et al. (2018)

0.5 M acetic acid with ~ 2.27
1.5% (w/w) pepsin

0.5 M acetic acid with
0.05% (w/v) pepsin
0.5 M acetic acid with ~ 19.00

Not evaluated

Khong et al. (2018)

10% (w/v) pepsin

0.5M acetic acid with ~ 27.32 Wang et al. (2018)
5.0% (w/w) pepsin

0.5 M acetic acid with ~ 69.53 Pal et al. (2015)
0.2% (w/v) pepsin

2.3.5 | Ultrasound-assisted collagen

extraction process

Ultrasound is a mechanism that uses the energy of sound
waves induced at a greater frequency than the hearing
range of humans (16-20 kHz) but still below microwave
frequency (20-10 MHz) (Schmidt et al., 2016). Ultra-
sound waves induce fast oscillations, causing specific
alterations in pressure and temperature, and these physical
phenomena can result in the breakdown of collagen struc-
tures and promote the liberation of collagen molecules
(Quarato et al., 2023). This involves creating and collapsing
tiny bubbles through ultrasound, generating shockwaves,
and microstreaming that disrupt tissue structure. This
enhances solvent and solute movement, aiding collagen
extraction. The impacts of ultrasound on liquid systems
are primarily due to the cavitation process (Schmidt et al.,
2016; Shaik et al., 2021a). Cavitation’s mechanical forces
physically disrupt tissues, promoting collagen release.
Cavitation occurs when tiny bubbles form, expand, and
collapse within a liquid medium. The implosion of these
bubbles produces shock waves and microjets, generating
mechanical forces that have the potential to disrupt colla-
gen fibers and facilitate their release (Moyano et al., 2022).
This ultrasound-assisted extraction method is effective due
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to improved extraction efficiency, shorter extraction times,
and higher collagen yields achieved through enhanced
mass transfer and tissue disruption caused by ultrasound-
induced effects (Bhargava et al., 2021).

Recently, a study concluded that the yield of collagen
was directly proportional to the amplitude (20%—80%) and
ultrasound treatment time (10—30 minutes) (Ali et al.,
2018). The maximum yield of ultrasound ASC (UASC)
(81.53%) was recorded when ultrasound at an amplitude of
80% and a treatment time of 30 minutes was subjected to a
collagen solution, and an extraction time of 48 hours was
used (Ali et al., 2018). Another study concluded that ultra-
sound treatment at 80% amplitude resulted in the highest
collagenyield, ranging from 42.17% to 57.35%, and preferred
to be applied for 10 minutes as the optimal treatment time
(Petcharat et al., 2021). The latter was due to the changes
in the molecular structure of collagen whenever a more
prolonged ultrasound treatment was applied (Petcharat
et al., 2021). However, the yield of collagen was also sig-
nificantly improved (27.18%—57.35%) with the increasing
treatment time (10—30 minutes) (Petcharat et al., 2021).
Another study reported that the highest yield of collagen
(84.14%) was obtained with 36 minutes of ultrasound treat-
ment, and some collagen structure alteration was observed
when the more extended ultrasound treatment was applied
(Akram & Zhang, 2020).

Generally, this method is frequently employed together
with acid to obtain UASC or pepsin to obtain UPSC, as it
has been claimed by many researchers to improve colla-
gen extractability and shorten extraction time as compared
with the conventional method (Song et al., 2018). This
improvement in the extractability must be due to cavitation
caused by ultrasound treatment, which disrupts the raw
material’s cell wall and forces the solvents, such as acetic
acid and pepsin, to enter the cavity and solubilize the col-
lagen. Many studies have proven ultrasound treatment’s
effectiveness in improving collagen yield. For example,
a study observed that the yield of collagen using the
ultrasound-assisted extraction method was significantly
higher (UASC: 81.53%; UPSC: 94.88%) than that of the con-
ventional method (ASC: 51.90%; PSC: 79.27%) (Ali et al.,
2018). Similar results have been documented by Zou et al.
(2017a), who found an improvement in collagen yield of up
to 50.75% in UASC compared with the conventional ASC
extraction method (43.62%). These findings also follow
another study, which found that the yield of UASC was sig-
nificantly higher (8.19%—15.47%) than the ASC (5.12%) of
the same source (Akram & Zhang, 2020). Table 3 shows the
extraction parameters, collagen type, and yield from vari-
ous sources based on ultrasound-assisted and conventional
extraction methods. However, the ultrasound-assisted col-
lagen extraction method has limitations, including the
breakdown of hydrogen bonds between collagen chains.

Continuous use of ultrasound leads to a rise in temper-
ature, which can damage the collagen (Furtado et al.,
2022).

However, applying a single extraction method for col-
lagen presents a few areas for improvement, including
low yield, time consumption, and high costs. Additionally,
single extraction methods may not improve the thermal
stability of marine collagen. They can lower the bioac-
tive efficiency, as some methods are effective only in
extracting collagen from some parts of marine sources.
Applying multiple methods for extracting collagen from
marine sources offers several advantages, enhancing the
final product’s yield and quality (Barzkar et al., 2023).
Different extraction techniques, such as enzymatic hydrol-
ysis, acid and alkaline extraction, and ultrasound-assisted
extraction, each target specific types of collagens and
maximize overall recovery (Prajaputra et al., 2024). This
multifaceted approach improves collagen’s purity and
functional properties, making it suitable for diverse appli-
cations in pharmaceuticals, cosmetics, and food industries
(Tang et al., 2022).

