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Abstract
Recently, surveillance technology was proposed as an alternative to flood monitoring 
systems. This study introduces a novel approach to flood monitoring by integrating sur-
veillance technology and LiDAR data to estimate river water levels. The methodology 
involves deep learning semantic segmentation for water extent extraction before utilizing 
the segmented images and virtual markers with elevation information from light detection 
and ranging (LiDAR) data for water level estimation. The efficiency was assessed using 
Spearman’s rank-order correlation coefficient, yielding a high correlation of 0.92 between 
the water level framework with readings from the sensors. The performance metrics were 
also carried out by comparing both measurements. The results imply accurate and precise 
model predictions, indicating that the model performs well in closely matching observed 
values. Additionally, the semi-automated procedure allows data recording in an Excel file, 
offering an alternative measure when traditional water level measurement is not available. 
The proposed method proves valuable for on-site water-related information retrieval during 
flood events, empowering authorities to make informed decisions in flood-related planning 
and management, thereby enhancing the flood monitoring system in Malaysia.

Keywords Flood disaster · Deep learning · Image segmentation · LiDAR · Surveillance 
camera · Water level

1 Introduction

Floods are the most frequent type of disaster, causing loss of human lives and damage to 
properties. Between 2000 and 2019, around 104,600 people were killed and nearly 1.65 
billion people were affected by flood events worldwide (UNDRR 2020). Researchers and 
practitioners have difficulties in finding optimal flood management strategies due to rapid 
urbanization, population growth, and climate change (Mynett and Vojinovic 2009; Price 
and Vojinovic 2008; Sathish Kumar et al. 2013). In Malaysia, the Department of Drainage 
and Irrigation (DID) is responsible for monitoring floods and providing flood forecasting 
and warning services to the public. Currently, real-time information on rainfall and river 
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water levels that are available at publicinfobanjir.water.gov.my, an official website for DID 
to disseminate flood information, is obtained from remote telemetry units (RTUs) across 
Malaysia (CFE-DM 2019). A water level sensor is a device that measures river water level 
and conveys the signal to the RTU to be recorded as a water level reading (DID 2018) 
before sending it to the state server and then transmitted to the InfoBanjir database. Data 
unavailability due to transmission or technical problems during flood events may cause 
interruptions and reduce the effectiveness of the flood monitoring system. Recently, sur-
veillance technology was proposed to be used in flood studies (Akiyama et al. 2020; Lo 
et al. 2015b, a; Moy de Vitry et al. 2019a, b), especially for the flood monitoring system. 
Nonetheless, there is a lack of studies that discuss the practical application of surveillance 
cameras.

Before performing further analysis by surveillance images, the water region that is pre-
sent in the images is the key information for flood-related applications. Computer vision 
is the common approach used in this situation that employs a visual sensor to capture 
and process static images or video streams for flood disaster applications (Arshad et  al. 
2019; Costa et al. 2013). In the past years, classical computer vision segmentation meth-
ods, such as thresholding, edge-based, region-growing, and hybrid techniques were used to 
separate the water region from the background (Muhadi et al. 2020; Witherow et al. 2018). 
Although these segmentation algorithms could detect the water regions, the main draw-
back of these methods is that it is handcrafted only for specific data that they were created 
with (Lopez-Fuentes et  al. 2017; Muhadi et  al. 2020). Since the deep learning approach 
offers more robust and generic applications, researchers and experts have been interested 
in exploiting deep learning in their studies. The evolution of convolutional neural networks 
(CNN) in deep learning has piqued their curiosity, as CNN provides excellent accuracy 
outcomes with minimal human interventions.

Recent research has highlighted the potential of deep learning and neural network appli-
cations in flood management. Bentivoglio (2021) and Khouakhi (2022) both emphasize the 
need for more open and labeled flood image datasets to advance the use of convolutional 
neural networks (CNNs) in flood extent detection and flood depth estimation. Bui (2019) 
and Hashemi-Beni (2021) have demonstrated the effectiveness of deep learning models in 
predicting flash flood susceptibility and mapping flood extent, respectively. These collec-
tive findings emphasize the critical role of data accessibility and highlight the promising 
potential of deep learning in enhancing flood management strategies. Recent studies have 
demonstrated the potential of deep learning in flood surveillance applications. Chopde 
(2022) utilized deep learning techniques to identify flooded areas and observe water levels, 
respectively. Munawar (2021) further extended this by developing a real-time flood man-
agement system using unmanned aerial vehicles and deep learning algorithms. Nair (2021) 
proposed a machine vision-based flood monitoring system that uses deep learning and 
fuzzy logic to detect and estimate flood depths, based on crowdsourced image data. These 
studies collectively highlight the effectiveness of deep learning in enhancing the accuracy 
and efficiency of flood applications.

