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The extensive discharge of phenol into aquatic environments from industrial sectors 

has led to adverse effects on living organisms due to its high toxicity. Hence, various 

detection methods have been developed, with surface plasmon resonance (SPR) 

standing out for its label-free analysis and real-time detection. However, this sensor 

struggles with poor sensitivity to low concentrations of target analytes. In this regard, 

SPR sensor has been integrated with graphene quantum dots (GQDs), sodium 

carboxymethyl cellulose (NaCMC), nanocrystalline cellulose (NCC), NaCMC-GQDs, 

and NCC-GQDs thin films for phenol detection, for the first time. The structural 

properties of the NaCMC-GQDs and NCC-GQDs thin films, determined using Fourier 

transform infrared spectroscopy and atomic force microscopy, confirmed the presence 

of O–H, C–H, C=O, and C=C stretching, as well as C–H bending, with an additional 

C–O stretching peak for NaCMC-GQDs, and showed that the surfaces of the thin films 

were covered with NaCMC and NCC, respectively. Moreover, the optical properties, 

examined using ultraviolet-visible spectroscopy, revealed energy band gap values of 
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4.088 eV and 4.094 eV for the NaCMC-GQDs and NCC-GQDs thin films, 

respectively. The sensing performance of the thin films coated with sensing materials 

(GQDs, NaCMC, NCC, NaCMC-GQDs, and NCC-GQDs) for phenol detection was 

analyzed using the SPR sensor. Limits of detection (LOD) of 0.1 µM for GQDs, 0.01 

fM for NaCMC and NCC, and 0.001 fM for NaCMC-GQDs and NCC-GQDs were 

achieved, outperforming the gold thin film with a LOD of 1 µM. This can be attributed 

to phenol binding to the sensing materials through hydrogen bonds, π-π stacking 

interactions, and carbohydrate-aromatic interactions. Among all the thin films, the 

NCC-GQDs thin film showed the best sensing performance with the lowest LOD of 

0.001 fM and a sensitivity of 0.02038° M-1, surpassing the NaCMC-GQDs thin film's 

sensitivity of 0.01353° M-1 with the same LOD value. Integration with tyrosinase (Tyr) 

enzyme further enhanced its sensitivity to 0.04657° M-1. The NCC-GQDs-Tyr thin 

film showed outstanding selectivity for phenol, evidenced by significant resonance 

angle shifts for the mixtures of interferents containing phenol compared to those 

without. The sensor also demonstrated good stability over a 14-day storage period and 

excellent recovery rates for detecting phenol in spiked water samples. The NCC-

GQDs-Tyr thin film incorporated SPR sensor has shown great potential as a reliable 

tool for sensitive and selective phenol detection. 

 

Keywords: Graphene quantum dots, nanocrystalline cellulose, phenol, sodium 

carboxymethyl cellulose, surface plasmon resonance 
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Pelepasan fenol yang meluas ke dalam persekitaran akuatik daripada sektor 

perindustrian telah membawa kepada kesan buruk terhadap organisma hidup kerana 

ketoksikannya yang tinggi. Oleh itu, pelbagai kaedah pengesanan telah dibangunkan, 

dengan resonans plasmon permukaan (SPR) menonjol untuk analisis tanpa label dan 

pengesanan masa nyatanya. Walau bagaimanapun, sensor ini bergelut dengan 

sensitiviti yang lemah terhadap kepekatan rendah bahan analisis sasaran. Dalam hal 

ini, sensor SPR telah diintegrasikan dengan filem-filem nipis titik kuantum grafin 

(GQDs), natrium karboksimetil selulosa (NaCMC), selulosa nanohabluran (NCC), 

NaCMC-GQDs, dan NCC-GQDs untuk pengesanan fenol, buat kali pertama. Sifat-

sifat struktural filem-filem nipis NaCMC-GQDs dan NCC-GQDs, ditentukan 

menggunakan spektroskopi inframerah transformasi Fourier dan mikroskopi daya 

atom, mengesahkan kehadiran regangan O–H, C–H, C=O, dan C=C, serta lenturan C–

H, dengan puncak regangan C–O tambahan untuk NaCMC-GQDs, dan menunjukkan 

bahawa permukaan filem-filem nipis telah ditutup dengan NaCMC dan NCC, masing-
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masing. Tambahan pula, sifat-sifat optikal, diperiksa menggunakan spektroskopi 