2.4 | Properties of extracted marine
collagen
2.41 | Chemical properties

Chemical compositions

The chemical composition of a substance refers to the
amount or concentration of each chemical component that
constitutes the substance itself. Collagen is mainly made
up of protein and contains other elements such as mois-
ture, ash, and fat, but in small amounts. Therefore, it is
essential to identify collagen composition to measure col-
lagen’s purity. The chemical composition of a substance
is typically measured through proximate analysis based
on AOAC methods (AOAC, 2000). The chemical com-
positions of collagen were affected by their origins, the
extraction method applied, and the solvent used. Table 4
illustrates the chemical composition of extracted collagen
based on different sources and extraction methods.

Most extracted marine collagen showed a low mois-
ture content of 0.5% to 7.50%, slightly lower than that of
commercial collagen (10.11%) (Sulaiman & Sarbon, 2020).
However, higher moisture content was reported in cobia
(Rachycentron canadum) skin collagen (14.7%—18.2%), and
it was believed to be associated with the application
of lactic acid as a solvent with hygroscopic proper-
ties (Sukeri et al., 2021). Next, most of the extracted
marine collagen contains a significant amount of protein
(79%—95%) regardless of its sources, following the com-
mercial collagen protein content (93.68%). However, lower
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TABLE 3 Extraction parameters and yield of ultrasound-assisted and conventional extraction collagen from different sources.

Source Type of

Source tissue Extraction parameters collagen Yield (%) Reference
Clown featherback Skin Frequency: 20 kHz UASC 42.17-57.35 Petcharat et al.
(Chitala ornata) Amplitudes: 20%-80% (2021)

Pretreatment time: 10-30

minutes

Extraction period: 48 hours
Sharp nose stingray Skin Frequency: 20 kHz UASC 42.34 Shaik et al.
(Dasyatis zugei) Amplitudes: 20% (2021a)

Pretreatment time: 30 UPSC 61.50

minutes

Extraction period: 48 hours
Golden carp Skin Frequency: 20 kHz UASC 81.53 Ali et al. (2018)
(Probarbus Jullieni) Amplitudes: 20%-80%

Pretreatment time: 10-30 UPSC 94.88

minutes

Extraction period: 48 hours

Conventional extraction ASC 51.90

method PSC 79.27
Flatfish (Paralichthys Skin Frequency: 20 kHz UASC 30.30 and Song et al.
olivaceus) Amplitudes: 60% 40.20 (2018)

Pretreatment time: 1.5 hours

and 3 hours
Jellyfish (Acromitus Oral arm Ultrasound-assisted UASC 40.20 Khong et al.
hardenbergi) extraction method (2018)

Pretreatment time: 15

minutes

Conventional extraction ASC 8.00

method PSC 19.00

Abbreviation: UASC = ultrasound acid-soluble collagen, UPSC = ultrasound pepsin-soluble collagen, ASC = acid-soluble collagen, PSC = pepsin-soluble collagen.

protein content was reported in shortfin scad waste col-
lagen (22.86%-26.67%) and sharpnose stingray (Dasyatis
zugei) skin collagen (36.64%—61.77%) (Shaik et al., 2021a;
Sulaiman & Sarbon, 2020). This low protein content might
be due to a less effective pretreatment procedure before the
collagen extraction (Suptijah et al., 2018).

The fat content of most of the extracted marine col-
lagens was moderately lower (0.1%—1.4%) than that of
commercial collagen (2.94%) (Table 4). The low fat con-
tent of the extracted collagen indicated the effectiveness
of the defatting process before collagen extraction (Hukmi
& Sarbon, 2018). However, a more significant amount of
fat was identified in sharpnose stingray (Dasyatis zugei)
skin collagen (3.96%-4.16%), and it was associated with
the absence of the defatting process during the pretreat-
ment of raw material (Shaik et al., 2021a). Moreover, most
of the extracted marine collagen also exhibited a low per-
centage of ash, below 7%, and significantly lower than
commercial collagen’s ash content (16.24%). These findings
might be due to the efficient demineralization pretreat-
ment before collagen extraction. However, a substantial

amount of ash was reported in shortfin scad waste collagen
(60.9%), which is inferred to be due to the inefficient dem-
ineralization process in the pretreatment stage (Hukmi &
Sarbon, 2018; Sulaiman & Sarbon, 2020). These, therefore,
showed the importance of defatting and demineralization
pretreatment before the collagen extraction process.
Interestingly, substantially less ash and fat content was
found in collagen treated with ultrasound than those with-
out ultrasound treatment (with ultrasound: ash 5.52%, fat
0.06%; without ultrasound: ash 13.03%, fat 1.02%) (Akram
& Zhang, 2020). This result agreed with Khong et al.
(2018), who claimed that collagen treated with ultrasound
contains a smaller amount of ash (2.22%) compared with
those without ultrasound treatment (2.76%—29.27%). The
lower ash content might be due to the mechanical forces
of ultrasound waves that can disintegrate mineral forma-
tions associated with collagen, facilitating their removal
during subsequent purification steps. As a result, the over-
all ash content of the collagen sample decreases (Lueyot
et al., 2022). Understanding the composition and interac-
tions between these components and collagen is crucial
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TABLE 4 Chemical compositions of extracted collagen based on different sources and extraction methods.

