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APPROXIMATE SOLUTION FOR TIME FRACTIONAL PARTIAL
DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

By

ALSIDRANI FAHAD ABDULAZIZ A

September 2024

Chairman : Adem Kılıçman, PhD
Faculty : Science

This thesis investigates one-dimensional time-dependent partial di↵erential equa-

tions, focusing on two types of fractional derivative definitions and their proper-

ties. The primary goal is to derive semianalytical approximate series solutions

for the spatial variable ⌫ within a bounded interval [a, b], where a and b are real

numbers. Three powerful numerical methods are employed to obtain approxi-

mate analytical solutions for fractional order partial di↵erential equations: the

variational iteration method (VIM), the Adomian decomposition method (ADM),

and the homotopy analysis method (HAM). These techniques balance the sim-

plicity of analytical solutions with the accuracy of numerical approaches. The

study includes a comprehensive convergence analysis of the approximate series

solutions obtained from VIM, ADM, and HAM. The di↵erential equation under

investigation is derived from the traditional Fornberg-Whitham equation and the

Helmholtz equation by replacing the integer order time derivative with noninteger

derivatives of order µ in the range n�1 < µ  n, for n 2 N, incorporating variable

coe�cients. Novel approaches are developed to compute the Laplace transform in

the Atangana-Baleanu fractional derivative operator, enhancing the performance

and accuracy of the semianalytical methods. The research extends to validate

the e↵ectiveness of fractional order methods. To demonstrate the applicability of
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these techniques, computational analyses of various test problems are provided,

featuring two fractional derivatives and variable coe�cients. Comparisons reveal

that the absolute di↵erences between the approximate solutions derived from

VIM, ADM, and HAM decrease with the parameter µ approaches to the integer

order. The findings indicate that the di↵erences between ADM and HAM are

consistently smaller than those involving VIM, signifying that while all methods

yield similar results, ADM and HAM show closer alignment and potential excel-

lence in specific scenarios. According to the results and graphical representation,

it can be seen that the proposed methods are e�cient in obtaining an analytical

solution for time-fractional di↵erential equations.

Keywords: Adomian Decomposition Method, Fractional Derivatives, Homotopy Anal-
ysis Method, Partial Di↵erential Equations, Variational Iteration Method.

SDG: GOAL 4: Quality Education.

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENYELESAIAN PENGHAMPIRAN UNTUK PERSAMAAN
PEMBEZAAN SEPARA PECAHAN MASA DENGAN PEKALI

PEMBOLEHUBAH

Oleh

ALSIDRANI FAHAD ABDULAZIZ A

September 2024

Pengerusi : Adem Kılıçman, PhD
Fakulti : Sains

Tesis ini mengkaji persamaan pembezaan separa satu dimensi yang bergantung kepada

masa, dengan fokus pada dua jenis definisi terbitan pecahan dan sifat-sifatnya. Matla-

mat utama adalah untuk memperoleh penyelesaian hampiran siri separa-analitik untuk

pemboleh ubah ruang ⌫ dalam selang terhad [a, b], di mana a dan b adalah nombor ny-

ata. Tiga kaedah berangka yang digunakan untuk mendapatkan penyelesaian hampiran

analitik bagi persamaan pembezaan separa peringkat pecahan: kaedah lelaran bervari-

asi (KLB), kaedah penghuraian Adomian (KPA), dan kaedah analisis homotopi (KAH).

Teknik-teknik ini mengimbangi kesederhanaan penyelesaian analitik dengan kejituan

pendekatan berangka. Kajian ini merangkumi analisis penumpuan yang komprehen-

sif terhadap penyelesaian hampiran siri yang diperoleh daripada KLB, KPA dan KAH.

Persamaan pembezaan yang dikaji diperoleh daripada persamaan tradisional Fornberg-

Whitham dan persamaan Helmholtz dengan menggantikan terbitan masa peringkat in-

teger dengan terbitan bukan integer peringkat µ dalam julat n � 1 < µ  n, untuk

n 2 N, yang menggabungkan pekali berubah. Pendekatan baharu dibangunkan un-

tuk mengira transformasi Laplace dalam operator terbitan pecahan Atangana-Baleanu,

meningkatkan prestasi dan kejituan kaedah separa-analitik. Kajian ini dilanjutkan un-

tuk mengesahkan keberkesanan kaedah peringkat pecahan. Untuk menunjukkan kebole-

hgunaan teknik-teknik ini, analisis pengiraan pelbagai masalah ujian disediakan, yang

menampilkan dua terbitan pecahan dan pekali berubah. Perbandingan menunjukkan
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bahawa perbezaan mutlak antara penyelesaian yang diperoleh daripada KLB, KPA dan

KAH berkurangan dengan parameter µ. Penemuan menunjukkan bahawa perbezaan

antara KPA dan KAH adalah lebih kecil secara konsisten berbanding dengan yang

melibatkan KLB, mencadangkan bahawa walaupun semua kaedah menghasilkan hasil

yang serupa, KPA dan KAH menunjukkan keselarasan yang lebih dekat dan potensi

kecemerlangan dalam senario tertentu. Menurut hasil dan perwakilan grafik, dapat dili-

hat bahawa kaedah yang dicadangkan adalah berkesan dalam memperoleh penyelesaian

analitik untuk persamaan pembezaan pecahan-masa.

Kata Kunci: Kaedah Analisis Homotopi, Kaedah Lelaran Bervariasi, Kaedah Penghu-
raian Adomian, Persamaan Pembezaan Separa, Terbitan Pecahan.

SDG: MATLAMAT 4: Pendidikan Berkualiti.
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CHAPTER 1

INTRODUCTION

1.1 Fundamentals of Fractional Calculus

In the heart of all various applied sciences, everything shows itself in the mathematical

relation that most of these problems and phenomena are modeled by ordinary di↵eren-

tial equations (ODEs) or partial di↵erential equations (PDEs). The field of fractional

calculus (FC) is almost as old as conventional calculus itself. It attracts attention to

modeling problems concerning nonlocality and memory e↵ect concepts that are not well

described by the classical calculus. It represents a conception of classical di↵erentiation

and integration of nonnegative integer order to an arbitrary order (constant or variable).

In recent years, several books on fractional calculus have been published. Researchers

have developed new numerical methods to solve fractional di↵erential equations more

e�ciently. Applications of fractional calculus can be found in various fields, including

physics, engineering, and biology. The growing interest in fractional calculus highlights

its potential to address complex real-world problems (Podlubny, 1998; Kilbas et al.,

2006; Sabatier et al., 2007; Chen et al., 2009; Baleanu et al., 2011; Sabatier et al., 2015;

Guo et al., 2015; Daftardar-Gejji, 2019; Gorenflo et al., 2020; Mainardi, 2022).

1.1.1 Origin of the Fractional Derivative

The historical development of fractional calculus dates back to several centuries and

involves contributions from multiple mathematicians. The concept of fractional deriva-

tives (FD) has more than 325 years of history, yet it is still an exciting research topic,

and interested researchers are actively working on problems of fractional order deriva-

tives. The roots of this concept can be traced back to a letter from ĹHôpital to Leibnitz

in 1695, in which the meaning of the derivative of a function of order 1/2. Later in-

1
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vestigations and further developments were by other mathematicians, such as Euler

in 1730, Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, Abel

in 1823 � 1826, Liouville in 1832 � 1873, Riemann in 1847, Holmgren in 1865 � 1867,

and Grun̈wald 1867�1872. These early mathematicians made significant contributions

to the field of fractional calculus in its early stages. They explored the possibility of

extending di↵erentiation and integration to noninteger orders (Podlubny, 1998; Kilbas

et al., 2006; Guo et al., 2015; Daftardar-Gejji, 2019). However, the formalization of

fractional calculus took several more years to develop. Since then, numerous scholars

attempted to o↵er a clear definition of a fractional derivative. The principal approach

employed by the majority of these researchers involved the utilization of an integral

formulation for the representation of the fractional derivative. We briefly introduce the

commonly used fractional derivative formulation as frequently discovered in scholarly

literature. In 1819, the first mention of fractional derivative in a published paper by

Lacroix (Ross, 2006). Starting with  = &m, where m, n 2 N and m � n, Lacroix

found the nth derivative of  and he further obtained the generalized form with �(·)

the well-known Gamma function by

dn

d&n
 =

m!

(m� n)!
&m�n =

�(m + 1)

�(m� n + 1)
&m�n. (1.1)

In particular, he computed the following derivative of fractional order, when m = 1

and n = 1/2, he obtained

d
1
2

d&
1
2

 =
�(2)

�(3
2
)
&

1
2 =

2
p
&p
⇡
. (1.2)

It can be seen Equation (1.1) indicates that the fractional derivative of a constant

denoted by &0 deviates from the conventional expectation of yielding zero. A specific

illustration of this notice arises when the parameters are assigned values such that

m = 0 and n = 1/2, we obtain

d
1
2

d&
1
2

&0 =
�(1)

�(1
2
)
&�

1
2 =

1p
⇡&

. (1.3)

In this particular formatting, the fractional derivative assumes a non-zero value. The

next stage was taken from Fourier in 1822. He defined the fractional derivative through

the so-called Fourier transform (FT), which generalized the integer-order derivative into

the fractional order derivatives by

Dµ (&) =
1

2⇡

Z 1

�1

Z 1

�1
 (⇠)⌫µ cos

h
⌫(& � ⇠) + µ⇡

2

i
d⌫d⇠. (1.4)
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Abel in 1823, discussed the fractional derivative as well.

The comprehensive development and formalization of fractional calculus occurred in

the 19th and 20th centuries. Riemann and Liouville established the foundation of mod-

ern fractional calculus in the mid-19th century. Riemann introduced the concept of

fractional integration, and Liouville further developed the theory by introducing the

fractional derivative. Liouville made progress work in fractional derivatives and prop-

erly involved it in potential theory. If a function, denoted as  (&), admits expansion

into an infinite series, then its fractional derivative can be derived through the following

Dµ (&) =
1X

r=0

CrAµ
r e

Ar& , (1.5)

and if the function  (&) cannot be expanded into an infinite series, then its fractional

derivative is obtained by using the Gamma function as follows:

Dµ&�↵ =
(�1)µ

�(↵)

Z 1

0

⇠↵+µ�1 e�&⇠d⇠

=
(�1)µ�(↵+ µ)&�↵�µ

�(↵)
, ↵ > 0.

