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Chair : Muhammad Alif bin Mohammad Latif, PhD 
Faculty : Science  
 

Metal-organic frameworks (MOFs), intricate structures composed of organic linkers and 
metal nodes, exhibit remarkable versatility with applications ranging from gas adsorption 
and separation to drug and energy storage, water absorption, and catalysis. Despite their 
broad utility, a comprehensive understanding of the factors influencing adsorption within 
MOFs is essential for optimizing their potential as adsorbents. This study systematically 
categorizes and investigates various factors through computer simulations, shedding 
light on their nuanced effects.  
 

The first focus centers on the functionalization of IRMOF-74-III with amine groups, a 
critical aspect of enhancing drug adsorption. The exploration delves into the impact of 
different numbers and positions of amine functional groups on the MOF's behavior, 
utilizing density functional theory (DFT) and molecular docking. As the number of 
amine group increases, the MOF's pore polar surface area expands, but a reduction in the 
energy gap between the HOMO and LUMO orbitals is observed. Electrostatic potential 
contours reveal distinct pockets on the amine-functionalized IRMOF-74-III's pore wall, 
which fenbufen@MOF showing the most stable drug@MOF complex. The study 
emphasizes the crucial role of unsaturated magnesium sites in frameworks and specific 
functional groups on drugs for interactions and charge transfer. The second exploration 
addresses MOFs' ability to selectively adsorb isomers, as exemplified by MIL-53(Al) 
MOF's adsorption of xylene isomers. The introduction of non-polar functional groups on 
the organic linker was proposed for enhanced adsorption. Computational analysis of 
different configurations of dimethyl-functionalized phenyl rings reveals meta-dimethyl-
MIL-53(Al) (MDM) as an optimal structure for xylene adsorption, demonstrating 
superior adsorptive separation of ortho- over meta- and para-xylene. The third study 
introduces an innovative alternative to MOF functionalization by directly replacing the 
organic linker with a structurally similar compound, preserving the framework topology. 
Using computer simulations, the impact of replacing the organic linker in HKUST-1 
MOF with borazine is analyzed. Borazine-based HKUST-1(Cu) (hB-HKUST-1(Cu)) 
exhibits a significant improvement in CO2 adsorption compared to the conventional 
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MOF, with the adsorption primarily governed by framework-gas interactions between 
CO2 and the boron atom in borazine. Lastly, scalability which is a crucial factor for large-
scale applications is addressed through the evaluation of CALF-20 (Zn) MOF. While its 
ability to adsorb CO2 is already established, its performance with other gases remains 
uncertain. GCMC and MD simulations reveal CALF-20 (Zn) as a potential MOF for 
selectively adsorbing polar and non-polar toxic gases, emphasizing its applicability in 
diverse scenarios. 
 

In conclusion, this comprehensive study utilizes atomic-level details obtained through 
computer simulations to elucidate several underexplored factors in MOF adsorption. The 
insights gained from optimizing drug adsorption in IRMOF-74-III to enhancing 
selectivity for xylene isomers in MIL-53(Al) and improving CO2 adsorption in HKUST-
1, will contribute significantly towards advancing the design and application of MOFs 
in gas adsorption for various industrial scenarios. 
 

Keywords: Adsorption; Metal-Organic Framework; Molecular Simulations 
 

SDG: GOAL 3: Good Health and Well-Being; GOAL 4: Quality Education 
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MOSTAFA YOUSEFZADEH BORZEHANDANI 
 

Disember 2023 
 

Pengerusi : Muhammad Alif bin Mohammad Latif, PhD 
Fakulti : Sains 
 

Rangka kerja logam-organik (MOF) iaitu struktur rumit yang terdiri daripada 
penghubung organik dan nod logam, mempamerkan kepelbagaian yang luar biasa 
dengan aplikasi daripada penjerapan dan pengasingan gas kepada penyimpanan ubat dan 
tenaga, penyerapan air dan pemangkinan. Walaupun kegunaannya yang luas, 
pemahaman menyeluruh tentang faktor-faktor yang mempengaruhi penjerapan dalam 
MOF adalah penting untuk mengoptimumkan potensi mereka sebagai penjerap. Kajian 
ini secara sistematik mengkategorikan dan menyiasat pelbagai faktor melalui simulasi 
komputer, menjelaskan kesannya yang terselindung. 
 