Chemical composition (%)

Extraction
Source method Moisture  Protein Fat Ash Reference
Commercial collagen (Tilapia - 10.11 93.68 2.49 16.24 Sulaiman and
(Oreochromis niloticus) scales) Sarbon (2020)
Shortfin scad (Decapterus macrosoma) ASC 5.23 22.86 0.38 60.90
waste material
PSC - 26.97 - -
Cobia (Rachycentron canadum) skin ASC 14.7-18.2 25.2-33.4 0.60-7.28 10.9-26.0 Sukeri et al.
(2021)
Sharpnose stingray (Dasyatis zugei) skin UASC 4.04 41.77 4.16 6.12 Shaik et al.
UPSC 3.87 36.64 3.96 6.25 (2021)
Miiuy croaker (Miichthys Miiuy) scales ASC 5.18 93.19 0.50 1.15 Li et al. (2018)
PSC 4.37 94.87 0.34 0.92
Jellyfish (Acromitus hardenbergi) bell UASC 7.43 78.39 - 2.22 Khong et al.
ASC 7.14 54.94 - 29.27 (2018)
PSC 6.29 77.59 - 2.76
Croceine croaker (Pseudosciaena crocea) ASC 4.52 93.56 0.43 1.03 Wu et al. (2015)
scales
PSC 3.76 94.66 0.15 0.97
Redlip croaker (Pseudosciaena polyactis) ASC 5.63 92.05 0.54 1.09
scales
PSC 4.02 93.66 0.21 1.13
Skipjack tuna (Katsuwonus pelamis) skulls ~ASC 5.07 92.73 0.74 2.38 Yu et al. (2014)
PSC 5.06 92.77 0.66 1.94
Scalloped hammerhead (Sphyrna lewini) ASC 0.50 93.91 1.05 4.58 Chi et al. (2013)
cartilages
Red stingray (Dasyatis akajei) cartilages ASC 4.86 79.34 1.35 14.60

for bioactive peptide production applications, as bound
components can impact the peptides’ yield, purity, and
bioactivity.

Amino acid compositions

Collagen has been inferred to comprise 19 different types
of amino acids. It has a unique composition due to the
inclusion of hydroxyproline (Hyp), which does not exist
in other proteins (Gauza-Wtodarczyk et al., 2017). Total
hydroxyproline (Hyp) is also known to indicate collagen
presence and is used to determine collagen yield (Jafari
etal., 2020; Tapia-Vasquez et al., 2020). It is crucial to deter-
mine the amino acid compositions of collagen, as they
depict the structural properties and significantly affect the
physicochemical characteristics of the collagen (Luo et al.,
2020). Diverse amino acid compositions of different colla-
gen types and origins can influence the physicochemical
properties of collagen (Zhang et al., 2020b).

The amino acid compositions of collagen are based on
glycine (Gly)-hydroxyproline (Hyp)-proline (Pro) and typ-
ically consist of about 1000 residues of amino acids (Song
et al., 2018). Based on many findings, all extracted marine

collagen had glycine as the primary amino acid (215—354
residues/1000 residues), followed by alanine (89—141
residues/1000 residues), proline (110—132 residues/1000
residues), and hydroxyproline (62—100 residues/1000
residues) (Table 5). These trends were similar to the amino
acid composition of mammalian collagen (Gao et al., 2018).
Glycine is a significant amino acid, accounting for about
one-third of the total amino acid in collagen. Collagen
has a high glycine content because all the collagen family
members are described by glycine-rich tripeptide (Gly-X-
Y) repeated domains involved in triple helix formation
(Fidler et al., 2018). In addition, glycine plays a significant
role in minimizing steric hindrance and forming inter-
chain hydrogen bonds perpendicular to the helix axis (Wei
et al., 2019).

The spot of X and Y on the Gly-X-Y peptide chain was
typically taken up by hydroxyproline and proline (Sotelo
et al., 2015). Therefore, some researchers deduced that
the sum of hydroxyproline and proline (imino acids) con-
tributed to the collagen’s thermal stability and structural
integrity because the zones rich with Hyp and Pro are
most likely to engage in the formation of junction zones
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TABLE 5 Amino acid compositions and denaturation temperature of extracted collagen based on different method and sources.
Siberian  Hybrid Miiuy Croaker Golden Pompano Skipjack tuna
sturgeon Sturgeon (Miichthys miiuy) (Trachinotus ovatus) (Katsuwonus Buffalo
cartilage skins scales skins pelamis) spines  Calfskin skin
Amino acids - ASC PSC ASC PSC ASC PSC ASC - -
Asparagine/ 45 50 51 40 41 44 45 44 45 43
aspartic acid
Threonine 22 24 24 26 27 23 25 25 18 19
Serine 36 52 51 31 26 28 31 33 33 31
92 83 81 62 63 75 75 67 75 76
Glutamine/glutami
acid
Glycine 346 338 341 342 345 324 320 339 330 332
Alanine 89 119 116 122 120 135 132 126 119 112
Cysteine 1 - 1 2 3 2 2 - - -
Valine 16 17 17 22 24 23 24 26 21 23
Methionine 7 3 2 14 14 16 15 15 6 4
Isoleucine 12 12 12 13 12 9 12 13 1 12
Leucine 32 19 18 23 25 18 20 26 23 19
Tyrosine 3 4 4 6 5 2 3 3 3 4
Phenylalanine 25 15 15 14 15 13 14 14 3
Hydroxylysine - 5 5 6 7 6 6 5 7 5
Lysine 14 26 26 26 25 27 27 30 26 25
Histidine - 5 5 8 9 6 7 5 5 6
Arginine 46 51 51 46 47 53 52 48 50 51
Hydroxyproline 100 64 65 86 85 64 62 74 94 97
Proline 114 114 115 112 110 132 129 104 121 128
Imino acid 214 178 180 198 195 196 191 178 215 225
Ty (°C) 22.50 26.83 26.54 32.20 29.00 31.80 30.00 17.60 40.80 51.20
References Lai et al. Wei et al. Li et al. (2018) Wang et al. (2017) Yu et al. (2014) Subhan
(2020) (2019) et al. (2015)

Abbreviations: ASC = acid-soluble collagen, PSC = pepsin-soluble collagen.