(1.6)

In 1870, the Riemann-Liouville (RL) derivative of order µ for a given power function

kernel was defined by

RLDµ
& (&) =

1

�(1� µ)

d

d&

Z
&

a

 (⇠)(& � ⇠)�µd⇠. (1.7)

The singularity of the Riemann-Liouville fractional derivative occurs when the param-

eter & is equal to ⇠. In order to avoid this singularity, alternative definitions have been

introduced. One such alternative is the Caputo fractional derivative, which was first

introduced by (Caputo, 1967). This approach is often preferred in practical applica-

tions because of its enhanced capability to address initial conditions. The µ-th Caputo

fractional derivative CDµ
& of the function  (&) is formally defined as follows:

CDµ
& (&) =

1

�(n� µ)

Z
&

a

 (n)(⇠)(& � ⇠)n�µ�1d⇠. (1.8)

Further, Hadamard in 1892 proposed a nonlocal fractional derivative with singular

logarithmic function kernel with memory of order µ defined by (Jarad et al., 2012)

HDµ
& (&) =

⇣
&
d

d&

⌘↵ 1

�(↵� µ)

Z
&

a

 (⇠) log
⇣ &
⇠

⌘↵�µ�1

⇠�1d⇠. (1.9)
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The proposition of a fractional derivative employing a logarithmic function kernel of

order n�1 < µ < n, where n 2 N, has been reintroduced in the work by (Beghin et al.,

2015). The formulation is defined as follows:

Dµ
&  (&) =

1

�(↵� µ)

Z
&

1�a
b

 (⇠) log
⇣ a + b&

a + b⇠

⌘↵�µ�1
⇣⇣a

b
+ ⇠

⌘ d

d⇠

⌘↵ b

a + b⇠
d⇠. (1.10)

Remark 1.1 : If we set a = 0 and b = 1 in Equation (1.10), it is also known as the

Hadamard fractional derivative.

Furthermore, (Caputo and Fabrizio, 2015) proposed a fractional derivative with an

exponential function kernel. By changing the kernel (& � ⇠)�µ, where 0 < µ < 1 with

the function exp(�µ(& � ⇠)/(1� µ)) and 1/�(1� µ) with P(µ)/(1� µ), we obtain the

following new definition of fractional time derivative defined by

CFDµ
& (&) =

P(µ)

1� µ

Z
&

a

 0(⇠) exp
⇣µ(& � ⇠)

µ� 1

⌘
d⇠, (1.11)

where P(µ) denotes a normalization function such that P(0) = P(1) = 1.

The main recent advancement within the domain of fractional calculus occurred in the

year 2016 when Atangana and Baleanu introduced a novel definition for the fractional

derivative characterized by a nonlocal and nonsingular kernel by the Mittag-Le✏er

(ML) function. This formulation, referred to as the Atangana-Baleanu derivative, was

accompanied by the explication of relevant properties. Besides, the Atangana-Baleanu

derivative was e↵ectively employed in the solution of a fractional heat transfer model.

The Atangana-Baleanu fractional derivative operator in both the Caputo and Riemann-

Liouville senses are defined for the orders within the range of 0 < µ  1, where

 (&) 2 L1(a, b) with a < b. The di↵erent formulations in the Caputo and Riemann-

Liouville senses are denoted as the Atangana-Baleanu fractional derivative operator

in the Caputo sense and the Atangana-Baleanu fractional derivative operator in the

Riemann-Liouville sense, respectively, by (Atangana and Baleanu, 2016) as follows:

ABCDµ
& (&) =

P(µ)

1� µ

Z
&

a

 0(⇠)Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠ (1.12)
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and

ABRDµ
& (&) =

P(µ)

1� µ

d

d&

Z
&

a

 (⇠)Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠, (1.13)

where Eµ(&) represents the one-parameter Mittag-Le✏er function.

1.1.2 The Fractional Taylor’s Formula

The Taylor expansion for fractional derivatives can be expressed through the framework

of fractional calculus. This approach extends the classical Taylor series by incorporat-

ing the fractional order derivatives, allowing for the representation of functions with

noninteger order di↵erentiation. This generalization not only broadens the applicability

of the Taylor series but also provides a powerful tool for modeling complex dynamical

systems where traditional integer order calculus may fall short. The resulting fractional

Taylor series captures the complex behavior of such systems, o↵ering deeper insights

and enhanced analytical capabilities in fields like physics, engineering, and applied

mathematics. The general form of the Taylor expansion of a function  (⇠) with its

center at a specific point a is formally established as follows:

 (⇠) =  (a) +
 0(a)(⇠� a)

1!
+
 00(a)(⇠ � a)2

2!
+
 000(a)(⇠� a)3

3!
+ · · · . (1.14)

The fractional Taylor series has been established within the framework of the Riemann-

Liouville derivative as elaborated by (Trujillo et al., 1999) under specific conditions

on the function  (⇠). This development has led to the formulation known as the

generalized Taylor’s formula. Trujillo et al. provided a comprehensive treatment, which

includes the derivation of a generalized mean value theorem (GMVT) and exploration

of various applications arising from the generalized Taylor’s formula. Similarly, an

analogous investigation has been undertaken for the Caputo fractional derivative as

defined by (Odibat and Shawagfeh, 2007). For a positive real number µ, a 2 ⇥, and

E ⇢ ⇥ is an interval such that for all ⇠ 2 E and a  ⇠, then

aIµ(E) = { 2  (⇥) : aI
µ (⇠) exists and it is finite}, (1.15)

where  (⇥) stands for the set of real functions of a single real variable with domain in

⇥. Assume that µ and q such that 0 < µ  1 and q 2 N. Let  denotes a continuous
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function defined in the interval (a, b], subject to the following conditions

1. aDpµ 2 C((a, b]) and aDpµ 2 aIµ([a, b]), 8 p = 1, · · · , q.

2. aD(q+1)µ is continuous on [a, b].

3. If µ < 1/2 then, 8 p 2 N, 1  p  q, such that (p + 1)µ < 1, aD(p+1)µ (⇠) is

↵-continuous in ⇠ = a for some ↵, 1� (p+1)µ  ↵  1, or a-singular of order µ.

Then 8 ⇠ 2 (a, b], the generalized Riemann-Liouville Taylor’s formula is defined by

 (⇠) =
qX

p=0

Cp(⇠� a)(p+1)µ�1

�((p + 1)µ)
+ aD(q+1)µ (⌫)

�((q + 1)µ+ 1)
(⇠� a)(q+1)µ, a  ⌫  ⇠

Cp = �(µ)
h
(⇠� a)1�µ

aDpµ (⇠)
i
(a+), 8 p = 0, 1, · · · , q.

(1.16)

The representation of the successive fractional derivative is indicated by

aDqµ = aDµ
aDµ · · ·aDµ

q times

(1.17)

In case the parameter µ = 1, both the generalized Riemann-Liouville Taylor’s formula

and the Caputo Taylor’s formula reduce to the classical Taylor’s formula.

1.1.3 The Leibniz Rule for Fractional Derivatives

The Leibniz rule, also known as the product rule for fractional derivatives, is one of

the numerous attractive properties of fractional calculus. The Leibniz rule provides a

manner to compute the fractional derivative of a product of two functions, extending

the ordinary product rule from the classical calculus.

Theorem 1.1 : For n 2 N time di↵erentiable functions  (⇠) and �(⇠) on [a, b] then

the derivative of their product is given by

( (⇠)�(⇠))(n) =
nX

k=0

✓
n

k

◆
 (k)(⇠)�(n�k)(⇠). (1.18)
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The binomial coe�cient can indeed be expressed in terms of the Gamma function

✓
n

k

◆
=

�(n + 1)

�(n� k + 1)�(k + 1)
. (1.19)

For n = 1, we obtain ( (⇠)�(⇠))0 =  (⇠)�0(⇠) + 0(⇠)�(⇠).

Theorem 1.2 : (Min, 2016) Given an analytic function  (⇠) defined on the interval

[a, b], it is observed that the Riemann-Liouville derivative operator satisfies the following

RL

a Dµ
⇠ (⇠) =

1X

m=0

✓
µ

m

◆
 (⇠)(m)

�(m� µ+ 1)
(⇠� a)m�µ, µ 2 R. (1.20)

Theorem 1.3 : (Williams, 2007) Assume that  (⇠) and �(⇠) are analytic functions

on [a, b] ⇢ R with all their derivatives are continuous. Then the Leibniz rule holds for

µ 2 R.

RL

a Dµ
⇠( (⇠)�(⇠)) =

1X

k=0

✓
µ

k

◆h
RLDk

 (⇠)
ih

RLDµ�k
�(⇠)

i
. (1.21)

Proof:

Since the functions  (⇠) and �(⇠) analytic on [a, b], then  � is also analytic on [a, b].

RL

a Dµ
⇠( (⇠)�(⇠)) =

1X

m=0

✓
µ

m

◆
( (⇠)�(⇠))(m)

�(m� µ+ 1)
(⇠� a)m�µ

=
1X

m=0

✓
µ

m

◆
(⇠� a)m�µ

�(m� µ+ 1)

mX

k=0

✓
m

k

◆
 (k)(⇠)�(m�k)(⇠)

=
1X

m=0

mX

k=0

✓
µ

m

◆✓
m

k

◆
 (k)(⇠)�(m�k)(⇠)(⇠� a)m�µ

�(m� µ+ 1)

=
1X

k=0

1X

m=k

✓
µ

k

◆✓
µ� k

m� k

◆
 (k)(⇠)�(m�k)(⇠)(⇠� a)m�µ

�(m� µ+ 1)

=
h 1X

k=0

✓
µ

k

◆
 (k)(⇠)

ih 1X

m=k

✓
µ� k

m� k

◆
�(m�k)(⇠)(⇠� a)(m�k)�(µ�k)

�((m� k)� (µ� k) + 1)

i

=
1X

k=0

✓
µ

k

◆h
RLDk

 (⇠)
ih

RLDµ�k

�(⇠)
i
.

The fractional formula of the Leibniz rule for di↵erentiation Caputo type derivative

was given by (Baleanu and Trujillo, 2010) as follows:

C

a D
µ
⇠( (⇠)�(⇠)) =

1X

k=0

✓
µ

k

◆h
RLDk

 (⇠)
ih

RLDµ�k

�(⇠)
i
�  (a)�(a)(⇠� a)µ

�(1� µ)
. (1.22)
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1.2 Special Functions of Fractional Calculus

The specialized mathematical functions in the field of mathematical physics have oc-

curred to address the demands of applied sciences, o↵ering solutions to integer-order

di↵erential equations derived from mathematical physics models. This section provides

fundamental theories related to special functions, serving as a foundational framework

for subsequent chapters. Specifically, it o↵ers essential insights into the primary func-

tions integral to the theory of arbitrary-order di↵erentiation and the theory of fractional

di↵erential equations. In particular, it contains comprehensive information on critical

functions such as the Gamma and Beta functions, the Mittag-Le✏er functions, and the

Wright functions, which readers may refer to (Podlubny, 1998; Gorenflo et al., 2007;

Mainardi et al., 2010; Guo et al., 2015; Gorenflo et al., 2020; Mainardi, 2022).

1.2.1 Gamma Function

The Gamma function �(·) plays a crucial role in various areas of mathematics, including

complex analysis, number theory, and probability theory. Let u be a complex number

with Re(u) > 0, then the integral

�(u) =

Z 1

0

⌘u�1e�⌘d⌘, (1.23)

is known as the Gamma function or the Euler integral of the second kind and converges

absolutely. It is defined for all complex numbers except for the non-positive integers.