Kajian awal tertumpu pada pefungsian IRMOF-74-III dengan kumpulan amina, suatu 
aspek kritikal dalam meningkatkan penjerapan ubatan. Penerokaan ini melihat kepada 
kesan nombor dan kedudukan yang berbeza kumpulan berfungsi amina terhadap perilaku 
MOF, menggunakan teori fungsian ketumpatan (DFT) dan pendokkan molekul. Apabila 
bilangan kumpulan amina bertambah, kawasan permukaan berkutub pori MOF 
mengembang, tetapi didapati terdapat pengurangan dalam jurang tenaga antara orbital 
HOMO dan LUMO. Kontur keupayaan elektrostatik mendedahkan beberapa poket yang 
berbeza pada dinding pori IRMOF-74-III yang telah difungsi dengan amina, yang mana 
fenbufen@MOF menunjukkan kompleks ubat@MOF yang paling stabil. Kajian ini 
menekankan peranan penting tapak tak tepu magnesium dalam rangka kerja dan 
kumpulan berfungsi spesifik terhadap ubat bagi tujuan interaksi dan pemindahan caj. 
Penerokaan kedua menangani keupayaan MOF untuk menjerap isomer secara selektif, 
seperti yang ditunjukkan oleh penjerapan isomer xilena MIL-53(Al) MOF. Pengenalan 
kumpulan berfungsi tak berkutub pada penghubung organik dicadangkan untuk 
mempertingkatkan penjerapan. Analisis pengkomputeran bagi konfigurasi berbeza 
cincin fenil terfungsi-dimetil mendedahkan meta-dimetil-MIL-53(Al) (MDM) sebagai 
struktur optimum bagi penjerapan xilena, yang menunjukkan pemisahan penjerapan 
unggul bagi orto- yang melampaui meta- dan para-xilena. Kajian ketiga 
memperkenalkan alternatif inovatif kepada kefungsian MOF dengan menggantikan 
secara terus penghubung organik dengan sebatian yang serupa dari segi struktur, yang 
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memelihara topologi rangka kerja. Menggunakan simulasi berkomputer, kesan terhadap 
penggantian penghubung organik dalam MOF HKUST-1 dengan borazina telah 
dianalisis. HKUST-1(Cu) yang berasaskan borazine (hB-HKUST-1(Cu)) mempamerkan 
peningkatan ketara dalam penjerapan CO2 berbanding MOF konvensional, dengan 
penjerapan terutamanya dikawal oleh interaksi rangka kerja-gas, iaitu antara CO2 dan 
atom boron dalam borazina. Akhir sekali, kebolehskalaan yang merupakan faktor 
penting untuk pengaplikasian berskala besar dijawab melalui penilaian MOF CALF-20 
(Zn). Walaupun keupayaannya untuk menyerap CO2 telah pun nyata, prestasinya dengan 
gas lain masih tidak ditentukan. Simulasi GCMC dan MD mendedahkan CALF-20 (Zn) 
sebagai MOF yang berpotensi untuk menjerap gas toksik berkutub dan tak berkutub 
secara selektif, menonjolkan lagi kebolehannya untuk digunakan dalam pelbagai senario. 
 

Kesimpulannya, kajian komprehensif ini menggunakan butiran di peringkat atom yang 
diperoleh melalui simulasi berkomputer untuk menjelaskan beberapa faktor yang kurang 
diterokai dalam penjerapan MOF. Pengetahuan yang diperoleh daripada 
mengoptimumkan penjerapan ubat dalam IRMOF-74-III kepada meningkatkan 
selektiviti untuk isomer xilena dalam MIL-53(Al) dan menambah baik penjerapan CO2 
dalam HKUST-1, akan sangat menyumbang kepada kemajuan reka bentuk dan aplikasi 
MOF dalam penjerapan gas untuk pelbagai senario industri.  
 