stabilized by hydrogen binding (Chi et al., 2013). Therefore,
higher thermal stability was associated with high imino
acid content (Rizk & Mostafa, 2016). In general, marine
collagen was reported to have lower total imino acids
(178-214 residues/1000 residues) in comparison with mam-
malian collagen (215-225 residues/1000 residues) (Table 5).
In addition, warm-water fishes such as the croaker and
golden pompano were observed to have higher imino acid
content (191-198 residues/1000 residues) (Li et al., 2018;
Wang et al., 2017), than that of the skipjack tuna (178
residues/1000 residues) (Yu et al., 2014), which is a cold-
water species. Thus, warm-water fish collagen had higher
thermal stability than cold-water fish collagen (Ahmed
et al., 2019). However, Nile tilapia (Oreochromis niloticus)
skin extracted ASC and PSC amino acid composition indi-
cated that the imino acid content was 172.10 and 164.18 per
1000 residues, respectively (Abdelaal et al., 2021). Overall,
mammalian collagen had a higher imino acid content and

thus higher thermal stability and denaturation tempera-
ture than marine collagen due to the different habitat and
body temperatures. Moreover, the extraction method has
little impact on the amino acid compositions of collagen
(Table 5).

2.4.2 | Physical properties

Solubility

Solubility is a crucial functional property of collagen that
influences other functional properties, such as emulsi-
fying and foaming abilities (Chi et al., 2016). Solubility
refers to the measure of collagen’s ability to dissolve in
a solvent, and collagen solubility can be determined by
dissolving it in acid solutions with different pH levels
or salt (NaCl) solutions at different concentrations. How-
ever, researchers are more engaged in determining the
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solubility of collagen using an acid solution. Understand-
ing the solubility properties of collagen at different pH
levels holds significant importance in its isolation and
application across various fields (Kumar et al., 2017). The
recent research about ultrasonication as an alternative
technique in food technology has indicated there is a wide
range of pH values at which different types of collagens
become most soluble (Lu et al., 2023). Notably, collagen
from different sources can exhibit distinct molecular prop-
erties, resulting in diverse solubility characteristics. The
solubility of collagen escalates as the pH value deviates
from the isoelectric point (pI). Therefore, the solubility of
collagen is closely tied to the pH and plI values.

Many studies have investigated the solubility of col-
lagen across different pH ranges. The highest solubility
rate of marine collagen, sourced from sharpnose stingray
(Dasyatis zugei) skin (Shaik et al., 2021b), fringescale sar-
dinella (Sardinella fimbriata) waste materials (Hamdan
& Sarbon, 2019), soft-shelled turtle (Pelodiscus sinensis)
calipash (Zou et al., 2017b), red drum fish (Sciaenops ocel-
latus) (Chen et al., 2016), and seabass (Lates calcarifer)
scales (Chuaychan et al., 2015), was observed at lower
pH levels ranging from 1 to 3. In comparison, the low-
est solubility was observed at higher pH values within
the range of 6 to 10, with slight increments in solubility
observed over these values. The lowest solubility of col-
lagen is associated with the isoelectric point (pI), where
hydrophobic-hydrophobic interaction increases and col-
lagen molecules aggregate and precipitate when the total
net charges of protein molecules are zero (Singh et al.,
2011). A similar trend in solubility rate was observed for
mammalian collagen (Vidal et al., 2020).

However, collagen from different sources exhibited vary-
ing pl values. For instance, Acaudina molpadioides dis-
played a pI value of 4.25 (Li et al., 2020b), striped catfish
skin collagen had a pI of 4.27 (Singh et al., 2011), spotted
golden goatfish scales collagen had a pI of 4.96 (Matmaroh
et al., 2011), and bamboo shark skin collagen had a pI of
6.12 (Kittiphattanabawon et al., 2010). Collagen has been
reported to have isoelectric points ranging from pH 6 to 9
(Singh et al., 2011). This showed no significant difference
in marine and mammalian collagen solubility except for
the pI values. Overall, the solubility of collagen extracted
is generally suitable for applications in beverages such as
juices and yogurt drinks due to the pH range of these prod-
ucts. Yogurt typically has a pH of 4.0, whereas the pH of
fruit juices typically ranges from 2.0 to 5.6 (Hamdan &
Sarbon, 2019).

Viscosity

Viscosity is a measure of fluid flow consistency. For exam-
ple, the viscosity of collagen can be measured using a
viscometer in the unit of Pa.s (Pascal-second). Typically,

collagen will be dissolved into water and heated to a spe-
cific temperature, and then, the viscometer will evaluate
the viscosity of the samples with suitable spindle and
speed (Liu et al., 2015b). However, the viscosity of collagen
has commonly been evaluated based on its denaturation
temperature (T4). The Ty of collagen represents the tem-
perature at which the structure of the collagen triple helix
dissolves further into irregular coils in a solvent or solu-
tion. Marine collagen denaturates at a lower temperature
of 25°C—30°C than that of mammalian collagen, which
denatures around 39°C—40°C (Jafari et al., 2020). Gener-
ally, the viscosity of collagen decreases with the increase
in temperature due to the destroyed hydrogen bond in
collagen molecules, causing the triple helix structure to
dissolve and change into random coils (Chen et al., 2019b).
Additionally, Ty is the primary indicator in measuring the
thermal stability of collagen (Thuy et al., 2014). Moreover,
collagen’s Ty was said to correlate with the imino acid
content.