ultraungu-tampak, mendedahkan nilai jurang jalur tenaga 4.088 eV dan 4.094 eV 

untuk filem-filem nipis NaCMC-GQDs dan NCC-GQDs, masing-masing. Prestasi 

penderiaan filem-filem nipis yang disalut dengan bahan-bahan penderiaan (GQDs, 

NaCMC, NCC, NaCMC-GQDs, dan NCC-GQDs) untuk pengesanan fenol telah 

dianalisis menggunakan sensor SPR. Had pengesanan (LOD) sebanyak 0.1 µM untuk 

GQDs, 0.01 fM untuk NaCMC dan NCC, dan 0.001 fM untuk NaCMC-GQDs dan 

NCC-GQDs telah dicapai, mengatasi prestasi filem nipis emas dengan LOD 1 µM. Ini 

boleh dikaitkan dengan pengikatan fenol kepada bahan-bahan penderiaan melalui 

ikatan hidrogen, interaksi penyusunan π-π, dan interaksi karbohidrat-aromatik. Di 

antara semua filem-filem nipis, filem nipis NCC-GQDs menunjukkan prestasi 

penderiaan terbaik dengan LOD terendah 0.001 fM dan sensitiviti 0.02038° M-1, 

mengatasi sensitiviti filem nipis NaCMC-GQDs 0.01353° M-1 dengan nilai LOD yang 

sama. Perintegrasian dengan enzim tirosinase (Tyr) meningkatkan lagi sensitivitinya 

kepada 0.04657° M-1. Filem nipis NCC-GQDs-Tyr menunjukkan kepilihan yang luar 

biasa untuk fenol, dibuktikan oleh anjakan sudut resonans yang ketara untuk campuran 

gangguan yang mengandungi fenol berbanding dengan yang tidak. Sensor itu juga 

menunjukkan kestabilan yang baik selama tempoh penyimpanan 14 hari dan kadar 

pemulihan yang sangat baik untuk mengesan fenol dalam sampel air berpancang. 

Filem nipis NCC-GQDs-Tyr yang menggabungkan sensor SPR telah menunjukkan 

potensi besar sebagai alat yang boleh dipercayai untuk pengesanan fenol yang sensitif 

dan terpilih. 

 

Kata Kunci: Fenol, natrium karboksimetil selulosa, resonans plasmon permukaan, 

selulosa nanohabluran, titik kuantum grafin 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Phenol 

 

 

Phenol is one of the phenolic compounds that plays an important role in the rapid 

development of the industrial sector. Phenol consists of a phenyl group bonded to a 

hydroxyl group as depicted in Figure 1.1. It has been used as the raw material in the 

production and manufacturing of resins, plastics, germicides, pharmaceutical, textiles, 

dyes, and petrochemical products (Ahmad et al., 2016; Belekbir et al., 2020; Nezhad 

et al., 2008). Hence, it is widely distributed throughout the environment as the by-

products contaminant from the industrial wastewater (Pino et al., 2016). However, 

phenol has been listed as dangerous substance or priority pollutant by United States 

Environmental Protection Agency (US-EPA) and the European Commission (Oriero 

et al., 2015). Phenol is able to exert harmful effects to living things including human 

due to their inherent toxicity and persistence in the environment (Adamski et al., 2010; 

Guan et al., 2013). In particular, acute exposure of phenol towards human usually 

results in dryness in throat and mouth as well as excretion of urine with dark colour, 

meanwhile chronic exposure can lead to fatigue, lung problems and even cancer 

(Olujimi et al., 2010; Villegas et al., 2016).  

 

 

Figure 1.1: Chemical structure of phenol, consisting of a phenyl group bonded to 

a hydroxyl group. 
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1.2 Graphene Quantum Dots 

 

 

Graphene is a two-dimensional nanostructure that consists of single layer of graphite 

or in other words, a single layer of sp2 hybridized carbon atoms arranged in a 

honeycomb-like lattice (Nurrohman & Chiu, 2021; Popov et al., 2021). Graphene has 

been extensively exploited in a lot of applications due to its unique properties. 