Kata kunci: Jerapan; Rangka kerja Logam-Organik; Simulasi Molekul 
 

SDG: MATLAMAT 3: Kesihatan Baik dan Kesejahteraan; MATLAMAT 4: Pendidikan 
Berkualiti 
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 Metal-Organic Frameworks (MOFs) 
 

Porous materials such as activated carbon, zeolites, silica gel, covalent-organic 
frameworks (COFs), and metal-organic frameworks (MOFs) have a structure that 
contains interconnected voids or pores, which can be of various sizes and shapes (Bennett 
et al. 2021). These types of materials can absorb and hold liquids, gases, or even other 
solid particles within their pores. Nanoporous materials are a specific class of materials 
that possess a network of pores or voids on a nanometer scale (typically with pore sizes 
less than 100 nanometers) (Thommes et al. 2021).   
 

MOFs are crystalline solid materials and they are made up of inorganic nodes and organic 
linkers (James 2003). MOFs are given as one- (1D), two- (2D) and three- (3D) 
dimensional porous networks. MOF materials emerged in the late 1980s and they became 
a major field of research for many potential applications at the end of the 1990s (Cook 
et al. 2012). A great degree of unique features such as large surface area, tunable pore 
size, high thermal and chemical stability, recyclability and diversity of structures have 
been distinguished for MOFs (Cook et al. 2012). These advantages have offered a wide 
range of industrial processes including gas storage and separation, energy storage, 
wastewater treatment, catalysis and drug storage (Silva et al. 2015). Some MOFs are 
shown to be high-potential adsorbents compared to the conventional materials (Khan et 
al. 2013). As an example of conventional materials, carbon nanotubes (CNTs) which are 
frequently used for drug adsorption, are still encountered with controlling the pore size 
(Song et al. 2017). Moreover, activated carbon is an inexpensive, non-toxic material and 
it can be obtained from natural carbon resources (Miriyala et al. 2017). Activated carbon 
materials have large surface area and great adsorption ability through non-covalent 
interactions with gas molecules, however, these interactions cannot provide high 
selectivity for gas adsorption. Also, large pores and open gates in mesoporous silica 
M41S materials have made the possibility for receiving large-size guest molecules 
(Linares et al. 2014). However, the use of mesoporous silica M41S materials has become 
restricted due to a lack of high catalytic activity and hydrothermal stability. In another 
example, zeolites are taken advantage of long-term chemical and biological stability, but 
the capability of zeolites has been limited because of their small pore size and poor 
structural diversity (Reeve et al. 2018).   
 

1.2 Adsorption Mechanisms in MOFs 
 

MOFs constitute a versatile class of porous materials with diverse pore sizes, including 
mesoporous, microporous, and ultra-microporous structures. The stability and 
applications of MOFs are intricately linked to their unique porous architectures. In the 
case of mesoporous MOFs, characterized by pore sizes ranging from 2 to 50 nm, their 
structural stability often stems from the judicious choice of metal nodes and organic 
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linkers (D. Liu et al. 2018). These materials exhibit enhanced stability compared to 
traditional porous materials, facilitating applications such as gas storage, catalysis, and 
drug delivery. The mesoporous nature allows for the accommodation of larger guest 
molecules, contributing to their utility in diverse fields. Moving to microporous MOFs, 
which possess pore sizes typically below 2 nm, their stability is often attributed to the 
precise control of the framework's topology (Lin et al. 2020a). The smaller pore 
dimensions create a confinement effect, influencing the adsorption and diffusion 
properties of guest molecules. This structural control enhances stability and leads to 
applications in gas separation, sensing, and selective catalysis. Microporous MOFs have 
shown promise in efficiently capturing specific gases, a critical aspect in environmental 
and industrial contexts. Ultra-microporous MOFs, with pore sizes below 1 nm, represent 
a frontier in the design of porous materials (Adil et al. 2017). Achieving stability at such 
diminutive scales requires advanced synthetic strategies and a deep understanding of 
intermolecular interactions. These ultra-microporous MOFs exhibit exceptional stability 
under various conditions, paving the way for applications in sieving small molecules and 
separation processes at the molecular level. Their potential applications span fields such 
as molecular recognition, chiral separation, and membrane technology. 
 