In the realm of utilizing surveillance cameras, Lopez-Fuentes et al. (2017) applied deep 
learning algorithms to identify flooded locations. This was done within the framework of 
flood investigations, showcasing the effective use of advanced technology in extracting rel-
evant information from surveillance camera footage. The authors used FCN-8 s, DenseNet, 
and Pix2Pix segmentation networks and investigated the effectiveness of each network. 
In addition, Moy de Vitry et al. (2019a, b) proposed a floodwater detection system based 
on a fine-tuned U-net design. It was reported that the results of intersection-over-union 
(IoU) were higher than 90% on average. Akiyama et al. (2020) did similar work by training 
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a segmentation model based on the SegNet network. The authors set up the camera in a 
specific position and utilised photos taken for 50 days as training data to segment water 
from the same river. The performance was evaluated using pixel accuracy and IoU metrics 
and the results were high, achieving over 97%. The same team conducted a comprehensive 
investigation into two different CNN networks, SegNet and FCN (Eltner et al. 2021). Both 
networks produced similar results, however, SegNet achieved slightly higher accuracy than 
FCN. However, the authors only used images from the study area as a training dataset and 
then applied the trained models to the images from the same location. Then, Vandaele et al. 
(2021a, b) compared the performance of DeepLabV3 and UperNet networks, concluding 
that DeepLabV3 achieved better performance. Based on the results, this study adopted 
Deeplabv3+ to carry out the segmentation process to identify water regions in the surveil-
lance images. The segmentation results were then used to estimate the river water level.

In terms of water level, only a few studies did not use the scale on stick gauge or dimen-
sions of objects as references when conducting work to determine the water level, spe-
cifically when surveillance cameras were used. Lo et  al. (2015b, a) defined pre-labelled 
markers that represented the actual boundaries of the riverbank. By identifying the pro-
portion of virtual markers covered by the water body, the result reflected the extent of 
water overflow. Nevertheless, this method could not give absolute water level values. Then, 
Moy de Vitry et al. (2019a, b) introduced a qualitative flood index known as the scalable 
observer flood index (SOFI) that acted as a proxy for water level fluctuations. SOFI was 
used by calculating the proportion of the flooded pixels to the total number of pixels of 
either a defined region of interest (ROI) or the whole image. The approach, however, did 
not directly estimate the water level but instead studied the fluctuation of water level over 
time. Next, Vandaele et  al. (2021a, b) proposed an algorithm known as landmark-based 
water-level estimation (LBWLE) that used the heights of landmarks from sea levels to esti-
mate the water level. However, LBWLE required landmark information which sometimes 
is not available in certain areas. The necessity of relying on stick gauges or objects found 
on-site may limit the practicality. Furthermore, high-quality photos are needed in order to 
capture the scale or object information. To address these constraints, the study suggests 
an inventive solution. It involves employing virtual markers enriched with elevation data 
obtained from LiDAR technology to estimate water levels, leveraging the results of surveil-
lance image segmentation. This approach aims to overcome the limitations associated with 
conventional methods of water level estimation.

Additionally, a 3D model was also developed by integrating the LiDAR data and river 
dimension measured on the field to have better visualisation during a flood disaster. Having 
a 3D visualisation technique could improve the interpretation ability of disaster data and 
the efficiency of decision-making processes (Costabile et  al. 2021). Besides, combining 
the 3D model with the estimated water level could determine the water volume of the study 
area. In flood applications, the detected flood input has a significant impact on emergency 
response time (Oddo and Bolten 2019). Delays in flood response could increase the risk 
and cause huge impacts.