However, graphene encountered several limitations such as zero bandgap and low 

absorptivity (Duan et al., 2015). Thus, in order to overcome these limitations, several 

modifications of graphene have been done. Graphene quantum dots (GQDs) then was 

successfully introduced in 2008 by Ponomarenko and Geim (Ponomarenko et al., 

2008).  

 

GQDs is the zero-dimensional monolayer graphene sheet with a size of nanometer 

(Abbas et al., 2020). GQDs is unique since it carries both the properties of graphene 

and carbon dots (Sun et al., 2013). GQDs possesses excellent optical and electrical 

properties as a result of its prominent quantum confinement and edge effects 

(Mansuriya & Altintas, 2020). Furthermore, GQDs also displays some exceptional 

characteristics such as large surface area, high stability, low toxicity, good 

biocompatibility, and good solubility (Kumar et al., 2020; Meng et al., 2019). Hence, 

GQDs has appeared as an interesting class of nanomaterial in various disciplines 

including optoelectronics, bioimaging, drug delivery, sensors, and photocatalysis 

applications (Kadian & Manik, 2020). Figure 1.2 displays the chemical structure of 

GQDs that contains numerous oxygen-containing functional groups such as hydroxyl, 

carbonyl, and carboxyl groups. These functional groups enhance the solubility of 

GQDs in water and other solvents, making them versatile for various applications. 
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Figure 1.2: Chemical structure of GQDs, highlighting the presence of various 

oxygen-containing functional groups such as hydroxyl, carbonyl, and carboxyl 

groups. 

 

 

 

1.3 Cellulose-Based Biopolymers 

 

 

Biopolymers also can be known as natural polymers as they are formed under natural 

conditions during the growth cycles of all organisms. Cellulose is the most abundant, 

broadly-distributed natural polymer in the world (Heinze, 2015). It is composed of 

several hundred to ten thousand linear chains of ᴅ-glucose units which are linked by 

β-1,4-glycosidic bonds with the formula of (C6H10O5)n (Sofla et al., 2016; Tang et al., 

2009). Cellulose has been widely utilized in many important applications including 

sensors, supercapacitors, flexible electronics, and batteries due to its properties of 

being inexpensive, biocompatible, biodegradable, and renewable material (Alamry et 

al., 2022; Kawalerczyk et al., 2020; Liu et al., 2021).  

 

One of the cellulose-based biopolymers which is sodium carboxymethyl cellulose 

(NaCMC) is a water-soluble anionic linear polysaccharide and semi-synthetic 

derivative of cellulose produced by reacting monochloroacetic acid with cellulose in 

the presence of sodium hydroxide (Zhang et al., 2014). It is loaded with CH2COONa 
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groups that were bounded to some of the hydroxyl groups on the cellulose backbone, 

as shown in Figure 1.3 (Kumar et al., 2018). Owing to its exclusive characteristics 

including high water solubility, good film-forming properties, and ease of 

modification, it has been widely employed in biomedical and industrial applications 

such as binders, paper, foods, and drug formulations (Ebrahimzadeh et al., 2016; Son 

& Park, 2018). It also has been identified as an excellent adsorbent in the field of 

wastewater treatment due to the presence of many active functional groups that can 

interact with metal ions and organic compounds (Abdulkhani et al., 2016; Eltaweil et 

al., 2020). 

 

 

Figure 1.3: Chemical structure of NaCMC, showing CH2COONa groups bonded 

to some of the hydroxyl groups on the cellulose backbone.  

 

 

 

Besides, nanocrystalline cellulose (NCC) is also a part of the cellulose-based 

biopolymers that can be derived from native cellulose through acid hydrolysis process 

(Dorieh et al., 2022). It is a rod-shaped crystalline cellulose with lengths ranging from 

tens to hundreds of nanometers and diameters typically falling within the range of 1 to 

100 nm (Abitbol et al., 2014; Fan et al., 2014). It has abundance of surface hydroxyl 

groups, as depicted in Figure 1.4, and exhibits unique characteristics such as large 
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surface area and nanoscale dimension (Xu et al., 2015; Zainuddin et al., 2017). Hence, 

NCC has shown significant potential for applications across various fields such as 

composite material, enzyme immobilization, drug delivery, and tissue engineering (Jia 

et al., 2017; Nguyen et al., 2019). 