The adsorption in MOFs can be categorized into several types based on the size of the 
adsorbates and the nature of the interactions between the MOF and the adsorbate 
molecules. Some common types of adsorptions in MOFs include the adsorption of small 
gas molecules, drug molecules, and liquids (Gonzalez-Hernandez et al. 2021). MOFs can 
be designed to selectively adsorb small molecules, such as carbon dioxide, methane, or 
volatile organic compounds (VOCs), which are relevant to environmental and gas 
storage applications. The advantages of using MOFs for drug adsorption and delivery 
include enhanced drug stability, prolonged release kinetics, and the ability to target 
specific tissues or cells (Wu and Yang 2017). The porous nature of MOFs allows for 
high drug-loading capacities, which can reduce the frequency of drug administration. 
Furthermore, the tunability of MOFs allows researchers to design materials with tailored 
drug release profiles. Applications of liquid adsorption in MOFs are mainly included 
water, alcohols, and organic solvents (Li et al. 2017). However, it's important to note that 
not all MOFs are suitable for liquid adsorption, as some may be unstable in the presence 
of certain liquids or exhibit limited adsorption capacities (De Toni et al. 2012). The 
selection of the appropriate MOF for a specific liquid adsorption application requires 
careful consideration of the MOF's properties and the characteristics of the target liquid.  
 

There are two main mechanisms that have been observed for MOF adsorption, which are 
via physisorption and chemisorption. Physisorption, also known as physical adsorption 
or van der Waals adsorption, occurs when weak forces such as London dispersion forces 
or dipole-dipole interactions between the adsorbate molecules and the MOF surface led 
to adsorption (Ramanayaka et al. 2019). Physisorption is usually reversible, and the 
adsorbate can be released easily by reducing the pressure or increasing the temperature. 
In terms of cyclability, physisorption is generally characterized by its ease of desorption, 
making it a reversible process. The weak nature of the interactions allows the adsorbed 
molecules to be released from the material surface under mild conditions, facilitating 
multiple cycles of adsorption and desorption without significant deterioration of the 
material. The bond formation results in more stable adsorption, but it also tends to make 
the process less reversible. Chemisorption is typically associated with a higher energy 
barrier for desorption, leading to decreased cyclability compared to physisorption. 
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Chemisorption, or chemical adsorption, involves stronger chemical bonds between the 
adsorbate molecules and the MOF surface (Ramanayaka et al. 2019). This results in a 
more stable and irreversible adsorption process. Chemisorption can occur through 
processes like covalent bonding, coordination bonding, or metal-ligand interactions, 
depending on the specific MOF structure and the nature of the adsorbate. 
 

1.2.1 Factors that affect adsorptions in MOFs  
 

Adsorptions in MOFs are governed by different factors such as surface area, pore 
volume, interpenetration, size and shape of pore gate, chemical compositions, 
functionalization, topology, coordinatively unsaturated sites (CUSs), and flexibility. In 
addition, some properties of adsorbates including molecular size and shape, polarity, and 
molecular weight are influential towards the adsorption performance in MOFs.  
 