The presented function contains a generalization of the factorial, which can be expressed

in the form �(u) = (u � 1)!. It is obvious that through the application of integration

by parts, the fundamental property of the Gamma function can be derived as follows:

�(u + 1) =

Z 1

0

⌘u+1�1e�⌘d⌘ = (�e�⌘⌘u)
���
⌘=1

⌘=0

+ u

Z 1

0

⌘u�1e�⌘d⌘ = u�(u). (1.24)

Proposition 1.1 : Some important properties of the Gamma function include
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1. �(u + 1) = u�(u).

2. �(u + 1) = u!, 8u 2 N.

3. �(1/2) =
p
⇡.

Figure 1.1: Complex plot of Gamma function

1.2.2 Beta Function

The Beta function is a special function defined as follows:

�(u, v) =

Z
1

0

⌘u�1(1� ⌘)v�1d⌘, (1.25)

where Re(u) > 0 and Re(v) > 0 which is also called the Euler integral of the first kind.

Corollary 1.1 : The Beta function can be written in the form of Gamma function as

follows:

�(u + v) =
�(u)�(v)

�(u + v)
. (1.26)

1.2.3 Mittag-Le✏er Function

The Mittag-Le✏er (ML) function relates to the Gamma function, which plays a crucial

role in fractional calculus and the behavior of special functions. The Mittag-Le✏er
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function with two-parameters is a special function allowing a wider range of applica-

tions, which is defined as follows:

Eu,v(⌘) =
1X

m=1

⌘m

�(mu + v)
, Re(u) > 0. (1.27)

For v = 1, we obtain the so-called one-parameter Mittag-Le✏er function

Eu,1(⌘) =
1X

m=0

⌘m

�(mu + 1)
⌘ Eu(⌘). (1.28)

Corollary 1.2 : The Mittag-Le✏er function arises as a generalization of the exponen-

tial function in fractional calculus. According to (Petrás, 2011), the most well-known

relationships for the Mittag-Le✏er function can be summarized as follows:

1. E1,1(⌘) = e⌘.

2. E1,2(⌘) =
e⌘ � 1

⌘
.

3. E2,1(⌘) = cosh(
p
⌘).

4. E2,1(�⌘2) = cos(⌘).

1.2.4 Wright Function

The entire function of ⌘ denoted as Wu,v(⌘) is a special function that generalizes various

elementary functions which are defined as follows:

Wu,v(⌘) =
1X

m=0

⌘m

�(m + 1)�(mu + v)
, u > �1 and v 2 C. (1.29)

The function denoted as Wu,v(⌘) exhibits convergence across the whole ⌘-complex

plane, and it is identified as the Wright function, named in honor of the British mathe-

matician E. M. Wright, who introduced it in the 1940s (Gorenflo et al., 2007; Mainardi

et al., 2010). This function has gained standing in recent scholarly works focusing

on partial di↵erential equations of fractional order. The integral representation of the

Wright function is expressed as follows:

Wu,v(⌘) =
1

2⇡i

Z

Ha

⇠v e⇠+⌘⇠
�u
d⇠, u > �1 and v 2 C, (1.30)

10
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where Ha denotes the Hankel path. The Wright function has applications in diverse

areas of mathematics, including di↵erential equations, mathematical physics, and prob-

ability theory. It often arises in problems involving fractional calculus, delay di↵erential

equations (DDE), and solutions to certain types of di↵erential equations. It can be used

as a powerful tool for expressing solutions to di↵erential equations that cannot be easily

expressed in terms of elementary functions.

Remark 1.2 : In the case u = 0, the Wright function Equation (1.29) is reduced to

the exponential function with constant factor 1/�(v)

W0,v(⌘) =
1X

m=0

⌘m

�(m + 1)�(v)

=
e⌘

�(v)
.

(1.31)

If u = 0 and v = 1, we have

W0,1(⌘) = E1,1(⌘)

= e⌘.
(1.32)

1.3 Integral Transforms

Integral transforms have proven to be powerful tools in addressing fractional partial

di↵erential equations. In this exploration, we focus on employing a range of transforms,

such as the Laplace transform, the Mellin transform, the Sumudu transform, the Elzaki

transform, or the Shehu transform, to convert partial di↵erential equations into ordi-

nary di↵erential equations. The integral transformation simplifies the solution process,

making it possible to apply well-established techniques. The modified numerical meth-

ods depend on combining a numerical approach with an appropriate transformation

operator, making it easier to achieve analytical or numerical solutions for fractional

partial di↵erential equations that involve fractional order derivatives. For more details

regarding the integrals transform, encompassing their properties for specific instances,
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we direct the interested reader to (Spiegel, 1965; Watugala, 1993; Sheng et al., 2011;

Elzaki, 2011; Luchko and Kiryakova, 2013; Maitama and Zhao, 2019; Magar et al.,

2022). In the following, we provide the most employed integral transforms in fractional

calculus.

Defined a set of function

A =
n
 (&) : 9m, y1, y2 > 0, | (&)|  me

|&|
yk , if & 2 (�1)k ⇥ [0,1)

o
. (1.33)

In what follows, we assume that  2 L1(a, b) with b > a, & > 0, and  (&) 2 A.

1. The Laplace integral transform of a function  (&) is given as follows:

L& [ (&); y] = F(y) =

Z 1

�1
 (&)e�y&d&, (1.34)

and the inverse Laplace transform of F(y) is defined by the following complex

integral

 (&) = L�1

& [F(y); &] =
1

2⇡i
lim
✏!1

Z �+i✏

��i✏
F(y)ey&dy, (1.35)

where Re(y) = � is the vertical line in the complex plane such that � is greater

than the real part of all singularities of F(y).

2. If y > 0 is any complex variate and  (&) is a function of a real variable &, such

that

M& [ (&); y] = M(y) =

Z 1

0

 (&)&y�1d&, (1.36)

exists, then the functionM(y) is called the Mellin integral transform of  (&). Un-

der certain conditions and for Re(y) = �, the inverse of Mellin integral transform

is defined as follows:

 (&) = M�1

& [M(y); &] =
1

2⇡i

Z �+i1

��i1
M(y)&�ydy. (1.37)

3. The Sumudu integral transform of a function  (&) is defined as follows:

S& [ (&); y] = S(y) = 1

y

Z 1

0

 (&)e�
&
yd&, (1.38)

and for Re(y) = �, the inverse of the Sumudu integral transform is defined as

follows:

 (&) = S�1

& [S(y); &] = 1

2⇡i

Z �+i1

��i1
S
✓
1

y

◆
ey&

dy

y
. (1.39)
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4. The Elzaki integral transform of a function  (&) is closely related to the Laplace

transform and Sumudu transform, which is defined by

E& [ (&); y] = V(y) = y

Z 1

0

 (&)e�
&
yd&. (1.40)

5. The Shehu integral transform of a function  (&) of exponential order is defined

as follows:

SH& [ (&); y] = U(w, y) =
Z 1

0

 (&)e�
y&
w d&, w, y > 0. (1.41)

Lemma 1.1 : If a function  (&) is piecewise continuous on every finite interval in

[0,1) and | (&)|  Kea& for all & 2 [0,1), then L& [ (&); y] exists for all y > a.

1.3.1 Some Properties of Integral Transforms

The integral transforms have many important properties. In this section, we turn

our attention to proving some of them, and here are some key properties of integral

transforms.

1.3.1.1 Linear Property

Definition 1.1 : An operator O defined on a vector space S over a field F is said to

be a linear if for any  (&) and �(&) in F and for any scalar ↵ and � in F, the following

holds

O(↵ + ��)(&) = ↵O (&) + �O�(&). (1.42)
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1.3.1.2 Convolution Property

Definition 1.2 : The convolution of two functions  (&) and �(&) is defined as follows:

( ⇤ �)(&) =
Z

&

0

 (⇠)�(& � ⇠)d⇠ =

Z
&

0

 (& � ⇠)�(⇠)d⇠. (1.43)

1.3.1.3 Derivative Property

The transform of a derivative of a function is related to the transform of the original

function. More additional details will be presented in the next section 1.4.

Proposition 1.2 : Let  (&) and �(&) be two functions of & � 0, where F(y) denotes

the Laplace transform of  (&) and G(y) denotes the Laplace transform of �(&), then

1. for ↵,� 2 R, the Laplace transform with respect to & of sum functions  (&) and

�(&) is given as follows:

L& [(↵ (&) + ��(&)); y] = ↵L& [ (&); y] + �L& [�(&); y]

= ↵F(y) + �G(y).
(1.44)

2. The convolution property of the Laplace transform is given as follows:

L& [( (&) ⇤ �(&)); y] = L&

h Z &

0

 (⇠)�(& � ⇠)d⇠
i

= L& [ (&); y]L& [�(&); y]

= F(y)G(y).

(1.45)

Proof:

From the convolution integral and Equation (1.34), it follows that
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L& [( ⇤ �)(&); y] = L&

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i

=

Z 1

0

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i
e�y&d&

=

Z 1

0

 (⇠)
h Z 1

0

�(& � ⇠)e�y&d&
i
d⇠.

By setting u = & � ⇠ =) du = d&, it implies that

L& [( ⇤ �)(&); y] =
Z 1

0

 (⇠)
h Z 1

0

�(u)e�y(u+⇠)du
i
d⇠

=

Z 1

0

 (⇠)
h Z 1

0

�(u)e�yue�y⇠du
i
d⇠

=

Z 1

0

 (⇠)e�y⇠
h Z 1

0

�(u)e�yudu
i
d⇠

=

Z 1

0

 (⇠)e�y⇠d⇠G(y)

= F(y)G(y).

Proposition 1.3 : The Elzaki transform meets the following properties.

1. Linearity property. For ↵,� 2 R, then

E& [(↵ (&) + ��(&)); y] = ↵V(y) + �K(y). (1.46)

2. Convolution property.

E& [( ⇤ �)(&)); y] = E&

h Z &

0

 (⇠)�(& � ⇠)d⇠
i

=
V(y)K(y)

y
.

(1.47)

Proof:

From the convolution integral and Equation (1.40), it follows that

E& [( ⇤ �)(&); y] = E&

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i

= y

Z 1

0

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i
e�

&
yd&

= y

Z 1

0

 (⇠)
h Z 1

0

�(& � ⇠)e�
&
yd&

i
d⇠.

By setting u = & � ⇠ =) du = d&, it implies that
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E& [( ⇤ �)(&); y] = y

Z 1

0

 (⇠)
h Z 1

0

�(u)e�
(u+⇠)

y du
i
d⇠

= y

Z 1

0

 (⇠)
h Z 1

0

�(u)e�
u
y e�

⇠
y du

i
d⇠

= y

Z 1

0

 (⇠)e�
⇠
y

h Z 1

0

�(u)e�
u
y du

i
d⇠

= y

Z 1

0

 (⇠)e�
⇠
y d⇠

K(y)

y

=
V(y)K(y)

y
,

where V(y) = E& [ (&); y] and K(y) = E& [�(&); y] are the Elzaki transform of the func-

tions  (&) and �(&), respectively.