Therefore, a specific application designed for monitoring and managing flood disasters 
is needed to provide a quick response, especially during flood events. The novelty of this 
study lies in addressing the limitations associated with traditional flood monitoring meth-
ods. The reliance on stick gauges or on-site objects, often requiring high-quality photos, 
poses practical constraints. To overcome these limitations, this research proposes an inno-
vative approach using virtual markers with elevation information extracted from LiDAR 
data for water level estimation based on surveillance image segmentation results. This 
novel methodology is particularly relevant in the context of flood disasters, where a rapid 
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response is crucial. The study introduces a specific application designed for flood monitor-
ing and management, integrating surveillance technology and deep learning. By combining 
water segmentation and water level estimation through deep learning semantic segmenta-
tion, the research establishes a robust flood monitoring system. Furthermore, the incorpo-
ration of predefined virtual markers, enriched with elevation data from LiDAR, enhances 
the accuracy and practicality of water level estimation. The ability to record information 
in an Excel file adds a layer of utility, providing an alternative measure for water level 
monitoring in situations where conventional methods prove impractical. The integration of 
surveillance technology, deep learning, and LiDAR data, as demonstrated in this study, not 
only offers a novel and effective flood monitoring system but also proves invaluable during 
flood events. The development of a graphical user interface (GUI) further streamlines the 
process, allowing for the extraction and storage of water-related information in a database. 
This database can then be leveraged for improved flood management and planning, empha-
sizing the comprehensive and forward-thinking nature of this innovative work.

2  Methodology

2.1  Study area

Images from a surveillance camera installed by the Department of Irrigation and Drainage 
(DID), Malaysia were used to investigate the efficiency of the deep learning approach in 
extracting the water region information. DID surveillance cameras were installed near the 
river, which allowed the authority to monitor the real situation on-site. The images were 
retrieved from the DID Selangor official website as a platform to convey real-time flood 
information to the public. In this study, images captured at different times and days were 
used for water detection using the deep learning semantic segmentation method at one of 
the DID stations at Sungai Bernam in Kampung Selisek as shown in Fig. 1. The station 
was also equipped with a water level sensor to validate the performance of the estimated 
water level proposed by this work.

2.2  Water segmentation procedure using a deep learning approach

The first processing step to extract information from the surveillance image was the segmen-
tation of the water features. A deep learning semantic segmentation algorithm was used to 
classify each pixel in the image into water and background classes. The process of training a 
semantic segmentation network to classify images involves several procedures such as pre-
paring a collection of pixel-labelled images, training the network, and assessing the accu-
racy of the network. All processing steps were performed using MATLAB 9.10 (R2021a) on 
a notebook equipped with a 2.60 GHz Intel® Core™ i7 CPU and 16 GB RAM.

In this study, around 1,011 water-related images were collected from global and local 
scenes to reflect various water scenarios and scene representations for preparing the train-
ing dataset. The segmentation network was trained using DeepLabv3+ architecture. It was 
trained using stochastic gradient descent with momentum (SGDM) of 0.9 with a value of 
0.005 for L2 regularisation. The learning rate was reduced from an initial value of 0.0003 
by a factor of 0.3 every 10 epochs. A mini-batch with eight observations for each iteration 
was used and the model was trained for up to 30 epochs. Further information on the water 
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segmentation procedure has been discussed by Muhadi et al. (2021). Figure 2 illustrates 
the overall deep learning workflow of this study.

2.3  Segmentation evaluation

The results from the segmentation process were evaluated to assess the ability of the 
algorithm to segment the surveillance images. Nonetheless, the evaluation task was not 
included in the GUI. The segmentation evaluation was carried out using the intersec-
tion-over-union (IoU) metric. The IoU metric is one of the most frequent evaluation 
metrics used to assess segmentation performance. It was computed by calculating the 
area of overlap between the predicted segmentation and ground truth divided by the 
encompassed area of both predicted and ground truth data. The IoU ranges from 0 to 
1, whereby 1 indicates a full overlap between both data, and 0 demonstrates no overlap 
between predicted and ground truth data. The IoU metric can be defined in Eq. (1):

Given Si is the segmentation and Gi is the ground truth of image i.

2.4  River water level estimation procedure

2.4.1  Estimation of river water level

The segmented images from the previous task were used to measure water level estimation 
in this proposed work. Before performing water level estimation, a post-processing stage was 

(1)IoU =
Si ∩ Gi

Si ∪ Gi

Fig. 1  An example of the image from DID surveillance camera in the study area
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carried out on the segmentation results to enhance the water features. The results were converted 
into a binary image and then the first morphological operation was performed. Small objects 
that have fewer than 100,000 pixels were removed from the image, leaving only a big connected 
water feature and removing noises. A morphological close operation was carried out to smooth 
the outline and close any open holes near the borders that were specified at a radius of 2 pixels. 
Lastly, a flood-fill operation was performed to fill holes in the background of the binary images. 
Therefore, irrelevant artefacts could be removed from the images. The post-processed segmenta-
tion images were then integrated with virtual markers to estimate water level values.