The effect of CUSs and surface area was highlighted in a combined experimental and 
computational study. A cancer drug imatinib (Imt) was found to have better adsorption 
in MIL-101(Cr) compared to MIL-100(Fe) (MIL stands for Materials of Institute 
Lavoisier) (Qi et al. 2016). The binding energy for Imt@MIL-101(Cr) and Imt@MIL-
100(Fe) complex systems was obtained as -9.90 and -9.17 kcal.mol-1, respectively. The 
presence of unsaturated Cr(III) and Fe(III) in the frameworks led to strong interactions 
with Imt. The surface area of MIL-101(Cr) is larger (3311.88 m2.g-1) than MIL-100(Fe) 
(1225.53 m2.g-1) which contribute to better adsorption. MOF’s surface area and stability 
can be enhanced when the frameworks are interpenetrated. Interpenetration in MOFs, 
same as other materials, occurs naturally when two or more networks are nested within 
each other's pore spaces. Many researches have reported that interpenetration in MOFs 
can enhance the rate of adsorption of small gas molecules by giving an optimal pore size 
and stronger interactions (Elsaidi et al. 2014) (Lin et al. 2020b). 
 

The size and shapes of the MOFs’ wall surface as well as the pore gate have been shown 
to determine the adsorptive performance. It was found that the V-shaped clefts in the 
MOF [Zn(BDC)(H2O)2]n were selective towards drug molecules (Rodrigues et al. 2012). 
Ibuprofen and methylene blue fit entirely inside the clefts and made strong interactions 
with the coordinated zinc (Zn) metal in addition to weak π-π interactions with phenyl 
rings in the frameworks. However, gentamicin and amoxicilin did not fit into the V-
shaped clefts due to their larger molecular size. Some MOFs are made up of different 
types and sizes of pore windows. For example, MIL-101 have triangular (6 Å), 
pentagonal (12 Å), and hexagonal (15 Å) pores in its framework. Yang and colleagues 
found that MIL-101 pore windows had selective adsorption toward xylene isomers, 
favoring the para-xylene isomer (K. Yang et al. 2011).  
 

MOFs exhibit remarkable diversity when it comes to their topological features. These 
arise from the combination of metal nodes and organic linkers, resulting in a vast array 
of frameworks with varying pore sizes, shapes, and connectivity. Tuning the pore 
topological features allows for positioning optimal adsorption sites within the 
framework. Having the appropriate topology enables the MOF to be an energy-efficient 
adsorbent (Anderson et al. 2018). An energy-efficient adsorbent refers to a material that 
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possesses characteristics enabling it to effectively capture and release guest molecules 
with minimal energy input. The topology of MOFs can be tailored to have specific pore 
sizes and geometries. This tunability allows for selective adsorption of molecules based 
on their size and shape. Selectivity minimizes the energy spent capturing unwanted 
molecules and enhances the efficiency of the adsorption process. The knowledge that the 
topology of MOFs can be tailored to have specific pore sizes and geometries, leading to 
tunability and selective adsorption of molecules, is well-established in the field of porous 
materials and has been extensively studied and documented in the scientific literature. 
For example, a hexagonal tube-shaped MOF, [Zn(μ4-L)]n (Zn-MOF), having a rare 
topology of ptr experienced selective adsorption of para-xylene over its ortho- and 
meta- counterparts at higher pressure (Huang et al. 2015). In another study, 38 
polymorphic MOFs were extensively applied for the adsorption of linear and branched 
C4-C6 alkane isomers (Bobbitt, Rosen, and Snurr 2020). It was discovered that MOFs 
having small pore and nbo topology had a high affinity for linear alkanes, while the 
frameworks were deprived to uptake of the branched alkanes.   
 