Proposition 1.4 : Let � (&) and ↵�(&) be in a set A, then � (&)+↵�(&) 2 A, where

�,↵ 2 R \ {0}, then we have the following

1. The Shehu transform is a linear operator.

SH& [(� (&) + ↵�(&)); y] = �SH& [ (&); y] + ↵SH& [�(&); y], (1.48)

where SH& [·] is the Shehu transformation.

Proof:

From Equation (1.41), it follows that

SH& [(� (&) + ↵�(&)); y] =

Z 1

0

(� (&) + ↵�(&))e�
y&
w d&

=

Z 1

0

e�
y&
w � (&)d& +

Z 1

0

↵�(&)e�
y&
w d&

= �

Z 1

0

 (&)e�
y&
w d& + ↵

Z 1

0

�(&)e�
y&
w d&

= �SH& [ (&); y] + ↵SH& [�(&); y].

2. The Shehu transform meets the following convolution equality.

SH& [( (&) ⇤ �(&)); y] = U(w, y)V(w, y). (1.49)
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Proof:

From the convolution integral and Equation (1.41), it follows that

SH& [( ⇤ �)(&); y] = SH&

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i

=

Z 1

0

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i
e�

y&
w d&

=

Z 1

0

 (⇠)
h Z 1

0

�(& � ⇠)e�
y&
w d&

i
d⇠.

By setting u = & � ⇠ =) du = d&, it implies that

SH& [( ⇤ �)(&); y] =
Z 1

0

 (⇠)
h Z 1

0

�(u)e�
y(u+⇠)

w du
i
d⇠

=

Z 1

0

 (⇠)
h Z 1

0

�(u)e�
yu
w e�

y⇠
w du

i
d⇠

=

Z 1

0

 (⇠)e�
y⇠
w

h Z 1

0

�(u)e�
yu
w du

i
d⇠

=

Z 1

0

 (⇠)e�
y⇠
w d⇠V(w, y)

= U(w, y)V(w, y),

where U(w, y), V(w, y) are Shehu transforms of  (&) and �(&), respectively.

3. The Sumudu transform is a linear operator.

S& [(� (&) + ↵�(&)); y] = �S& [ (&); y] + ↵S& [�(&); y]

= �U(y) + ↵V(y).
(1.50)

4. The Sumudu transform of convolution is given by

S& [( (&) ⇤ �(&)); y] = yS& [ (&); y]S& [�(&); y]

= yU(y)V(y).
(1.51)
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Proof:

From the convolution integral and Equation (1.38), it follows that

S& [( ⇤ �)(&); y] = S&

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i

=
1

y

Z 1

0

h Z 1

0

 (⇠)�(& � ⇠)d⇠
i
e�

&
yd&

=
1

y

Z 1

0

 (⇠)
h Z 1

0

�(& � ⇠) (⇠)e�
&
yd&

i
d⇠.

By setting u = & � ⇠ =) du = d&, it implies that

S& [( ⇤ �)(&); y] = 1

y

Z 1

0

 (⇠)

Z 1

0

�(u)e�
(u+⇠)

y du

�
d⇠

=
1

y

Z 1

0

 (⇠)
h Z 1

0

�(u)e�
u
y e�

⇠
y du

i
d⇠

=
1

y

Z 1

0

 (⇠)e�
⇠
y

h Z 1

0

�(u)e�
u
y du

i
d⇠

=
1

y

Z 1

0

 (⇠)e�
⇠
y d⇠yV(y)

= yU(y)V(y),

where U(y), V(y) are the Sumudu transforms of  (&) and �(&), respectively.

Lemma 1.2 : (Belgacem et al., 2019; Meddahi et al., 2021) For Re(u), Re(v) > 0

and � 2 R, then the integral transforms of the two-parameters Mittag-Le✏er function

Eu,v(�&u) are given as follows:

1. Laplace transform of &v�1Eu,v(�&u) is

L& [&
v�1Eu,v(�&

u); y] =
yu�v

yu � � . (1.52)

2. Sumudu transform of &v�1Eu,v(�&u) is

S& [&
v�1Eu,v(�&

u); y] =
yv�1

1� �yu . (1.53)

3. Shehu transform of &v�1Eu,v(�&u) is

SH& [&
v�1Eu,v(�&

u); y] =
(wy )

v

1� �(wy )u
. (1.54)

4. Elzaki transform of &v�1Eu,v(�&u) is

E& [&
v�1Eu,v(�&

u); y] =
yv+1

1� �yu . (1.55)
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Table 1.1: A brief table of Laplace transforms

 (!) = L�1
! {F(y)} F(y) = L!{ (!)}

1 1
y

! 1
y2

!2 2
y3

!n, n = 1, 2, 3 . . . n!
yn+1

!↵, Re(↵) > �1 �(↵+1)
y↵+1

!n�1 (n�1)!
yn , n = 1, 2, 3, . . .

!2↵, Re(↵) > �1
2

�(2↵+1)
y2↵+1

!2↵�2, Re(↵) > 1
2

�(2↵�1)
y2↵�1

sin a! a
y2+a2

cos a! y
y2+a2

ea! 1
y�a

!ea! 1
(y�a)2

Note: The Laplace transform of a power function !↵�� is given by

L& [!
↵��; y] =

(↵� �)!
y↵��+1

, Re(↵� �) > 0. (1.56)
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Proof:

1. From Equations (1.34) and (1.27), it follows that

L& [&
v�1Eu,v(�&

u); y] =

Z
&

0

&v�1

1X

k=0

(�&u)k

�(ku + v)
e�y&d&

=
1X

k=0

Z
&

0

&v�1�k&ku

�(ku + v)
e�y&d&

=
1X

k=0

�k

�(ku + v)

Z
&

0

&v+ku�1e�y&d&

=
1X

k=0

�k

�(ku + v)
L& [&

v+ku�1; y]

=
1X

k=0

�k

�(ku + v)

�(ku + v)

yv+ku

=
1

yv

1X

k=0

�k

yku

=
1

yv

h
1 +

�

yu
+
�2

y2u
+
�3

y3u
+
�4

y4u
+ · · ·

i

=
1

yv

h
1 +

⇣ �
yu

⌘
+
⇣ �
yu

⌘
2

+
⇣ �
yu

⌘
3

+
⇣ �
yu

⌘
4

+ · · ·
i

=
1

yv
1

1� �
yu

=
yu�v

yu � � .

Proof:

2. From Equations (1.38) and (1.27), it follows that

S& [&
v�1Eu,v(�&

u); y] =
1

y

Z
&

0

&v�1

1X

k=0

(�&u)k

�(ku + v)
e�

&
yd&

=
1X

k=0

�k

�(ku + v)

1

y

Z
&

0

&v+ku�1e�
&
yd&

=
1X

k=0

�k

�(ku + v)
E& [&

v+ku�1; y]

=
1X

k=0

�k

�(ku + v)
�(ku + v)yv+ku�1

= yv�1

1X

k=0

�kyku

= yv�1[1 + �yu + �2y2u + �3y3u + �4y4u + · · · ]

= yv�1[1 + (�yu) + (�yu)2 + (�yu)3 + (�yu)4 + · · · ]

=
yv�1

1� �yu .
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Proof:

3. From Equations (1.41) and (1.27), it follows that

SH& [&
v�1Eu,v(�&

u); y] =

Z
&

0

&v�1

1X

k=0

(�&u)k

�(ku + v)
e�

y&
w d&

=
1X

k=0

�k

�(ku + v)

Z
&

0

&v+ku�1e�
y&
w d&

=
1X

k=0

�k

�(ku + v)
SH& [&

v+ku�1; y]

=
1X

k=0

�k

�(ku + v)
�(ku + v)

⇣w
y

⌘
v+ku

=
⇣w
y

⌘
v

1X

k=0

�k
⇣w
y

⌘
ku

=
⇣w
y

⌘
v
h
1 + �

⇣w
y

⌘
u

+ �2
⇣w
y

⌘
2u

+ · · ·
i

=
⇣w
y

⌘
v
h
1 +

⇣
�
⇣w
y

⌘
u
⌘
+
⇣
�
⇣w
y

⌘
u
⌘
2

+ · · ·
i

=

⇣
w

y

⌘
v

1� �
⇣
w

y

⌘
u .

Proof:

4. From Equations (1.40) and (1.27), it follows that

E& [&
v�1Eu,v(�&

u); y] = y

Z
&

0

&v�1

1X

k=0

(�&u)k

�(ku + v)
e�

&
yd&

=
1X

k=0

�k

�(ku + v)
y

Z
&

0

&v+ku�1e�
&
yd&

=
1X

k=0

�k

�(ku + v)
E[&v+ku�1; y]

=
1X

k=0

�k

�(ku + v)
�(ku + v)yv+ku+1

= yv+1

1X

k=0

�kyku

= yv+1[1 + �yu + �2y2u + �3y3u + �4y4u + · · · ]

= yv+1[1 + (�yu) + (�yu)2 + (�yu)3 + (�yu)4 + · · · ]

=
yv+1

1� �yu .
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1.4 Fractional Integrals and Fractional Derivatives

Numerous almost analogous formulations for fractional integrals and derivatives find

application across various functional domains. This segment outlines the three most

commonly employed definitions within the domain of fractional calculus, namely the

Riemann-Liouville, Caputo, and Grun̈wald-Letnikov definitions. Interested readers are

encouraged to refer to this for further details (De Oliveira and Tenreiro Machado, 2014;

Jiang et al., 2018; Valério et al., 2022). The following are some of the notations used

in this section.

1. ⌦ = [a, b] be a finite interval on the real axis R.

2. Dµ
&  (⌫, &) =  (µ)

& (⌫, &) =
@µ (⌫, &)

@&µ
.

Definition 1.3 : (Elbeleze et al., 2014) The real function  (&), & > 0 is said to be in

the space Cµ,µ 2 R if there exists a real number ⌘ > µ, such that  (&) = &⌘ 1(&) where

 1(&) 2 C(0,1). The function  (&) is said to be in the space Cn
µ if  n 2 Rµ for n 2 N.

1.4.1 Riemann-Liouville Fractional Integral

Definition 1.4 : Let µ 2 (0, 1) and  (⌫, &) 2 L1(⌦). The left and right partial

Riemann-Liouville integrals of order µ of  (⌫, &) with respect to & > 0 are defined,

respectively, by the expression

RLIµ
a,& (⌫, &) =

1

�(µ)

Z
&

a

 (⌫, ⇠)(& � ⇠)µ�1d⇠ (1.57)

and

RLIµ
&,b (⌫, &) =

1

�(µ)

Z
b

&

 (⇠, ⌫)(⇠� &)µ�1d⇠, (1.58)

for almost all (⌫, &) 2 ⌦ and �(·) is the well-known Gamma function.
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Proposition 1.5 : (Hamed and Mohamed, 2016) Some of the properties of the oper-

ator RLIµ
a . For  (⌫, &) 2 L1(⌦) and µ, ↵ � 0

1. RLI↵a [RLIµ
a (⌫, &)] =

RLIµ
a [

RLI↵a (⌫, &)].