The T4 of collagen was found to vary significantly
depending on their sources. The variations of Ty between
collagens from different species were associated with dif-
ferent concentrations of imino acids, body temperature,
and habitat (Sukkon et al., 2020). Warm-water fish colla-
gen exhibited higher imino acid content than the T4 of
cold-water fish collagen (Table 5). For instance, golden
pompano (Trachinotus ovatus) skin collagen, a warm-
water fish species, exhibited 196 residues/1000 residues of
imino acids and had a T4 of 30.0°C-31.8°C (Wang et al.,
2017). A similar range of imino acid content and Ty were
observed for some other warm-water marine fishes such
as croceine croaker (Pseudosciaena crocea) scales collagen
(imino acid = 198 residues/1000 residues; T4 = 27.5°C-
30.7°C) (Wu et al., 2015), and leather jacket fish collagen
(imino acid = 192 residues/1000 residues; Ty = 29.3°C)
(Li et al., 2020b). A significantly lower imino acid content
and T4 were observed in Antarctic ice fish collagen (imino
acid = 147 residues/1000 residues; Ty = 6°C) (Zhang
et al., 2020a) and tuna skipjack collagen (imino acid = 178
residues/1000 residues; T4 = 17.6°C) (Yu et al., 2014),
which were cold-water species. However, mammalian col-
lagen had a noticeably higher imino acid content and
T4 than marine collagen. Particularly, calf skin colla-
gen (imino acid = 215 residues/1000 residues; Tq = 37°C)
(Wu et al., 2015), buffalo skin collagen (imino acid = 225
residues/1000 residues; T4 = 51.20°C-61.90°C) (Rizk &
Mostafa, 2016), sheep bones collagen (imino acid = 220
residues/1000 residues; Ty = 38.91°C-42.31°C) (Gao et al.,
2018). Marine collagen was less stable than mammalian
collagen because losing viscosity at lower temperatures
was easier. A detailed review of factors affecting col-
lagen thermal stability was performed by Zhang et al.
(2020D).
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Foaming properties

Foaming is a condition that creates a volume of tiny
bubbles or frothing. It is known that proteins, includ-
ing collagen, are capable of foaming. Because of that, to
produce drinks from fresh fruit, collagen hydrolyzes and
works well as a food system stabilizer and foaming agent
(Dzyuba et al., 2017). Proteins reduce the surface tension
at the air/water interface, forming foam (Zou et al., 2016).
Therefore, foam formation has been recognized as another
valuable element for food formulations, such as mousse
processing, beverages, and whipped toppings (Zou et al.,
2016). The foaming properties of collagens are typically
represented in percentage (%) of foaming capacity (FC) and
foam stability (FS). FC measures the capability of collagen
to foam at certain conditions (typically at different pH),
while FS evaluates the stability of foam produced, usually
based on different pH or time (Meenmanee et al., 2022).

There are only a few recent findings regarding the foam-
ing properties of collagen. Red stingray skin collagen was
observed to have the highest FC at pH 10 (152%) and the
highest FS (72%) at pH 4 (Chen et al., 2019b). Similar find-
ings were reported on collagen extracted from soft-shelled
turtle calipash (FC =110%; FS = 85%) (Zou et al., 2017a) and
chicken sternal cartilage (FC = 197%; FS = 166%), which
also had the highest FC and FS at pH 10 (Akram & Zhang,
2020). The lowest FC and FS were observed at pH 6 for
red stingray skin collagen (FC = 48%; FS = 5%), pH 7 for
soft-shelled turtle calipash collagen (FC = 45%; FS = 15%)
(Zou et al., 2017a), and pH 4 for chicken sternal cartilage
collagen (FC = 117%; FS = 105%) (Akram & Zhang, 2020).
Most collagen has high FC and FS at alkaline conditions
(pH 10) but lowers FC and FS in low acidic to neutral
conditions despite their sources. These foaming property
variations might be due to the isoelectric point (Akram &
Zhang, 2020). It was discovered that collagen’s FC and sta-
bility significantly increased when it shifted away from its
isoelectric point (Zou et al., 2017a). This is because at the
isoelectric point, the solubility of collagen is at the lowest,
and the electrostatic repulsion among collagen molecules
isweak; thus, it interrupts the interactions between protein
and water during foam formation (Zou et al., 2017a).

In addition, collagen’s FC and stability are also known
to be influenced by the concentration of protein (colla-
gen) (Vidal et al., 2020). A study reported that FC and
stability were improved from 5% and 0 to 31% and 21.5%
with the increase of collagen concentration from 1.5% to
4.5%, respectively (Bhuimbar et al., 2019). However, calf
skin collagen exhibited the highest FC and FS values
(31% and 21.5%), even at a 1% concentration (Bhuimbar
et al., 2019). This shows that calf skin collagen has bet-
ter foaming properties than fish skin collagen. In addition,
high-molecular-weight protein molecules assemble more
resistant films, leading to more excellent FS (Vidal et al.,

2020). Overall, collagens’ foaming properties might have
been linked with the sources, intrinsic properties, and
collagen structure.

2.4.3 | Bioactive properties

Interestingly, marine collagen from fish skin, bone, and
scales has been frequently used as a scaffold and carrier
owing to its outstanding bioactive properties, such as bio-
compatibility, low antigenicity, excellent biodegradability,
and cell growth potential (Rizk & Mostafa, 2016; Subhan
et al., 2015). Furthermore, studies reported that marine
collagen replaces mammalian collagen in biomedical engi-
neering (Lin et al., 2021; Subhan et al., 2015). Moreover, the
application of marine collagen with enhanced bioactive
properties, including antioxidants, wound healing, tissue
engineering, and cosmetic biomaterials, is discussed here
(Figure 2).