 

 

Figure 1.4: Chemical structure of NCC, highlighting the abundance of surface 

hydroxyl groups.  

 

 

 

1.4 Tyrosinase  

 

 

Tyrosinase (Tyr), which is also referred to polyphenol oxidase, is a copper containing 

metalloprotein that is widely distributed in nature (Apetrei et al., 2013; Vedrine et al., 

2003). This enzyme possesses the ability to catalyze the hydroxylation of 

monophenols to o-diphenols, and their subsequent oxidation to o-quinones (Perez et 

al., 2006; Wu et al., 2017b). Tyr also can serves as a rate-limiting enzyme in the 

regulation of melanin production (Mulla et al., 2018). Moreover, Tyr has been 

extensively utilized in the fabrication of sensors for the detection of various phenolic 

compounds due to its high sensitivity, effectiveness, simplicity, and broad substrate 

specificity (Jang et al., 2010; Liu et al., 2015; Zhao et al., 2009).  
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1.5 Surface Plasmon Resonance 

 

 

Surface plasmon is a phenomenon where the free electrons that present at a metal-

dielectric interface collectively oscillate when they interact with incident 

electromagnetic wave (Abdulhalim et al., 2008). As the momentum of the surface 

plasmon and the momentum of the incident electromagnetic wave are matched, 

resonance will occur, hence the term surface plasmon resonance (SPR) (Singh & 

Hillier, 2006). There have been a lot of extensive researches done on SPR technique 

in the last few decades due to their possible application in biotechnology, biomedical 

sciences, chemical, biochemical sensing and environmental monitoring fields (Chau 

et al., 2018). This is owing to the beneficial features that it offers including simple 

sample preparation, high sensitivity, fast detection capability, and real-time detection 

(Rahman et al., 2018; Xue et al., 2019).  

 

There are several approaches that have been introduced to generate SPR which 

includes grating coupled system, optical fiber system, and prism coupled system. Due 

to its high sensitivity and easy to be used, prism-based SPR is the most commonly 

used approach. This prism-based SPR can be categorized into two configurations 

which are Otto configuration and Kretschmann configuration. The Kretschmann 

configuration is normally used in most SPR applications, where a noble metal that 

carries a large number of free electrons, is placed at the interface of two dielectric 

media, as shown in Figure 1.5. Copper, gold, aluminum, and silver are some options 

of the noble metals in the fabrication of SPR sensor (Gupta & Verma, 2009). Among 

them, gold has been preferred by a lot of researchers as it is chemically stable. When 

monochromatic and p-polarized light beam hits on the metal thin film under total 

internal reflection conditions, SPR will eventually occur that can be observed by the 
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reduction of the intensity of the reflected light at a certain incident angle (Pirvu & 

Manole, 2013).  

 

 

Figure 1.5: Kretschmann configuration of prism-based SPR, where a noble metal 

film is placed at the interface between prism and dielectric medium. 

 

 

 

One of the most crucial things in the development of SPR sensor is the development 

of the active layer adjacent to the metal layer. The selection of a suitable material to 

be deposited on the surface of metal film is really important in order to improve the 

effectiveness and efficiency of the sensor as it will determines the sensitivity, 

specificity, and several other sensing parameters (Matsui et al., 2005).  

 

1.6 Problem Statements 

 

 

In recent years, interest in GQDs has surged due to their intriguing characteristics 

(Erkmen et al., 2021; Zhu et al., 2023). Similarly, cellulose-based biopolymers such 

as NaCMC and NCC have garnered significant attention for their applications in 

adsorbing toxic effluents and sensor development (Fu et al., 2015a; Kafy et al., 2016; 

Khalid et al., 2019; Tao et al., 2020). Thus, the synergy between GQDs and NaCMC 

or NCC has been explored in various studies. For instance, Javanbakht & Namazi 

(2018a) developed a hydrogel nanocomposite film using GQDs and NaCMC for 

applications in anticancer films and drug delivery systems. Additionally, a fluorescent 
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NCC-GQDs hydrogel has been used as an injectable material in 3D printing 

(Khabibullin et al., 2017). Despite extensive research on GQDs integrated with 

NaCMC and NCC, there remains a lack of comprehensive studies on the structural and 

optical properties of these composites. This limitation has inspired the exploration of 

the structural and optical properties of thin films comprising NaCMC-GQDs and 

NCC-GQDs.  