2. RLI↵a [RLIµ
a (⌫, &)] =

RLI↵+µ
a  (⌫, &).

3. RLIµ
a(⇠� a)� =

�(�+ 1)(⇠� a)µ+�

�(µ+ �+ 1)
, � � �1.

Remark 1.3 : If the function  (&) is continuously di↵erentiable or  (&) is only con-

tinuous for & � 0, then it follows that

lim
µ!0

RLIµ
 (&) =  (&). (1.59)

Example 1.1 : Let  (&) = &↵, & > 0 and ↵ > �1.

From Definition (1.4), and for ⌘ = ⇠/& =) ⇠ = ⌘&, d⇠ = &d⌘. When ⇠ ! 0,⌘ ! 0

and ⇠! &,⌘! 1, it follows that

RLIµ
& &
↵ =

1

�(µ)

Z
&

0

⇠↵ (& � ⇠)µ�1d⇠

=
1

�(µ)

Z
&

0

⇠↵
⇣
&(1� ⇠/&)

⌘µ�1

d⇠

=
1

�(µ)

Z
1

0

⌘↵ (1� ⌘)µ�1 &µ+↵d⌘

=
�(µ,↵+ 1)&µ+↵

�(µ)

=
�(µ)�(↵+ 1)&µ+↵

�(µ)�(µ+ ↵+ 1)

=
�(↵+ 1)&µ+↵

�(µ+ ↵+ 1)
.

Theorem 1.4 : (Guo et al., 2015) Suppose that  (&) is continuous on [0,T] and �(&)

is analytical at & for arbitrary & 2 [0,T]. Then for any µ > 0 and 0 < &  T, there

holds

RLIµ
[ (&)�(&)] =

1X

k=0

Ck

µ[Dk�(&)][Dµ�k (&)]. (1.60)
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1.4.2 Riemann-Liouville Fractional Derivative

Definition 1.5 : (Jiang et al., 2018) Let n�1 < µ  n for n 2 N and  (⌫, &) 2 L1(⌦).

The partial Riemann-Liouville fractional derivative of order µ of a function  (⌫, &) with

respect to & > 0 is defined as follows:

aDµ
& (⌫, &) =

@n

@&n

h
a
RLIn�µ

&  (⌫, &)
i

=
1

�(n� µ)

@n

@&n

Z
&

a

 (⌫, ⇠)(& � ⇠)n�µ�1d⇠,
(1.61)

for almost all (⌫, &) 2 ⌦.

1.4.3 Caputo’s Definitions of Fractional Derivative

Definition 1.6 : (Dehghan et al., 2010) Let n be the smallest integer that exceeds µ.

The Caputo time-fractional derivative operator of order µ : n� 1 < µ  n for n 2 N of

a function  (⌫, &) is defined as follows:

CDµ
& (⌫, &) =

8
>><

>>:

In�µ
&

⇣@n (⌫, &)

@&n

⌘
=

1

�(n� µ)

Z
&

0

@n (⌫, ⇠)

@⇠n
(& � ⇠)n�µ�1d⇠,

@n (⌫, &)

@&n
, µ = n.

(1.62)

Proposition 1.6 : (Singh and Kumar, 2017) The operator CDµ
& satisfies the following

properties. Let & > 0, n� 1 < µ  n for n 2 N, then

1. CDµ
& [

RLIµ
& (⌫, &)] =  (⌫, &).

2. CDµ
& [↵ (⌫, &) + � (⌫, &)] = ↵CDµ

& (⌫, &) + �
CDµ

& (⌫, &), ↵,� 2 N.

3. RLIµ
& [

CDµ
& (⌫, &)] =  (⌫, &)�

n�1X

k=0

&k

k!

@k (⌫, &)

@&k

���
&=0

.
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Remark 1.4 : (Kumar and Kumar, 2014; Bodkhe and Panchal, 2016; Khalouta and

Kadem, 2019; Haroon et al., 2022; Sartanpara et al., 2022) In the following, we present

the integral transform formulations of fractional integrals and derivatives.

Let n = b↵c+ 1 and b↵c represents the integer part of ↵, then

1. Let F(y) be the Laplace transform of  (&), then the Laplace transform associated

with the Riemann-Liouville fractional integral for a function  (&) of order ↵ is

defined as follows:

L& [
RLI↵&  (&); y] = y�↵L& [ (&); y] = y�↵F(y). (1.63)

2. The Shehu transform associated with the Riemann-Liouville fractional integral

for a function  (&) of order ↵ is defined as follows:

SH& [
RLI↵&  (&); y] =

⇣w
y

⌘↵
SH& [ (&); y] =

⇣w
y

⌘↵
U(w, y), (1.64)

where U(w, y) is the Shehu transform of  (&).

3. The Laplace transform associated with the Caputo fractional derivative for a

function  (&) of order ↵ : n� 1 < ↵  n for n 2 N is defined as follows:

L& [
CD↵

&  (&); y] = y↵F(y)�
n�1X

k=0

y↵�k�1 (k)(&)
���
&=0

, (1.65)

where L& [ (&); y] = F(y) is the Laplace transform of  (&).

4. The Elzaki transform associated with the Caputo fractional derivative for a func-

tion  (&) of order ↵ : n� 1 < ↵  n for n 2 N is defined as follows:

E& [
CD↵

&  (&); y] = y�↵V(y)�
n�1X

k=0

y2�↵+k (k)(&)
���
&=0

, (1.66)

where E& [ (&); y] = V(y) is the Elzaki transform of  (&).

5. The Sumudu transform associated with the Caputo fractional derivative for a

function  (&) of order ↵ : n� 1 < ↵  n for n 2 N is defined as follows:

S& [
CD↵

&  (&); y] = y�↵G(y)�
n�1X

k=0

yk�↵ (k)(&)
���
&=0

, (1.67)

where E& [ (&); y] = G(y) is the Elzaki transform of  (&).
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6. The Shehu transform associated with the Riemann-Liouville fractional derivative

for a function  (&) of order ↵ : n� 1 < ↵  n for n 2 N is defined as follows:

SH& [
RLD↵

&  (&); y] =
⇣ y

w

⌘↵
U(w, y)�

n�1X

k=0

⇣ y

w

⌘
k

 (↵�k�1)(&)
���
&=0

, (1.68)

where SH& [ (&); y] = U(w, y) is the Shehu transform of  (&).

7. The Shehu transform associated with the Caputo fractional derivative for a func-

tion  (&) of order ↵ : n� 1 < ↵  n for n 2 N is defined as follows:

SH& [
CD↵

&  (&); y] =
⇣ y

w

⌘↵
U(w, y)�

n�1X

k=0

⇣ y

w

⌘↵�k�1

 (k)(&)
���
&=0

, (1.69)

where SH& [ (&); y] = U(w, y) is the Shehu transform of  (&).

Note: Since the applied problems demand the incorporation of fractional derivatives

with appropriate utilization of initial conditions having established physical

interpretations, particularly within the theory of viscoelasticity, the Caputo

approach emerges as a more suitable methodological framework. This selection

arises from the agreement of Caputo fractional derivatives to the similar initial

conditions of integer ordered di↵erential equations, thereby providing them with

a real physical interpretation inherent to the associated problem.

1.4.4 Atangana-Baleanu Fractional Integral

Definition 1.7 : (Haroon et al., 2022) The Atangana-Baleanu fractional integral op-

erator of order 0 < µ < 1 and a function  (⌫, &) 2 L1(⌦) is presented by

AB

a Iµ
&
 (⌫, &) =

1� µ

P(µ)
 (⌫, &) +

µ

�(µ)P(µ)

Z
&

a

 (⌫, ⇠)(& � ⇠)µ�1d⇠, (1.70)

where P(µ) denotes a normalization function such that P(0) = P(1) = 1.
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1.4.5 Atangana-Baleanu Fractional Derivative

Definition 1.8 : (Atangana and Baleanu, 2016) The fractional order Atangana-Baleanu

(AB) derivative of a function  (⌫, &) 2 L1(⌦) and µ 2 (0, 1) in the Riemann-Liouville

sense is presented as follows:

ABR

a Dµ
&
 (⌫, &) =

P(µ)

1� µ

d

d&

Z
&

a

 (⌫, ⇠)Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠, (1.71)

where Eµ(⇠) represents the one-parameter Mittag-Le✏er function.

Definition 1.9 : (Atangana and Baleanu, 2016) The Atangana-Baleanu fractional

derivative operator in the Caputo sense of order 0 < µ < 1, and  (⌫, &) 2 L1(⌦) is

defined by

ABC

a Dµ
&
 (⌫, &) =

P(µ)

1� µ

Z
&

a

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠. (1.72)

Proposition 1.7 : For  (⌫, &) defined in [a, b], & > 0, n� 1 < µ  n and n 2 N. The

Atangana-Baleanu fractional integral operator AB
a Iµ

& satisfies the following properties

which were verified by (Abdeljawad, 2017).

1. ABC

a Dµ
&
 (⌫, &) = 0, if  (⌫, &) is a constant function.

2. ABR

a Dµ
&
[AB

a Iµ
&
 (⌫, &)] =  (⌫, &).

3. AB

a Iµ
&
[ABC

a Dµ
&
 (⌫, &)] =  (⌫, &)�

nX

k=0

(& � a)k

k!

@k (⌫, a)

@&k
.

4. AB

a Iµ
&
[ABR

a Dµ
&
 (⌫, &)] =  (⌫, &)�

n�1X

k=0

(& � a)k

k!

@k (⌫, a)

@&k
.

Remark 1.5 : (Atangana and Baleanu, 2016; Haroon et al., 2022) The relation be-

tween the noninteger constant order Atangana-Baleanu in the Caputo sense and Riemann-

Liouville sense, respectively, with Laplace, Elzaki, Sumudu, and Shehu transform can

be expressed as follows:
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1. The Laplace transform operator connected with the Atangana-Baleanu-Caputo

sense with respect to & > 0 is defined as follows:

L& [
ABCDµ

& (⌫, &); y] =
yµP(µ)

n
L& [ (⌫, &); y]�  (⌫,0)

y

o

yµ(1� µ) + µ
. (1.73)

Proof:

Let us observe that in the Definition (1.9), we have a convolution integral, it follows

that
Z

&

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠ =  0(⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
,

then from Equation (1.34) and Proposition (1.2), one can has

L& [
ABCDµ

& (⌫, &); y] = L&

hP(µ)

1� µ

Z
&

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
L&

h Z &

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
L&

h
 0(⌫, &) ⇤ Eµ

h µ&µ

µ� 1

ii

=
P(µ)

1� µ
L&

h
 0(⌫, &); y

i
L&

h
Eµ

h µ&µ

µ� 1

i
; y
i
.