Antioxidant properties

The collagen, sourced from marine organisms such as
fish, exhibits antioxidant properties due to its unique com-
position. Antioxidants are substances that can discharge
reactive oxygen molecules and prevent the oxidation pro-
cess, which can create free radicals (Nurilmala et al.,
2020). Interestingly, marine collagens and collagen-active
peptides have been used in skincare formulation and
biomedical to enhance wound recovery owing to their
antioxidant property and some other good qualities (Chen
et al., 2019c). Marine collagen exhibits multiple antiox-
idant mechanisms contributing to its protective effects
against oxidative stress. These mechanisms include scav-
enging free radicals, inhibiting lipid peroxidation, metal
ions chelation, electron donation, enhancing antioxidant
enzyme activities, regulating gene expression, repairing
oxidative damage, and reducing inflammation (Chaud-
hary et al., 2023). Scavenging free radicals and inhibiting
lipid peroxidation prevent cellular damage, while chelat-
ing metal ions such as iron and copper reduces oxidation
reactions. Donating electrons helps stabilize the free rad-
icals (Xu et al., 2024). In addition, activities of antioxi-
dant enzymes such as superoxide dismutase and catalase
are enhanced. Regulation of gene expression strength-
ens antioxidant defense mechanism and facilitates the
repair the oxidative damage to cellular components includ-
ing, proteins, lipids, and DNA (Gulcin & Alwasel, 2023).
The antioxidant property of collagen can be evaluated
by DPPH radical, ABTS radical, hydroxyl radical, and
superoxide anion radical scavenging assays (Zhang et al.,
2019). The rate of scavenging is the primary indicator in
determining antioxidant activity. Collagen contains spe-
cific peptide sequences that scavenge free radicals and
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combat oxidative stress. Amino acids in marine colla-
gen, such as glycine, proline, alanine, aspartic acid, and
hydroxyproline, contribute to its antioxidant potential by
supporting antioxidant enzyme production (Nurilmala
etal., 2020). The collagen’s metal-chelating ability prevents
metal-triggered oxidative damage. Additionally, marine
collagen directly scavenges reactive oxygen species, reduc-
ing oxidative stress and inflammation. It also stimulates
the body’s antioxidant enzymes, such as SOD and catalase,
enhancing natural defense against oxidative stress (Meyer
et al., 2023).

Many studies have been done regarding the antioxi-
dant properties of collagen from marine species (Table 6).
It was inferred that the antioxidant activity of collagen
is proportional to the collagen concentration (Li et al.,
2020b). For instance, the DPPH radical scavenging activ-
ity of sea cucumber (Acaudina molpadioides) body wall
collagen increases from 14.6% to 66.5% when collagen con-
centration increases from 0.5 to 10 mg/mL (Li et al., 2020b).
Parang-parang fish (Chirocentrus dorab) skin collagen also
exhibited the same trend of DPPH scavenging activity,
which increased from 7.43% to 53.48% when the collagen
concentration increased from 0.1 to 1.0 mg/mL (Ardhani
et al., 2019). However, the radical scavenging activity of
all collagen was significantly lower (only up to 70%) in
comparison with the DPPH scavenging activity of ascor-
bic acid (up to 95%) and glutathione (up to 80%) at most
concentrations (Chen et al., 2019c; Yang & Shu, 2014).
For this case, the scavenging activity for the DPPH radi-
cal of ascorbic acid (4 mg/mL) was 90%. In comparison,
the scavenging activity for DPPH radical of PSC of giant
croaker (Nibea japonica) swim bladders at the same con-

centration (4 mg/mL) was only 52% (Chen et al., 2019¢c). A
similar trend of scavenging activity was observed for ABTS,
hydroxyl, and superoxide anion radicals (Li et al., 2018;
Zhang et al., 2019).

Diverse antioxidant activities have been observed even
when collagen concentrations are similar, and these varia-
tions are influenced by factors such as amino acid compo-
sition, structure, hydrophobicity, and collagen molecular
weight (Ardhani et al., 2019). For instance, when sea
cucumber (Acaudina molpadioides) collagen was present
at a concentration of 1.0 mg/mL, it displayed a scaveng-
ing activity of 19.60% against DPPH radicals (Li et al.,
2020b). Similar observations were reported for collagen
derived from Miiuy Croaker (Miichthys miiuy) scales (20%)
(Li et al., 2018), Lophius litulon skin (25%) (Wen et al.,
2019), and significantly higher DPPH scavenging activity
was observed for parang-parang fish (Chirocentrus dorab)
skin collagen (53.48%) at a comparable concentration (Ard-
hani et al., 2019). In comparison, calfskin PSC exhibited
lower scavenging activity for DDPH (15%), ABTS (18%),
hydroxyl (19%), and superoxide anion radicals (15%) at
concentration of 1.0 mg/mL when compared with Miiuy
Croaker (Miichthys miiuy) scales collagen at same con-
centration: ABTS (30%), hydroxyl (25%), superoxide anion
radicals (28%) (Li et al., 2018). Overall, calfskin collagen
showed lower radical scavenging activity compared with
marine collagen.

Wound-healing properties

The wound-healing process consists of four major phases:
hemostasis, inflammation, proliferation, and maturation.
Collagen is believed to have an essential role in all these
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TABLE 6 Antioxidant properties of collagen from marine sources.
Antioxidant activity
Source of Collagen ABTS DPPH Units Reference
Yellowfin tuna (Thunnus albacares) skin 313.29 + 0.15 560.51 + 0.02 ug protein/mL Nurilmala et al. (2020)
Parang-parang fish (Chirocentrus dorab) - 926.25 ppm Ardhani et al. (2019)
skin
Tilapia (Oreochromis niloticus) Skin 3178.22 + 11.85 10.92 + 0.84 umol TE/mg Jantaratch et al. (2022)
protein
Redlip croaker (Pseudosciaena polyactis) 4.24 +0.18 - mg/mL Wang et al. (2020)
scales
Yellowfin tuna (Thunnus albacares) skin - 1.90 + 1.03 mg/mL Nurilmala et al. (2019)
Crimson snapper (Lutjanus erythropterus) - 39.57 + 0.99 mg/mL Ahmed et al. (2019)
Silver pomfret (Pampus argenteus) - 40.89 + 02.22 mg/mL
Mackerel scad (Decapterus macarellus) - 148.55 + 3.14 ppm Herawati et al. (2022)
skin
Marine sponge (Stylissa flabelliformis) - 61.5 + 2.13 ppm Sunarwidhi et al. (2021)
Skipjack tuna (Katsuwonus pelamis) bone 9.49 3.15 mM Ding et al. (2019)
Lamuru fish (Caranx ignobilis) - 485.90 pg/mL Nur et al. (2021)
Silver carp (Hypophthalmichthys molitrix) 38.00 + 2.10 1.67 + 0.09 mg/mL Ilie et al. (2022)
skin
Yellowfin tuna (Thunnus albacares) skin 11.46 + 3.77 13.56 + 4.58 mg/mL Wardani et al. (2023)