Several virtual markers with elevation values were identified in the image beforehand. 
Since it requires to have prior elevation information, the water level estimation proce-
dure was highly dependent on locality. In this study, terrestrial light detection and ranging 
(LiDAR) data were used to generate a high-resolution digital elevation model (DEM) to 
acquire elevation information for estimating the surface water level of the river. LiDAR 
data was acquired using FARO Laser Scanner Focus3D X 130 to capture the surroundings 
of the river. A cell size of 1 × 1 LiDAR-derived DEM was generated using the ArcGIS 
10.2.2 software. In the ArcGIS environment, the elevation data for the marker locations 
were obtained using the Extract Values to Points function, which is one of the Spatial Ana-
lyst tools. The elevation values of the provided markers were combined with the positions 
of the specified markers that were previously detected from surveillance photos.

The post-processed segmentation results were then overlaid with the elevation value of 
the markers to characterise the depth of water level of a given image. To improve water 
level estimation, water level markers should be located outside the river, in an area where 
segmentation errors are less common, boosting the estimation accuracy. The pixel value of 
markers from the binary image was determined, with 1 representing the water region and 0 
representing the background image. The water level was calculated using the mean eleva-
tion values of the last two markers that obtained pixel values of 1 and 0.

The DID introduces water level thresholds, which include the normal level, alert level, 
warning level, and danger level, to describe the severity of river water levels. Depending 
on river water levels, the threshold values differed at each station. Table 1 shows the water 
level threshold values for Kg. Selisek. The information from Table 1 was used in identify-
ing the water level status from the estimated water level.

Fig. 2  The workflow of the deep learning method
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While the segmentation procedure demonstrates versatility across diverse flood sce-
narios, a noteworthy constraint within the proposed methodology lies in its locality-based 
river water level estimation. This limitation emerges from the dependence on elevation val-
ues specific to each area. To effectively apply the proposed estimation framework, it is 
imperative to acquire elevation data tailored to the particular area of interest.

2.4.2  Validation of water level estimation

The performance of the water level framework was evaluated to investigate how reliable 
the estimated water level values were. The assessment of the water level was done by using 
Spearman’s rank-order correlation coefficient (Spearman 1904) to determine the relation 
between the estimated water level and the water level measured by the sensor on-site. The 
Spearman’s correlation is a nonparametric measure that evaluates a monotonic relation 
between two sets of continuous or ordinal data. Both water levels were ranked, and the 
lowest value was assigned with the smallest rank. Since two or more items were repeated 
(tied rank) in this study, Eq. (2) was used for computing rank correlation to measure the 
strength of a monotonic relation between water level and flood index.

where mi is the number of repetitions of ith rank. The Spearman’s correlation value can vary 
between -1 to 1, in which 1 indicates a perfect positive association of the variables, 0 indi-
cates no relation exists between the variables, and -1 expresses a perfect negative relation. 
The closer the correlation value is to ± 1, the stronger the monotonic relation.

Besides, the performance metrics were also carried out by comparing the water 
level framework with readings from the sensors to validate the proposed water level 
outputs by using the mean absolute error (MAE) and root-mean-square error (RMSE). 
MAE is a measure of the average absolute difference between predicted water levels 
and observed values meanwhile, RMSE investigates how deviate the estimated values 
from the observed values. MAE and RMSE can be calculated using Eq. (3) and (4).

where ŷ represents the estimated water level and y is the observed water level.

(2)� = 1 − 6
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Table 1  Water level threshold 
values for Kg. Selisek

Status Water level (m)

Normal 23.0
Alert 26.1
Warning 26.6
Danger 27.1
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In addition, the study includes descriptive statistics—a crucial component of data 
analysis that provides a succinct summary of a dataset’s key characteristics. In the con-
text of water level estimation, a set of water level estimations has been subject to vari-
ous statistical measures. These measures provide valuable insights into the distribution, 
central tendency, and variability of the estimations. The minimum and maximum values 
delineate the range of estimations, quartiles and the median offer information on dis-
tribution, while the mean serves as an average estimation. Additionally, variance and 
standard deviation quantify the variability within the dataset. The ensuing descriptive 
statistics table provides a comprehensive snapshot of the essential features of the water 
level estimations, aiding in the interpretation and contextualization of the dataset.

2.5  Visualisation of water level using a 3D model

A 3D model of the study area was developed as a topographic representation for better 
visualisation during flood disasters. The river dimensions and the DEM derived from 
LiDAR were combined to create the 3D model. To illustrate the fluctuation of water 
levels visually, the 3D model was overlaid with the estimated water levels from the pro-
posed work. Additionally, the suggested concept was also used to calculate the water 
volume.