Using Equation (1.65) and applying Lemma (1.2), this implies that

L& [
ABCDµ

& (⌫, &); y] =
P(µ)

1� µ
{yL& [ (⌫, &); y]� (⌫, 0)}

yµ�1

yµ + µ
1�µ

=
P(µ)

1� µ
{yµL& [ (⌫, &); y]� yµ�1 (⌫, 0)} 1

yµ(1�µ)+µ
1�µ

=
P(µ)

(1� µ)

(1� µ)

yµ(1� µ) + µ
{yµL& [ (⌫, &); y]� yµ�1 (⌫, 0)}

=
P(µ)

yµ(1� µ) + µ
{yµL& [ (⌫, &); y]� yµ�1 (⌫, 0)}

=
yµP(µ)

n
L& [ (⌫, &); y]�  (⌫,0)

y

o

yµ(1� µ) + µ
.

2. The Laplace transform operator connected with the Atangana-Baleanu-Riemann-

Liouville sense with respect to & > 0 is defined as follows:

L& [
ABRDµ

& (⌫, &); y] =
yµP(µ)L& [ (⌫, &); y]

yµ(1� µ) + µ
. (1.74)

Proof:

From Definition (1.8) we have a convolution integral and using Equation (1.34) and

Proposition (1.2), it follows that
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L& [
ABRDµ

& (⌫, &); y] = L&

hP(µ)

1� µ

d

d&

Z
&

0

 (⌫, ⇠)Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
L&

h d

d&

⇣
 (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i⌘i

=
P(µ)

1� µ

h
yL&

✓
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

◆
� L&

⇣
( (⌫, 0) ⇤ Eµ[0]); y

⌘i

=
yP(µ)

1� µ
L&

⇣
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

⌘

=
yP(µ)

(1� µ)

yµ�1(1� µ)

yµ(1� µ) + µ
L& [ (⌫, &); y]

=
yµP(µ)L& [ (⌫, &); y]

yµ(1� µ) + µ
.

3. The Elzaki transform of the Atangana-Baleanu-Caputo fractional derivative of a

function  (&) of order µ : n� 1 < µ  n for n 2 N is defined as follows:

E& [
ABCDµ

& (⌫, &); y] =
P(µ){E& [ (⌫, &); y]� y2 (⌫, 0)}

µyµ + 1� µ
. (1.75)

Proof:

From Definition (1.9) we have a convolution integral, using Equation (1.40) and Propo-

sition (1.3), it follows that

E& [
ABCDµ

& (⌫, &); y] = E&

hP(µ)

1� µ

Z
&

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
E&

h Z &

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
E&

h
 0(⌫, &) ⇤ Eµ

h µ&µ

µ� 1

ii

=
P(µ)

1� µ

1

y
E& [ 

0(⌫, &); y]E&

h
Eµ

h µ&µ

µ� 1

i
; y
i
.

Using Equation (1.66) and applying Lemma (1.2), this implies that

E& [
ABCDµ

& (⌫, &); y] =
P(µ)

(1� µ)

1

y
{y�1E& [ (⌫, &); y]� y (⌫, 0)} y2

1 + µ
1�µy

µ

=
P(µ)

1� µ
{E& [ (⌫, &); y]� y2 (⌫, 0)} 1

(1�µ)+µyµ

1�µ

=
P(µ)

(1� µ)

(1� µ)

(1� µ) + µyµ
{E& [ (⌫, &); y]� y2 (⌫, 0)}

=
P(µ){E& [ (⌫, &); y]� y2 (⌫, 0)}

µyµ + 1� µ
.
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4. The Elzaki transform of the Atangana-Baleanu-Riemann-Liouville fractional deriva-

tive of a function  (&) of order µ : n� 1 < µ  n for n 2 N is defined as follows:

E& [
ABRDµ

& (⌫, &); y] =
P(µ)E& [ (⌫, &); y]

µyµ + 1� µ
. (1.76)

Proof:

From Definition (1.8) we have a convolution integral and using Equation (1.40) and

Proposition (1.3), it follows that

E& [
ABRDµ

& (⌫, &); y] = E&

hP(µ)

1� µ

d

d&

Z
&

0

 (⌫, ⇠)Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
E&

h d

d&

⇣
 (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i⌘
; y
i

=
P(µ)

1� µ

h
y�1E&

⇣
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

⌘
� yE&(( (⌫, 0) ⇤ Eµ[0]); y)

i

=
y�1P(µ)

1� µ
E&

⇣
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

⌘

=
y�1y�1P(µ)

(1� µ)
E& [( (⌫, &); y]E&

h
Eµ

h µ&µ

µ� 1

i
; y
i

=
y�2P(µ)

(1� µ)

y2(1� µ)

µyµ + 1� µ
E& [ (⌫, &); y]

=
P(µ)E& [ (⌫, &); y]

µyµ + 1� µ
.

5. The Sumudu transform of the Atangana-Baleanu-Caputo fractional derivative of

a function  (&) of order µ : n� 1 < µ  n for n 2 N is defined as follows:

S& [
ABCDµ

& (⌫, &); y] =
P(µ){S& [ (⌫, &); y]� (⌫, 0)}

µyµ + 1� µ
. (1.77)

Proof:

From Definition (1.9) we have a convolution integral, using Equation (1.38) and Propo-

sition (1.4), it follows that

S& [
ABCDµ

& (⌫, &); y] = S&

hP(µ)

1� µ

Z
&

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
S&

h Z &

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
S&

h
 0(⌫, &) ⇤ Eµ

h µ&µ

µ� 1

ii

=
yP(µ)

1� µ
S&

h
 0(⌫, &); y

i
S&

h
Eµ

h µ&µ

µ� 1

i
; y
i
.
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Using Equation (1.67) and applying Lemma (1.2), this implies that

S& [
ABCDµ

& (⌫, &); y] =
P(µ)

1� µ
y{y�1S& [ (⌫, &); y]� y�1 (⌫, 0)} 1

1 + µ
1�µy

µ

=
P(µ)

1� µ
{S& [ (⌫, &); y]� (⌫, 0)}

1
1�µ+µyµ

1�µ

=
P(µ)

(1� µ)

(1� µ)

(1� µ) + µyµ
{S& [ (⌫, &); y]� (⌫, 0)}

=
P(µ){S& [ (⌫, &); y]� (⌫, 0)}

µyµ + 1� µ
.

6. The Sumudu transform of the Atangana-Baleanu-Riemann-Liouville fractional

derivative of a function  (&) of order µ : n � 1 < µ  n for n 2 N is defined as

follows:

S& [
ABRDµ

& (⌫, &); y] =
P(µ)S& [ (⌫, &); y]

µyµ + 1� µ
. (1.78)

Proof:

From Definition (1.8) we have a convolution integral, using Equation (1.38) and Propo-

sition (1.4), this implies that

S& [
ABRDµ

& (⌫, &); y] = S&

hP(µ)

1� µ

d

d&

Z
&

0

 (⌫, ⇠)Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
S&

h d

d&

⇣
 (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i⌘
; y
i

=
P(µ)

1� µ

h
y�1S&

⇣
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

⌘
� y�1S&(( (⌫, 0) ⇤ Eµ[0]); y)

i

=
y�1P(µ)

1� µ
S&

⇣
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

⌘

=
yy�1P(µ)

1� µ
S& [( (⌫, &); y]S&

h
Eµ

h µ&µ

µ� 1

i
); y

i

=
P(µ)

(1� µ)

(1� µ)

µyµ + 1� µ
S& [ (⌫, &); y]

=
P(µ)S& [ (⌫, &); y]

µyµ + 1� µ
.

7. The Shehu transform of the Atangana-Baleanu-Caputo fractional derivative of a

function  (&) of order µ : n� 1 < µ  n for n 2 N is defined as follows:

SH& [
ABCDµ

& (⌫, &); y] =
P(µ){SH& [ (⌫, &); y]�

⇣
w

y

⌘
 (⌫, 0)}

µ
⇣
w

y

⌘µ
+ 1� µ

. (1.79)
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Proof:

From Definition (1.9) we have a convolution integral and using Equation (1.41) and

Proposition (1.4), this implies that

SH& [
ABCDµ

& (⌫, &); y] = SH&

hP(µ)

1� µ

Z
&

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
SH&

h Z &

0

@ (⌫, ⇠)

@⇠
Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
SH&

h
 0(⌫, &) ⇤ Eµ

h µ&µ

µ� 1

ii

=
P(µ)

1� µ
SH&

h
 0(⌫, &); y

i
SH&

h
Eµ

h µ&µ

µ� 1

i
; y
i
.

Using Equation (1.69) and applying Lemma (1.2), this implies that

SH& [
ABCDµ

& (⌫, &); y] =
P(µ)

1� µ

n y

w
SH& [ (⌫, &); y]� (⌫, 0)

o
⇣
w

y

⌘

1 + µ
1�µ

⇣
w

y

⌘µ

=
P(µ)

1� µ

n
SH& [ (⌫, &); y]�

y

w
 (⌫, 0)

o 1

(1�µ)+µ

⇣
w
y

⌘µ

1�µ

=
P(µ)

(1� µ)

(1� µ)

(1� µ) + µ(wy )
µ

n
SH& [ (⌫, &); y]�

⇣w
y

⌘
 (⌫, 0)

o

=
P(µ){SH& [ (⌫, &); y]�

⇣
w

y

⌘
 (⌫, 0)}

µ
⇣
w

y

⌘µ
+ 1� µ

.

8. The Shehu transform of the Atangana-Baleanu-Riemann-Liouville fractional deriva-

tive of a function  (&) of order µ : n� 1 < µ  n for n 2 N is defined as follows:

SH& [
ABRDµ

& (⌫, &); y] =
P(µ)SH& [ (⌫, &); y]

µ
⇣
w

y

⌘µ
+ 1� µ

. (1.80)

Proof:

From Definition (1.8) we have a convolution integral, using Equation (1.41) and Propo-

sition (1.4), this implies that

SH& [
ABRDµ

& (⌫, &); y] = SH&

hP(µ)

1� µ

d

d&

Z
&

0

 (⌫, ⇠)Eµ

hµ(& � ⇠)µ
µ� 1

i
d⇠
i

=
P(µ)

1� µ
SH&

h d

d&

⇣
 (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i⌘
; y
i
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=
P(µ)

1� µ

h y
w

SH&

✓
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

◆
� y

w
SH&

⇣
( (⌫, 0) ⇤ Eµ[0]); y

⌘i

=
y
w
P(µ)

1� µ
SH&

⇣
( (⌫, &) ⇤ Eµ

h µ&µ

µ� 1

i
); y

⌘

=
y
w
P(µ)

1� µ
SH& [( (⌫, &); y]SH&

h
Eµ

h µ&µ

µ� 1

i
); y

i

=
P(µ)

(1� µ)

y
w

w

y (1� µ)

µ
⇣
w

y

⌘µ
+ 1� µ

SH& [ (⌫, &); y]

=
P(µ)SH& [ (⌫, &); y]

µ
⇣
w

y

⌘µ
+ 1� µ

.