Abbreviations: ABTS = 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH = 2,2-diphenyl-1-picrylhydrazyl.

processes primarily because of its chemotactic attributes
(Felician et al., 2019). Marine collagen’s wound-healing
properties arise from its bioactive peptides, unique amino
acids, and tissue-regenerating traits. It acts as a scaffold,
supporting cell attachment, migration, and proliferation
at the wound site, fostering tissue regeneration and clo-
sure. The various mechanisms, including cell migration
and proliferation, epithelization, angiogenesis, keratiniza-
tion, and collagen fiber deposition, make marine collagen
an effective wound-healing agent (Barzkar et al., 2023).
Marine collagen significantly enhances cell migration and
proliferation, crucial processes that facilitate the rapid
closure and regeneration of damaged tissue (Lim et al.,
2019). Additionally, it promotes epithelization, the forma-
tion of new epithelial tissue, which is vital for restoring
the skin barrier. In the angiogenesis process, the develop-
ment of new blood vessels ensures an adequate supply of
nutrients and oxygen to the wound site, thereby acceler-
ating healing potency (Zhou et al., 2023). The process of
keratinization further strengthens the newly formed skin
by promoting the production of keratin, a key structural
protein. Moreover, marine collagen aids in the deposi-
tion of collagen fibers, providing structural integrity and
strength to the repaired tissue (Deng et al., 2022). Glycine,
proline, and hydroxyproline are amino acids found in
marine collagen that are notably linked to wound-healing
properties (Geahchan et al., 2022). Marine collagen pep-
tides interact with cell receptors, initiating pathways that
boost cell migration and proliferation, expediting wound-

healing and tissue regrowth. The incorporation of marine
collagen influences the wound’s extracellular matrix, aid-
ing new collagen deposition, tissue reorganization, and
strengthening (Alam et al., 2022).

Additionally, it promotes angiogenesis, enhancing blood
vessel formation for improved nutrient and oxygen sup-
ply to the wound area. Its anti-inflammatory qualities
create an optimal healing environment, curtailing inflam-
mation and excessive scarring. Many studies regarding the
wound-healing properties of marine collagen have been
documented to determine the effectiveness of collagen
application in the wound-healing process. The wound-
healing property of collagen can be evaluated in vivo and
in vitro (scratch test) by determining the percentage of
wound closure. Both native collagen sponges and collagen
peptides apply to wound-healing properties (Zhang et al.,
2019).

In vivo, the wound-healing effect of collagen was typi-
cally observed and determined based on the wound closure
percentage in a mouse model. Recently, wound closure
on a mouse model treated with Lophius litulo collagen
sponges was significantly higher (90%) than the wound
without collagen treatment (58%) after 12 days of obser-
vation (Wen et al., 2019). A similar positive observation
was reported for wounds treated with jellyfish (Rhopilema
esculentum) collagen peptides and giant croaker (Nibea
Jjaponica) swim bladders collagen (Chen et al., 2019c; Feli-
cian et al., 2019). In addition, results for wound tests using
tilapia skin collagen scaffold were similar to conventional
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pig or bovine collagen (mammalian collagen) wound
dressing, which promoted wound closure in a mouse exci-
sional wound model (Huang et al., 2024). Moreover, no
epithelial necrosis or wound deterioration occurred with
applying collagen, indicating that this marine collagen is
biocompatible and has no toxic effect (Chen et al., 2019c;
Zhang et al., 2019). Furthermore, wounds treated with
fish collagen showed an accelerated wound-healing pro-
cess similar to bovine collagen (Chen et al., 2019a). It
was reported that scaffolds derived from marine species
exhibit high biodegradability, low immunogenicity, and
high biocompatibility (Davison-Kotler et al., 2019).

In vitro, the wound-healing rate of collagen was
observed and determined based on the scratch test. Based
on a previous study, it was found that the wound-healing
effect depended on collagen concentration. The wound
closure rate was reported to increase from 70% to 90%
when the concentration of PSC (giant croaker) increased
from 12.5 to 50 pg/mL after 24 hours (Chen et al., 2019c).
Similarly, Felician et al. (2019) deduced that wound clo-
sure percentage for the cells treated with collagen peptides
increased as the concentration increased from 1.56 to
6.25 ug/mL but remained constant above 6.25 pg/mL.
Moreover, the closure rate for scratch treated with giant
croaker (Nibea japonica) fish collagen at 50 pg/mL concen-
tration was similar to that treated with 50 pg/mL of bovine
collagen (Chen et al., 2019¢c). This showed that marine
collagen had similar wound-healing properties to mam-
malian collagen and could become a potential source for
tissue engineering and scaffolds.