The raw LiDAR data was converted into a DEM raster by using natural neigbour 
interpolation. The dimensions of the river, in terms of river width and riverbed informa-
tion, were fused with the DEM data to resemble the actual river condition. The river 
dimensions were manually measured in the field. The average depth of the riverbed was 
6.7 m, and the river’s width was 10 m. The dimension data and the DEM from LiDAR 
were combined using the Mosaic function in the ArcGIS software.

The 3D model was then used to observe the changes in the water levels of the river. 
The simulation was used to represent the rising of the water at various water level val-
ues using the estimated water level that was obtained from the analysis in the previous 
section. Besides, the volume of water could be determined using the 3D model by com-
puting the volume between the area below the surface and a reference plane as shown in 
Fig. 3. The reference plane refers to the water level estimated from the previous section.

2.6  Designing the GUI for water segmentation and water level estimation 
procedures

In this study, the GUI for the flood monitoring system was developed to help the user 
retrieve data and extract meaningful information from surveillance images. The pro-
posed GUI consists of two processing steps embedded in it. The first step was the seg-
mentation of the water region using a deep learning approach. Then, the segmentation 
result was used to measure the water level estimation and identify the water level status 
on-site. The simple GUI was designed using the App Designer tool in MATLAB® soft-
ware. App Designer is an interactive development environment for creating and design-
ing an application layout as well as programming app behaviour. The Design View in 
App Designer is used to layout the user interface of the app. Then, the behaviour of the 
application was defined using the Code View. The GUI is designed to allow surveillance 
images to be segmented and water levels to be estimated simultaneously before the 
information is recorded into a database for further analysis. The designed app used the 
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app packaging tool in Matlab so that users could install the packaged app. The installed 
app will appear in the Apps tab in the Matlab Toolstrip, hence it can be used by other 
Matlab users.

There are two elements of the GUI, one for the segmentation process and the other 
for water level estimation. For the segmentation part, the user interface contains a ‘Load 
Image’ button that allows the user to load an input image. The application displays the 
uploaded image in an axis component on the right side of the user interface. The ‘Start’ 
button on the second panel enables the semantic segmentation process to start execut-
ing. The segmentation result appears at the axes component on the right side. At the 
bottom, there is an export button that allows the user to save the image to the desired file 
location. Figure 4 shows the layout of the water segmentation procedure.

For water level estimation, the ‘Retrieve’ button would regain the segmented image 
from the previous process. There is a location option that enables the user to choose 
the location of the image that would retrieve the virtual markers to estimate the water 
level. Besides, there are date and time selection buttons to allow the date and time of the 
image to be recorded and saved into an Excel sheet. The water level estimation button 
enables the estimation process to be executed. The water level result appears above the 
image with a status, indicating the severity of the water level. At the bottom, there is an 
export data panel that allows the user to export the current image display on the axis and 
water level information. The ‘Segmentation Image’ button enables the user to save the 
image to a directory chosen by the user. Meanwhile, the export data panel enables the 
estimated water level to be saved into the Excel sheet in a predefined file location. The 
Excel file can be used to plot graphs and study the pattern of water level. Figure 5 pre-
sents the layout of the water level estimation procedure.

3  Results and discussion

3.1  Evaluation of water segmentation using deep learning

Visual assessment of the segmentation results indicated that the proposed segmentation 
was able to segment the images into water and background regions. The segmentation 
results and ground truth data overlapped quite well with minor errors near the water bound-
aries as shown in Fig. 6. The segmentation results were overlaid with the expected ground 
truth to identify the errors more distinctly as shown in Fig. 6d. The magenta and green-
coloured regions are areas that differed from the ground truth which represent FN and FP 
areas, respectively.

Next, segmentation metrics were carried out over the entire dataset and class-wise 
assessment. In terms of the entire dataset, the IoU metric achieved around 0.95, indicat-
ing a huge overlap between the segmentation image and the ground truth data. Having an 
outdoor scene often causes imbalanced classes because it is impossible to have a balanced 

Fig. 3  The surface volume was calculated between the area below the reference plane and the surface of 
DEM (shaded area)
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number of pixels that belong to the foreground (water region) and the background classes. 
As a result, segmentation metrics were assessed for each class in order to avoid results that 
were biased by the dominant class (Fernandez-Moral et al. 2018). Table 2 shows the IoU 
results for both water and background classes.