Lemma 1.3 : The relation between the Atangana-Baleanu-Caputo and Atangana-

Baleanu-Riemann-Liouville operators of a function  (⌫, &), & > 0 and of the fractional

order µ is given as follows:

ABC

a Dµ
&
 (⌫, &) = ABR

a Dµ
&
 (⌫, &)� P(µ)

1� µ
 (⌫, a)Eµ

⇣µ(& � a)µ

µ� 1

⌘
. (1.81)

Proof:

This can be shown by using Equation (1.73), it follows that

L& [
ABCDµ

& (⌫, &); y] =
yµP(µ)

n
L& [ (⌫, &); y]�  (⌫,0)

y

o

yµ(1� µ) + µ

=
yµP(µ){L& [ (⌫, &); y]}

yµ(1� µ) + µ
�

yµP(µ) (⌫,0)y

yµ(1� µ) + µ

= L& [
ABRDµ

& (⌫, &); y]�
yµP(µ) (⌫,0)y

yµ(1� µ) + µ
.

Using the inverse Laplace on both sides of the above equation we obtain the result

ABC

a Dµ
&
 (⌫, &) = ABR

a Dµ
&
 (⌫, &)� L�1

&

h yµP(µ) (⌫,0)y

yµ(1� µ) + µ

i

= ABR

a Dµ
&
 (⌫, &)� P(µ)

1� µ
 (⌫, a)Eµ

⇣µ(& � a)µ

µ� 1

⌘
,

which completed the proof.
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Theorem 1.5 : Assume that a continuous function  (⌫, &) is defined on a closed

interval ⌦. Therefore, the Atangana-Baleanu fractional derivative is bounded, and the

following inequality is derived over the domain ⌦

kABR

a Dµ
&
 (⌫, &)k  Kk (⌫, ⇠)k, (1.82)

where k (⌫, ⇠)k = maxa&b | (⌫, &)|.

Proof:

This can be easily proven by the Definition (1.8), it follows that

kABR

a Dµ
&
 (⌫, &)k = kP(µ)

1� µ

d

d&

Z
&

a

 (⌫, ⇠)Eµ

hµ (& � ⇠)µ

µ� 1

i
d⇠k

 P(µ)

1� µ
k d

d&

Z
&

a

 (⌫, ⇠)d⇠k

=
P(µ)

1� µ
k (⌫, ⇠)k

= Kk (⌫, ⇠)k,

where P(µ)/(1�µ) = K, which completed the proof. Similarly, under the same condi-

tions, one can demonstrate that the ABC
a Dµ

&
 (⌫, &), remains bounded.

Remark 1.6 : Several di↵erences between Riemann-Liouville and Caputo fractional

derivatives can be observed.

1. The Riemann-Liouville fractional derivatives of a constant C is

aDµ
& (C) =

C(& � a)µ

�(1� µ)
(1.83)

2. The interchange of integer and fractional order derivatives is allowed under dif-

ferent conditions.

2.1 In the case of the Riemann-Liouville fractional derivative, for k = 0, 1, 2, · · ·

and n� 1 < µ < n for n 2 N we have

RLDk

& [
RLDµ

& (&)] =
RLDµ+k

&  (&), (1.84)

which is allowed under the condition

 (p)(0) = 0, p = n, n + 1, n + 2, · · · , k (1.85)
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2.2 Whereas in the case of the Caputo fractional derivative, for k = 0, 1, 2, · · ·

and n� 1 < µ < n for n 2 N we have

CDµ
& [

CDk

& (&)] =
CDµ+k

&  (&), (1.86)

which is allowed under the condition

 (p)(0) = 0, p = 0, 1, 2, · · · , k (1.87)

Table 1.2: Some notable di↵erences between fractional derivatives

C RL ABC ABR
Singular Kernel X X
Nonsingular Kernel X X
Dµ

& (K) = 0, K is a constant X X
Dµ

& (K) 6= 0, K is a constant X X

1.4.6 Some Applications of Fractional Di↵erential Equations

In this section, we explore some of the significant fractional models and applications

across various scientific domains and engineering fields that exist in current mathemat-

ical physics research. Applications range from physics, where they describe anomalous

di↵usion to biology, where they model population dynamics and neuronal activity.

Definition 1.10 : A fractional di↵erential equation is an equation that contains frac-

tional derivatives of one or more independent variables. It can be classified as linear

or nonlinear:

1. Fractional ordinary di↵erential equation, where the unknown function depends

only on one variable.

2. Fractional partial di↵erential equation, where the unknown function depends on

several variables.
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The space-time fractional partial di↵usion equation of the following form

CD↵
&  (⌫, &) =

RLD�
⌫ (⌫, &), 0 < &  T

 (⌫, 0) = �(⌫), 0  ⌫  L

 (0, &) =  (L, &) = 0,

(1.88)

where L,T 2 R, CD↵
&  (⌫, &) is the Caputo fractional derivative of order 0 < ↵  1

defined by

@↵ (⌫, &)

@&↵
=

8
>><

>>:

1

�(1� ↵)

Z
&

0

@ (⌫,⌘)

@⌘
(& � ⌘)�↵d⌘, 0 < ↵ < 1

@ (⌫, &)

@&
, ↵ = 1,

(1.89)

and RLD�
⌫ (⌫, &) is the Riemann-Liouville fractional derivative of order 1 < �  2 de-

fined by

@� (⌫, &)

@⌫�
=

8
>><

>>:

1

�(2� �)
@2

@⌫2

Z
⌫

0

 (⇠, &)(⌫ � ⇠)1��d⇠, 1 < � < 2

@2 (⌫, &)

@⌫2
, � = 2.

(1.90)

When ↵ = 1 and � = 2 this equation (1.88) is the classical di↵usion equation

@ (⌫, &)

@&
=

@2 (⌫, &)

@⌫2
. (1.91)

Let us begin by providing a straightforward review of certain partial di↵erential equa-

tions. Numerous nonlinear partial di↵erential equations (NPDEs) exist within the do-

main of physics, notable among them being the Korteweg-de Vries (KdV) and Camassa-

Holm (CH) equations. Investigating traveling wave solutions is particularly significant

in the context of nonlinear partial di↵erential equations, and these equations have been

determined to exhibit various traveling wave solutions, yielding them of significant in-

terest in the field (Nuseir, 2012; Camacho et al., 2017). Furthermore, (Clarkson et al.,

1997) conducted an investigation into a category of third-order dispersive nonlinear

equations represented in the following form

 &(⌫, &)� ↵ ⌫⌫&(⌫, &) + 2 ⌫(⌫, &) + � (⌫, &) ⌫(⌫, &)

= � (⌫, &) ⌫⌫⌫(⌫, &) +! ⌫(⌫, &) ⌫⌫(⌫, &),
(1.92)

where ↵, , �, � and ! are arbitrary parameters. It is very important to note

that the above equation contains interesting di↵erent nonlinear equations such as the
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Korteweg-de Vries equation, Degasperis-Procesi equation, Camassa-Holm equation,

and Fornberg-Whitham equation. Therefore, by setting the coe�cients for the non-

linear terms  ⌫(⌫, &),  (⌫, &) ⌫(⌫, &),  (⌫, &) ⌫⌫⌫(⌫, &),  ⌫(⌫, &) ⌫⌫(⌫, &) and  ⌫⌫&(⌫, &)

in Equation (1.92), we can obtain many di↵erent models formulations of nonlinear phe-

nomena, which appear in the field of science and engineering. In the following, we

present some special equations by considering specific values of these coe�cients. For

⌫ 2 R and & > 0, we observe

1. When � = 6, � = �1 and ↵ =  = ! = 0 in Equation (1.92), then we obtain

the well-known Korteweg-de Vries equation, which is a mathematical model of

waves on shallow water surfaces that has smooth solitary wave solutions as given

by (Lenells, 2004)

 &(⌫, &) + 6 (⌫, &) ⌫(⌫, &) + (⌫, &) ⌫⌫⌫(⌫, &) = 0. (1.93)

2. When ↵ = � = 1,  = 0, � = 4 and ! = 3 in Equation (1.92), then we obtain the

Degasperis-Procesi equation, which is a mathematical model of nonlinear shallow

water dynamics and has a variety of traveling wave solutions including solitary

wave solutions as given by (Chen, 2015)

 &(⌫, &)� ⌫⌫&(⌫, &) + 4 (⌫, &) ⌫(⌫, &)

=  (⌫, &) ⌫⌫⌫(⌫, &) + 3 ⌫(⌫, &) ⌫⌫(⌫, &).
(1.94)

3. When ↵ = ! = 1, � = 3, � = 2 in Equation (1.92) and  2 R is a parameter

related to the critical shallow water speed. Then we obtain the Camassa-Holm

equation as given by (Lenells, 2004)

 &(⌫, &)� ⌫⌫&(⌫, &) + 2 ⌫(⌫, &) + 3 (⌫, &) ⌫(⌫, &)

= 2 (⌫, &) ⌫⌫⌫(⌫, &) + ⌫(⌫, &) ⌫⌫(⌫, &),
(1.95)

which is a model equation that describes the unidirectional propagation of shallow

water waves over a flat bottom.

4. When ↵ = � = � = 1,  = 1

2
and ! = 3 in Equation (1.92), then we obtain the

classical Fornberg-Whitham equation as given by (Whitham, 1967)

 &(⌫, &)� ⌫⌫&(⌫, &) + ⌫(⌫, &) + (⌫, &) ⌫(⌫, &)

=  (⌫, &) ⌫⌫⌫(⌫, &) + 3 ⌫(⌫, &) ⌫⌫(⌫, &),
(1.96)
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where  (⌫, &) is the fluid velocity, & is the time and ⌫ is the spatial coordinate.

The fractional derivative is even more significant in modeling real-life situations; for

example, the time-fractional partial nonlinear Fornberg-Whitham equation is a math-

ematical physics model that describes the evolution of nonlinear dispersive waves in

fluid dynamics and the behavior of waves in plasma. Fornberg and Whitham obtained

a peaked solution of the form  (⌫, &) = Kexp(�1

2
|⌫� 4

3
&|), where K is an arbitrary con-

stant. Among these models, we also mention that there is a wave-breaking model for the

Fornberg-Whitham equation namely the Cauchy problem for the Fornberg-Whitham

equation, which can be obtained, when ↵ = 1,  = �1

2
, � = � = 3

2
and ! = 3� in

Equation (1.92), then it follows that

 &(⌫, &)� ⌫⌫&(⌫, &) +
3

2
 (⌫, &) ⌫(⌫, &)� ⌫(⌫, &)

=
3

2
 (⌫, &) ⌫⌫⌫(⌫, &) +

9

2
 ⌫(⌫, &) ⌫⌫(⌫, &).