 

Due to the widespread distribution of phenol, a toxic pollutant, in water systems, there 

has been a growing interest in developing various methods for its detection over the 

past decade. Optical methods have gained significant attention for detecting various 

analytes owing to their simplicity, speed, cost-effectiveness, and high sensitivity and 

selectivity compared to electrochemical and other modern techniques (Kumar et al., 

2017). Among optical sensors, SPR stands out due to its real-time sensing capabilities, 

simple sample preparation, and label-free detection (Choi et al., 2014; Yanase et al., 

2019). Nevertheless, SPR lacks the sensitivity needed for detecting low concentrations 

of phenol due to its similarity in refractive index. Hence, modifying the surface of the 

gold thin film with an active layer can overcome this limitation. GQDs- and NCC-

based materials have demonstrated the capability to detect phenol at micromolar 

levels, while NaCMC-based materials can effectively detect industrial phenolic 

compounds with similar sensitivity. Thus, incorporating these materials, GQDs, 

NaCMC, NCC, NaCMC-GQDs, and NCC-GQDs, into SPR sensor could enhance its 

sensitivity for phenol detection. To date, no studies have reported on phenol detection 

using SPR sensor incorporated with these materials. Hence, it is of interest to study 

the potential sensing properties of GQDs, NaCMC, NCC, NaCMC-GQDs, and NCC-

GQDs thin films for phenol detection using SPR technique. 
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One of the most important features to evaluate a sensor is the selectivity, which is the 

ability of a sensing material to identify a particular target analyte within a sample 

containing various mixtures and contaminants (Bhalla et al., 2016). However, the 

studies on the selectivity of SPR-based sensor for phenol detection are greatly limited. 

Only one study has reported the good selectivity of SPR sensor for phenol detection 

so far, achieved using a phenol-imprinted polymeric film (Derazshamshir, 2021). 

Therefore, this has become an initiative to investigate the selectivity of thin film-based 

SPR sensor towards phenol. The thin film with the best sensing performance for 

phenol detection among the developed GQDs, NaCMC, NCC, NaCMC-GQDs, and 

NCC-GQDs thin films, will be firstly verified. Subsequently, the best sensor thin film 

will be incorporated with Tyr, an enzyme known for its specificity in detecting 

phenolic compounds, to confirm the selectivity of the thin film for phenol detection 

using SPR spectroscopy.  

 

1.7 Research Objectives 

 

 

The main objectives of this study are summarized as follows: 

1. To determine the structural and optical properties of the NaCMC-GQDs and NCC-

GQDs thin films. 

2. To analyze the sensing performance of the GQDs, NaCMC, NCC, NaCMC-GQDs, 

and NCC-GQDs thin films for phenol detection using SPR technique. 

3. To verify the selectivity of the thin film with best sensing performance 

incorporated Tyr for phenol detection using SPR technique.  
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1.8 Thesis Outline 

 

 

This thesis consists of five chapters. Chapter 1 introduces phenol, GQDs, cellulose-

based biopolymers (NaCMC and NCC), Tyr, and SPR, along with the problem 

statements and objectives of this study. Chapter 2 explores the structural and optical 

properties of NaCMC and NCC modified graphene-based materials. Besides, this 

chapter also covers the past studies on GQDs-based materials, cellulose-based 

biopolymers, and SPR incorporated various materials for the detection of industrial 

phenolic compounds. Moving on, Chapter 3 explains the methodology of this study 

including the preparation of all materials and thin films, characterization techniques 

and experimental procedure. Next, Chapter 4 analyzes all of the obtained results from 

the characterization of the developed thin films for its structural, optical, and sensing 

properties and also includes its comprehensive explanations. Finally, Chapter 5 

presents the conclusion of this study and offers the recommendations for future work. 
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