Fig. 4  The layout of the automated segmentation procedure

Fig. 5  The layout of the water level estimation procedure
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In terms of class, it clearly showed that background class, which was dominant in the 
dataset, achieved higher values of segmentation metrics. Overall, Deeplabv3+ scored more 
than 0.93 for both classes. The results demonstrated that Deeplabv3+ was effective in seg-
menting water and background regions from the surveillance images. Then, the results from 
the present work were compared with previous studies done by Lopez-Fuentes et al. (Lopez-
Fuentes et al. 2017) and Vandaele et al. (Rémy Vandaele et al. 2021a, b). Both researchers 
carried out the same concept but used different architecture networks. Lopez-Fuentes et al. 
employed a fully convolutional network (FCN-8s), fully convolutional DenseNet or also 
known as Tiramisu, and Pix2Pix networks to detect water areas from images, while Van-
daele et al. investigated the performance of DeepLab and UperNet networks.

All studies used a variety of water-related photos, which allowed a fair comparison between 
the findings. Table 3 shows the comparative results between Deeplabv3+ and other networks 
from previous studies. Based on the results, Deeplabv3+ achieved the highest value of the IoU 
metric, demonstrating better capability in segmenting water regions from the images.

Fig. 6  Visualization and comparison of representative results on test data. a Original image. b Ground 
truth. c DeepLabv3+ prediction. Pink and green areas represent water and background regions, respectively. 
d Overlays of ground truth and segmentation results

Table 2  Per-class metrics of 
the water segmentation using 
Deeplabv3+

Classes IoU

Water 0.94
Background 0.96
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3.2  Validation of water level estimation

The segmentation results were then exploited to extract the water level information from 
the images. To ensure that the estimated water levels are reliable, the estimated values were 
validated by comparing them with the water level measurements observed from the sensor 
in the study area. Around 76 image data captured at different times and dates were utilised 
for validation purposes. The following table presents key statistical measures derived from 
a dataset related to water level estimation. These measures offer insights into the distri-
bution, central tendency, and variability of the estimations. The range between the mini-
mum and maximum values, from 25.05 to 27.10, illustrates the spread of the estimations. 
Quartiles and the median provide information about the distribution, while the mean offers 
an average estimation. Variance and standard deviation quantify the variability within the 
dataset. The detailed statistical summary is presented in Table 4.

The water levels observed from the sensor at particular times and dates were compared 
with the estimated water level extracted from the images. The relation between the esti-
mated and observed water levels was investigated by using Spearman’s rank-order corre-
lation. Besides, the performance metrics such as Mean Absolute Error (MAE) and root-
mean-square error (RMSE) of the estimated water level were also computed. The MAE 
represents the average of the absolute difference between the actual and predicted values 
in the dataset. It measures the average of the residuals in the dataset, without considering 
their direction. In this study, the MAE obtained was 0.01, which suggests that the esti-
mated water levels were, on average, very close to the actual values. Meanwhile, RMSE is 
a measure of the average magnitude of the errors between predicted and observed values. 
The computed RMSE was 0.86, indicating that the predicted water level values deviate 
from the observed values by 0.86 m. The Spearman’s correlation achieved over 0.92, indi-
cating that there was a strong correlation between the two data. The findings signified that 
the variations of the estimated water values could describe the water level trends of the 
river. The estimated water levels could be recorded in a structured database so that the 
decision-makers could retrieve the data and do further analysis. For instance, the decision-
makers can plot a graph using the estimation values and help them visualise the water level 
pattern on-site. Figure  7 illustrates the pattern of water levels using the proposed water 
level estimation and water level sensor.

The patterns observed in both methods closely matched the obtained correlation. 
Despite notable differences at certain points compared to the observed water level, these 
variations still remained consistent within the same water level status. Consequently, the 
provided information offers decision-makers a general overview of the river water level 
condition. It is suggested that including more predefined markers could mitigate errors and 
enhance the overall efficiency of the approach.

Table 3  A comparison between 
results obtained from the present 
work and the previous studies

Author(s) Segmentation networks Mean IoU (%)

This work DeepLabv3+ 94.93
Vandaele et al. (2021a, b) DeepLab 93.74

UperNet 93.32
Lopez-Fuentes et al. (2017) Tiramisu 81.91

Pix2pix 72.25
FCN-8 s 70.05
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In the context of broader scientific literature, the findings underscore the reliability 
of the proposed methodology for assessing river water levels. However, it is crucial to 
acknowledge some limitations, such as the need for additional predefined markers to fur-
ther improve accuracy. This aligns with the broader discourse on enhancing monitoring 
systems for more precise and reliable results.