(1.97)

The generalized Fornberg-Whitham equation is given by (Camacho et al., 2017)

 &(⌫, &)� ⌫⌫&(⌫, &) + ↵ 
n(⌫, &) ⌫(⌫, &) + � ⌫(⌫, &)

=   ⌫⌫⌫(⌫, &) + 3 ⌫(⌫, &) ⌫⌫(⌫, &),
(1.98)

where �, ↵ and n are arbitrary parameters. If n = 2 then we obtain the modified

Fornberg-Whitham equation, which was proposed by (He et al., 2010). This can

be observed by modifying the nonlinear term  (⌫, &) ⌫(⌫, &) in Equation (1.96) to

 2(⌫, &) ⌫(⌫, &) as follows:

 &(⌫, &)� ⌫⌫&(⌫, &) + ⌫(⌫, &) + 
2 ⌫(⌫, &)

=  (⌫, &) ⌫⌫⌫(⌫, &) + 3 ⌫(⌫, &) ⌫⌫(⌫, &).
(1.99)

In addition to those already mentioned, (Wazwaz, 2006) studied the modified Camassa-

Holm equation of the form

 &(⌫, &)� ⌫⌫&(⌫, &) + 3 2(⌫, &) ⌫(⌫, &)

= 2 ⌫(⌫, &) ⌫⌫(⌫, &) + (⌫, &) ⌫⌫⌫(⌫, &),
(1.100)

and the modified Degasperis-Procesi equation of the form

 &(⌫, &)� ⌫⌫&(⌫, &) + 4 2(⌫, &) ⌫(⌫, &)

= 3 ⌫(⌫, &) ⌫⌫(⌫, &) + (⌫, &) ⌫⌫⌫(⌫, &).
(1.101)
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1.5 Statement of the Problem

In the existing literature, many studies have indicated that fractional order models

are more appropriate than the classical order models for providing applicable mathe-

matical models and deriving approximate solutions, due to their accurate description

of such nonlinear phenomena in various fields. Despite the significant progress made

in fractional calculus and its application to diverse di↵erential equations, many of the

existing techniques for solving fractional partial di↵erential equations lack e�ciency,

especially when applied to complex real-world systems with the absence of analytical

solutions. While progress has been made, there remains a critical need for more robust

semianalytical methods that can e↵ectively solve such challenges, particularly in deal-

ing with nonlinear models incorporating variable coe�cients. Moreover, the classical

numerical approaches often struggle with issues of convergence, stability, and computa-

tional cost, particularly when applied to noninteger order systems such as those mod-

eled by incorporating variable coe�cients with the Caputo fractional derivative or the

Atangana-Baleanu-Caputo fractional derivative, which have not yet been thoroughly

studied. The demand for more robust semianalytical methods that not only improve

accuracy but also reduce computational overhead is evident. The current gap in litera-

ture lies in developing such methods, which can address these challenges while ensuring

the theoretical rigor of existence and uniqueness of solutions. Thus, this research aims

to explore approaches for solving fractional partial di↵erential equations using innova-

tive semianalytical methods, particularly focusing on the Caputo fractional derivative

and the Atangana-Baleanu-Caputo fractional derivative. The goal is to improve the

convergence of the approximate series solutions by identifying optimal intervals for the

variable coe�cients and demonstrating the consistency of the findings through di↵erent

semianalytical methods on various test problems. This work also aims to provide prac-

tical tools for engineers and scientists working on mathematical models across various

scientific fields, advancing both the theoretical understanding and practical application

of fractional calculus.

39



© C
OPYRIG

HT U
PM

1.6 Motivations of the Study

The motivation behind the selection of this research question arises from the funda-

mental assumption that fractional derivatives represent a broader range of physical

phenomena compared to their integer order counterparts, thus o↵ering a more accurate

depiction or representation of the nonlinear behavior pervasive and common in diverse

scientific and engineering fields. The significance of fractional derivatives in modeling

real-life situations is pronounced across various scientific fields, o↵ering deep insights

into the behavior of complex systems. For example, the Fornberg-Whitham equation,

a mathematical physics model, explains the evolution of nonlinear dispersive waves in

fluid dynamics and the behavior of waves in plasma. This model’s ability to incorpo-

rate fractional derivatives allows for capturing the complexities of wave propagation

more accurately, enabling the simulation of a wider range of real-world scenarios and

making more precise predictions about wave behavior under di↵erent conditions. In

the context of wave propagation models, the incorporation of variable coe�cients is

critical to accommodate the spatial and temporal variations inherent in the medium

through which the wave propagates. These variations can occur in various physical

properties of the medium, such as density, elasticity, conductivity, and others, depend-

ing on the type of wave and the characteristics of the medium. The modified model

with variable coe�cients becomes a more accurate representation of real-world wave

phenomena, thereby enhancing the investigation of fluid dynamics, plasma physics,

and related fields. Moreover, including variable coe�cients a↵ords researchers and en-

gineers the flexibility to adjust the wave propagation models to specific environments

and study the e↵ects of these variations. Further, the choice of fractional derivative

definitions depends on the specific situation and the properties one aims to capture,

allowing for a suitable selection to apply to the problem at hand. The cost of solving

large linear or nonlinear systems can vary depending on factors such as the system’s

complexity and the solution method used. The di↵erent fractional definitions provided

the opportunity to choose an appropriate one for the problem, further facilitating the

accurate modeling of complex wave propagation phenomena.
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1.7 Objectives of the Study

The objectives of this study are to:

1. derive approximate solutions for the classical Fornberg-Whitham equation to

incorporate the Caputo fractional derivative with variable coe�cients using the

VIM, ADM, and HAM.

2. derive approximate solutions for the classical Fornberg-Whitham equation to

incorporate the Atangana-Baleanu-Caputo fractional derivative with variable co-

e�cients using the LVIM, LADM, and LHAM.

3. derive approximate solutions for the two-dimensional Helmholtz equation to in-

corporate the Caputo fractional derivative using the VIM.

1.8 Contributions of the Study

In our research, we engage in a multifaceted approach to generate and validate results.

We begin by exploring and proving theorems related to this type of fractional partial

di↵erential equations, as well as solving complex problems relevant to our investigation.

This active involvement in computation and proof emphasizes the depth of our research

endeavor. Subsequently, to ensure the accuracy and reliability of our findings, we

verified our results using Matlab, a powerful computational tool. By employing Matlab

in this manner, we enhance the stringency and integrity of our research, leveraging its

capabilities to confirm the validity of our theoretical and computational outcomes. The

contributions of this thesis can be outlined as follows:

1. Establishment of su�cient conditions ensuring the existence of a singular solution

to the fractional partial di↵erential equations with variable coe�cients, which

have been expounded in Chapter 3.
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2. Clarification of the considerations given to the convergence of these methods

within the fractional partial di↵erential equations with variable coe�cients is

detailed in Chapter 3.

3. Utilization of the previous condition (1) to estimate the maximum absolute trun-

cated error of the series solution within numerical methods, expounded upon in

Chapter 3.

4. Derivation of the approximate series solutions formulas relevant to the proposed

methods for the problems is elaborated in Chapters 4, 5, and 6.

5. Presentation of several numerical examples illustrating the consistency of the

obtained results through the proposed methods have been presented in Chapters

4, 5, and 6.

1.9 Outline of the Thesis

This thesis is devoted to achieving a semianalytical approximate solution of one

dimensional time-dependent partial di↵erential equations, with the considerations of

two types of fractional derivatives, in the following outlines:

Chapter 1 o↵ers an overview of the historical development of fractional calculus,

and preliminary definitions and discusses specific properties. It revisits funda-

mental fractional concepts, integral transformations, outcomes derived from frac-

tional calculus, and special functions of fractional di↵erential equations. Special

attention is given to the Mittag-Le✏er function, Riemann-Liouville definition,

and Caputo definition, recognizing their essential and pivotal roles in the the-

oretical framework of fractional di↵erential equations. Moreover, this chapter

presents the research objectives integral to this study, which will be elaborated

upon in subsequent chapters.
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Chapter 2 reviews the previous studies and provides a comprehensive review

of the recent numerical methods for solving fractional partial di↵erential equa-

tions with exact solutions. The presented methods aim to expand the scope of

analytical or numerical solutions available for time-fractional partial di↵erential

equations and improve the accuracy and e�ciency of the methods employed.

Chapter 3 deals with analyzing the convergence of variational iteration, Ado-

mian decomposition, and homotopy analysis methods, along with their modi-

fied counterparts, as applied to nonlinear fractional partial di↵erential equations.

Specifically, the focus is on the fractional Fornberg-Whitham equation with vari-

able coe�cients. The chapter establishes su�cient conditions for convergence,

provides error estimates to validate and quantify the accuracy of the obtained

solutions, and outlines conditions for convergence based on the Banach’s fixed

point theorem. The utilization of a theorem, previously employed in other stud-

ies, serves as a su�cient condition for examining the convergence of the proposed

methods across a broad scope of fractional order partial di↵erential equations.

Consequently, this theorem is extended within the context of this work.

Chapter 4 focuses on establishing a comprehensive analysis of the approximate

solutions generated through the variational iteration, Adomian decomposition,

and homotopy analysis methods. The primary objective is to utilize these three

numerical techniques in approximating solutions for a one-dimensional time-

dependent partial di↵erential equation of fractional order characterized by vari-

able coe�cients. The di↵erential equation under consideration is derived from

the classical nonlinear Fornberg-Whitham equation by substituting the integer

order derivative with the Caputo derivative of order µ 2 (0, 1]. This study

considers homogeneous boundary conditions to establish an approximate series

solution within the bounded space variable ⌫. To justify the e�cacy of the pro-

posed methods, two test problems are subjected to computational analysis. A

comprehensive comparison between the results derived from the variational iter-

ation method, Adomian decomposition method, and homotopy analysis method

is presented through tables and graphs. The numerical findings illustrate the

e↵ectiveness of these numerical methods.
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Chapter 5 is dedicated to establishing an analysis of the Laplace variational iter-

ation method solutions, the Laplace Adomian decomposition method solutions,

and the Laplace homotopy analysis method solutions. This chapter provides

analytical and numerical solutions for partial di↵erential equations involving

time-fractional derivatives in the Atangana-Baleanu-Caputo sense. We imple-

mented three powerful techniques to obtain an approximate solution for the

bounded space variable ⌫. The Laplace transformation is used in the time-

fractional derivative operator to enhance the performance and accuracy of the

proposed numerical methods and find an approximate solution to fractional non-

linear Fornberg-Whitham equations. To confirm the accuracy of the proposed

methods, we evaluate homogeneous fractional Fornberg-Whitham equations in

terms of noninteger order and variable coe�cients. The results obtained from

the modified methods are shown through tables and graphs.

Chapter 6 introduces an e�cient approach called the variational iteration method

for solving linear and nonlinear di↵erential equations of fractional order. This

method represents a significant advancement in the field of fractional calculus.

To demonstrate its e↵ectiveness, we present two applications of the fractional

variational iteration procedure to the linear Helmholtz equation. These appli-

cations showcase the simplicity and e�ciency of the method in deriving ana-

lytical approximate solutions for fractional equations described by the Caputo

derivative operator. Furthermore, the chapter explores the convergence analysis

of the fractional variational iteration method using Banach’s fixed point theo-

rem. This analysis plays a crucial role in estimating the maximum absolute error

values of the truncated approximate series solution. Additionally, we conduct

a comparative study between the approximate solutions obtained through the

fractional variational iteration method and the exact solution, presenting the re-

sults through graphical and tabular representations. This comparative analysis

highlights the accuracy and reliability of the proposed method.

Chapter 7 concludes the thesis with a summary of some significant results and

provides recommendations for further work.
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