Tissue engineering

Collagen from various sources has been widely utilized
in various biomedical applications, including tissue engi-
neering (Yoon, 2023). Due to its bioactivity, marine colla-
gen is gaining prominence as a suitable biomaterial and
a safe alternative to mammalian collagen in tissue engi-
neering (Liu et al., 2022). Marine collagen scaffolds and
sponges can be developed through various methods such
as freeze drying, electrospinning, hydrogelation, 3D bio-
printing, and decellularization. These scaffolds have been
used in tissue engineering applications for bone, skin,
and cartilage regeneration. Marine collagen involves var-
ious tissue engineering mechanisms, including promoting
osteogenesis, inhibiting inflammation, inducing cartilage
differentiation, and improving bone mineral density (Lin
et al., 2021).

Marine collagen derived from the Gadiformes and Pleu-
ronectidae, when used in the treatment of osteoblastic
MC3T3-E1 cell culture, accelerates matrix mineraliza-
tion and collagen deposition and upregulates collagen-
modifying enzymes, highlighting its potential for bone
tissue engineering (Yamada et al., 2013). A composite disk

was synthesized using marine sponge collagen, which
promoted cell viability in mouse preosteoblastic cells
(MC3T3-El) and murine fibroblasts (L929), indicating its
suitability as the organic component of an artificial bone
graft with significant bioactivities (Parisi et al., 2019). Addi-
tionally, Hsu et al. (2016) found that human mesenchymal
stem cells (hMSCs) cultured with marine collagen derived
from tilapia exhibited increased expression of chondro-
genic markers and decreased expression of osteogenic
markers, suggesting that marine collagen provides appro-
priate signals for chondrogenic differentiation in vitro.
Similarly, the 3D scaffolds developed from tilapia fish col-
lagen significantly promoted cartilage repair in an in-situ
rabbit articular defect model (Li et al., 2020a). Moreover,
type II collagen extracted from jellyfish shows promise as a
therapeutic implant for cartilage repair mechanisms when
combined with human mesenchymal stem cells (hMSCs)
and transforming growth factor-83 (TFG-$3) (Pugliano
et al., 2017). Highly porous sponge scaffolds developed
from grass carp (Ctenopharyngodon idella) fish scale-
derived collagen have proven to be potential burn wound
dressing materials in a rabbit model (Shi et al., 2020).

Cosmetic material

Collagen is vital in many cosmetic formulations due to
its moisturizing, regenerating, and film-forming proper-
ties. Its excellent water-binding ability helps to maintain
the skin’s hydration throughout the day, keeping the skin
moisturized and softened (Sionkowska et al., 2020). Colla-
gen is used in various cosmetic industries, including hair,
oral, mucous membranes, and skin care. The film-forming
properties of collagen can be enhanced by collagen binding
with other polymeric or biopolymer molecules (Lin et al.,
2019b). Collagen derived from marine sources has shown
great promise as a cosmetic material. Its unique properties,
including high biocompatibility and low immunogenicity,
make it an excellent ingredient for skincare products (Rah-
man et al., 2024). Therefore, marine collagen has become
an exciting new biomaterial for cosmetic applications to
improve skin health and appearance (Makgobole et al.,
2024).

Jellyfish (Rhizostoma pulmo) skin yields approximately
60% collagen. It is a valuable resource in the cosmet-
ics industry due to its high biocompatibility, low allergic
reactions, and low risk of zoonotic illnesses (Sionkowska
et al., 2020). A recent study on the oral administration of
marine collagen to women aged 20-60 for 12 weeks signifi-
cantly reduced skin wrinkle depth and number, increasing
skin elasticity (Lee et al., 2022). Collagen derived from
sea cucumber (Holothuria cinerascens) exhibited better
moisture-retention and moisture-absorption capacity due
to its rich hydrophilic groups, resulting in a potential
biomaterial for cosmetic applications (Li et al., 2020c).
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3 | FUTURE TRENDS

The extraction of collagen from marine sources has been
raised recently due to its promising advantages and wide
range of applications compared with other sources. Sev-
eral marine organisms still need to be explored for possible
collagen sources. In addition, more research is required to
determine the most appropriate conditions for extracting
marine collagen. Therefore, finding the best methods to
improve marine collagen extractability is crucial as these
sources have real potential in the collagen market. Fur-
thermore, applications of multiple extraction methods in
different combinations must be established to improve
extractability, reduce processing time, and enhance the
quality of the collagen obtained. Additionally, future stud-
ies should focus on overcoming the shortcomings and lim-
itations of standard extraction methods. Moreover, marine
collagen is said to have lower denaturation and melting
temperature than mammalian collagen, which limits its
application. Hence, further studies are needed to identify
marine collagen’s physicochemicals, including molecular
structure, amino acid composition, functional groups, as
well as biological properties, including wound healing,
tissue engineering, and cosmetic formulations. This will
help address the industry’s limitations of marine collagen
application. Thorough studies are also required to eval-
uate collagen’s functional and bioactive properties from
various marine species to identify potential alternatives to
mammalian collagen in various applications.

4 | CONCLUSION

In summary, this review highlights the potential of marine
collagen as a viable alternative to traditional sources such
as bovine and porcine collagen. Collagen from marine
species offers the safest choice without health and reli-
gious issues compared with land mammals and poultry
sources. Besides, the significant amount of collagen avail-
able in marine species, especially fish skins and sea
cucumber, shows that marine species can be a poten-
tial alternative source to land mammal collagen due to
its abundance and availability. Based on the extraction
methods and parameters discussed, it was found that
the most suitable extraction methods for marine colla-
gen are PSC and ultrasound-assisted collagen extraction
methods. However, the exact parameters still need to be
defined. For physicochemical properties, marine collagen
was found to have lower denaturation temperature, water
and oil absorption capacity, and foaming properties than
mammalian collagen. However, marine collagen exhibited
potential antioxidant, wound-healing, tissue engineering,

and cosmetic biomaterial properties similar to mammalian
collagen. Overall, collagen derived from marine species
exhibited favorable functional and bioactive properties and
seemed a possible alternative to mammalian collagen.
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