Considering the research results, the study recommends feasible policy interventions to 
optimize flood management strategies. The insights gained from the proposed methodol-
ogy can inform decision-makers in developing more effective policies for mitigating the 
impact of floods, thus contributing to the broader field of water resource management and 
disaster preparedness.

3.3  Water level fluctuation with the 3D model

In order to represent the elevation of the river and its surroundings, the 3D model was 
developed from LiDAR data by combining dimension information from the river and the 
DEM obtained from LiDAR data. Figure 8a shows the resulting DEM after mosaicking 
both data that could portray the riverbed as well as the elevations of the surrounding area. 
Meanwhile, Fig. 8b depicts the cross-section of the river.

Flood simulation was performed to describe the water level changes and to identify 
water overflows during the rising of the water level. This study adopted the estimated 
water level from Sect. 2.4.1 to visualise the rising water level in the study area. Figure 9 

Table 4  Descriptive statistics of 
the data

Statistic Water level 
estimation (m)

Minimum 25.05
Maximum 27.10
1st Quartile 25.05
Median 26.35
3rd Quartile 27.10
Mean 26.26
Variance (n−1) 0.63
Standard deviation (n−1) 0.79

Fig. 7  The water level pattern of estimated and observed water level
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illustrates the river condition at three different water level values, which were 8.8, 9.3, and 
12.55 m.

A cross-section of the river is illustrated in Fig. 10. The light blue line represents the 
water level at 8.80 m during normal conditions. It can be seen that the water surface started 
to exceed the riverbank at 10.55 m.

From the 3D model, water volume could also be identified by using the estimated water 
level as the surface Z value. Table 5 shows the total volume of water for the three values 
of water level that were used. The finding shows that the volume of water increased as the 
water level increased. It indicates that the proposed procedure could provide a volume of 
information that is useful for flood management and response.

3.4  Development of the GUI for the flood monitoring system

3.4.1  Implementation of the water segmentation task in GUI

Since the proposed segmentation method was proven to be effective, the segmented image 
underwent a post-processing stage to enhance the water regions and reduce noise. To deter-
mine the robustness of the trained model, the proposed algorithm was applied in the GUI 
to segment a new set of images captured from the study area. The GUI was created to assist 
in extracting water extent from multiple sources of digital photos, including surveillance 
images for the water segmentation task.

The input image was loaded into the GUI and then appeared on the right-hand axis 
(Fig.  10). The ’Segmentation’ button was pushed to initiate the segmentation and post-
processing procedures. The process of segmenting one image required approximately two 
seconds to complete. The resulting image was then displayed on the same axis and the user 
could easily identify the highlighted water region in the image as shown in Appendix A.

The segmented image could also be exported to any file directory in image format, 
either in JPEG, PNG, or TIF, by pushing the export segmentation image’ button. The user 
could easily save multiple flood scenarios from the same location or various locations and 
visually identify the fluctuation of the water on-site. The saved images from the study area 
are presented in Appendix B.

It shows that the trained model could segment Kg. Selisek images regardless of the 
water level conditions. The segmentation results from the GUI could help the authorities 
in monitoring the river situation remotely by referring to the water region extent that could 

Fig. 8  a The DEM after combining the raw LiDAR-derived DEM and the width and riverbed information. 
b The cross-section of the river from the 3D model
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Fig. 9  The 3D model represents (i) the riverbed (ii) the water level during the normal condition (water level 
at 8.8 m) (iii) the rising of water at 9.3 m and (iv) the rising of water at 10.55 m

Fig. 10  A river cross profile with three different water level values
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be demonstrated visually. With this visual evidence, it is believed that the authorities could 
gain more confidence to make decisions on flood rescue and operations.

3.4.2  Implementation of water level estimation task in the GUI

For the water level estimation procedure in the GUI, the result from the segmentation task 
could be retrieved by clicking the retrieve button. The location of the particular image 
was selected in the GUI to provide the correct markers of the specific location for water 
level computation. Information in terms of the time and date of the input image was also 
required so that the information could be recorded in the database. Water level estima-
tion was executed when the water level estimation button was pushed. The estimated water 
level was displayed above the image axis together with its current status, which indicated 
the severity of the river water level as shown in Appendix C.

Here, the current image could be saved into a directory chosen by the user. Several 
images saved from the water level estimation procedure are presented in Appendix D. The 
evolution of the water level could be visually identified and the information was supported 
by the water level value and its severity status.

Moreover, the estimated value could also be recorded in a database by using the Water 
level button in the export data panel. The database was saved in a predefined local disk of 
the user so that multiple water level values could be recorded in the same file. The file con-
tained information such as location, date, time, and water level, as shown in Appendix E. 
Appendix E shows Excel sheet that contains the information of the image submitted by the 
user in terms of locations, date, and time as well as the estimated water level values.

By having this kind of information, the authorities could do further analysis such as 
study the pattern of water fluctuation in particular locations. The information could be plot-
ted into a graph for a better understanding of the water fluctuation. In addition, the water 
level values could also be used as a backup water level measurement in case unforeseen 
circumstances occur during flood disasters. The estimated values could be integrated with 
flood modeling developed by DID to validate the performance of the flood model during 
flood events. In addition, the output from the segmentation procedure could highlight the 
water region and visualise the current condition on-site. Hence, it is easier for the civilians 
to understand the real situation and follow the instructions from the emergency response 
team and eventually reduce the risk of severe flood impact.

Overall, despite the versatility of the segmentation procedure, which can be applied 
to images depicting various flood scenarios, a notable limitation of the proposed meth-
odology is its locality-based river water level estimation. This limitation arises from the 
dependence on specific elevation values corresponding to different areas. To employ the 

Table 5  The volume of water 
obtained from the 3D model and 
the estimated water level

Water level (m) Water volume  (m3)

8.80 421.06
9.30 1004.56
10.55 3263.27
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proposed estimation framework effectively, it becomes necessary to gather elevation data 
for the particular area of interest.

4  Conclusions

In this study, a state-of-the-art deep learning segmentation approach was used to identify 
water regions from the surveillance cameras. The deep learning water segmentation was 
carried out using the DeepLabv3+ network. The results were satisfactory with the IoU 
metric achieved around 0.95 and the proposed segmentation method was able to segment 
various water scenes. Meanwhile, the water level procedure is a locality-based approach 
as it needs elevation information of the specific area to calculate the water levels. The esti-
mated water levels were computed using the segmented image and predefined markers with 
elevation information that was generated from LiDAR data and then the information was 
saved into a structured database. The proposed water level estimation was evaluated using 
Spearman’s correlation coefficient, which achieved nearly 0.9, indicating a strong associa-
tion between both data. The MAE and RMSE for the estimated water levels were 0.01 m 
and 0.86 m, respectively. Therefore, it can be concluded that the proposed water level pro-
cedure can portray the actual water level trends of the river.

In order to have a better representation of the elevation of the river and the fluctuation 
of water levels, a 3D model was developed by combining the dimensions of the river and 
the LiDAR data. Using the water level findings from the proposed water level estimation, a 
flood simulation was conducted to describe the changes in the river water level. The water 
volume was also calculated using both the 3D model and the estimated water level. The 
findings show that as the water level rose, so did the volume of water. It suggests that the 
proposed method could provide volume information that is useful for flood management 
and rescue operations. Lastly, this work aimed to develop a graphical user interface (GUI) 
that can extract flood information such as water extent and water level fluctuation from sur-
veillance images during flood events. By having this information, the authorities can make 
a clear judgement in planning and managing flood-related situations, especially if there is a 
technical problem with the current practice, which is using the telemetry system. Besides, 
the result from the GUI is easy to interpret, which can help the citizen to understand and 
visualise the real situation so that they can comply with the emergency response team’s 
instructions, and ultimately lower the chance of serious flood effects.

The primary objective of this study is to integrate deep learning and lidar data for sur-
veillance camera-based river water level monitoring in flood applications. While the pro-
posed method successfully addresses the main goal, the current results indicate ample room 
for enhancement. Recommendations for future work include the need for a comprehen-
sive labeled dataset encompassing night-time scenarios to assess the segmentation mod-
el’s performance in both daylight and nocturnal conditions. Additionally, it is suggested 
to increase the number of virtual markers for each water level threshold to enhance the 
accuracy of water level estimation. Exploring alternative approaches, such as incorporating 
virtual markers based on permanent water level intervals on-site, is also recommended for 
further refinement of the proposed methodology.
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Appendix A

The screenshot of the execution of the automated procedure for Kampung Selisek using the 
segmentation procedure of the GUI.
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Appendix B

The segmented images were saved from the execution of the automated procedure for 
Kampung Selisek.
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Appendix C

The result was from the water level estimation procedure in the GUI.
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Appendix D

Image saved from the water level estimation procedure that includes the segmented 
result and water level status.
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Appendix E

Excel sheet that contains the information of image submitted by the user in terms of loca-
tions, date, and time as well as the estimated water level values.
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