There are isostructural MOFs that have similar chemical structures but different chemical 
compositions. To improve certain functionality of MOFs, the conventional carbon-based 
organic linkers can be replaced with nitrogen (N)-, oxygen (O)- and sulfur (S)-rich 
organic linkers. Although the presence of the heteroatoms such as N, O, and S in organic 
linkers can cause deviation from the straight and rigid shape of the linker, the overall 
desired crystal structure of the MOF can still be obtained (Hu et al. 2018a) (Hu et al. 
2018b). N-rich MOFs are well-known as energetic MOFs (E-MOF) and they have high 
heat denotation, high density, impact-insensitive, and good thermostability (Q. Liu et al. 
2016). O-rich MOFs are exceptionally stable in aqueous solutions, highly sensitive to 
metal ions, and excellent chromophores to absorb light energy (L. Liu et al. 2018). S-
rich MOFs have the advantage of high conductivity (Wu et al. 2020) and electrochemical 
performance (M.-T. Li et al. 2018). Altogether, the presence of N-, O- and S-rich organic 
linkers resulted in promoting the interaction sites and subsequently greater adsorption.    
 

MOF crystal lattices can be functionalized with chemical groups for the purpose of 
boosting their performance for adsorption and separation. Based on the target framework 
and chemical groups, functional groups can be incorporated on organic linkers, grafted 
on CUSs, or coated on the MOF’s crystal surfaces. The use of amide-functionalized 
MOFs for gas storage and separation was reviewed by Bai et al. (Xue, Wang, and Bai 
2019). It was stated that owing to the intrinsic nature of amide functional groups such as 
flexibility and polarizability, a wide variety of topologies for amide-functionalized 
MOFs were reported which were promising for gas adsorption and separation. 
 

There have been reported that some influential factors could contribute towards higher 
CH4 adsorption in MOFs such as electrostatics, van der Waals forces, and MOF 
flexibility (Petit 2018). A unique feature of MOFs is the potential flexibility of the 
framework which is governed by temperature, pressure, oxidation number of metals and 
length of organic linkers. Nevertheless, the flexibility of MOFs is not noticeable in the 
solvent because solvent molecules fill the pores (Van de Voorde et al. 2014). MIL-53 is 
the common type of MOF that has demonstrated efficient flexibility on gas adsorption, 
while its isostructure MIL-47 has an almost rigid pore. In 2011, Clet et al. detected the 
reason for less flexibility in MIL-47(V) by using the activation method in order to yield 
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MIL-47(VIV) and MIL-47(VIII) (Leclerc et al. 2011). They declared that MIL-47(VIII) 
had μ2-hydroxyl groups (as the analogous structure MIL-53) which provided a higher 
flexible framework compared to MIL-47(VIV). In the presence of H2O and CO2, the 
hydroxyl group became the most favorable adsorption site for the adsorbates.  
 

1.3 Computer Modeling of MOFs 
 

Computer modeling is one of the most fascinating techniques in chemistry that combines 
theoretical aspects with the use of high-performance computers and software packages 
(Almeida et al. 2017). The possibility of atomistic observation in detail such as 
interactions and charge density distributions of molecules can be provided by computer 
modeling that is not simply available via experimental equipment. Molecular modeling 
and simulations can provide a cost-effective and efficient way to gain a deeper 
understanding of MOF functionalization. This eliminates the need for every potential 
functionalized MOF to be successfully synthesized. They can complement experimental 
efforts and guide the design of novel functionalized MOFs with improved performance 
in various practical applications. Researchers can perform high-throughput screening to 
identify promising candidates for further experimental testing. Furthermore, molecular 
simulations aid in determining the most suitable locations for functional groups within 
the MOF structure. By studying various configurations, researchers can identify the 
positions that lead to the highest adsorption capacities or specific binding sites for target 
molecules. Computer modeling and simulations involving MOF structures are mainly 
divided into two groups; i) quantum mechanics (QM) to characterize the MOF crystal 
structures and ii) molecular mechanics (MM) to find appropriate MOF structure for a 
desired application (Kotzabasaki et al. 2018). MM-based methods commonly consist of 
docking, grand canonical monte carlo (GCMC) and molecular dynamics (MD) 
simulations. Computer modeling strategies also have been shown capable and valuable 
in designing new MOFs (hypothetical MOF) structures for very specific targeted 
properties (Demir et al. 2023). 
 

1.3.1 Density Functional Theory (DFT) 
 

DFT calculations are widely used to study the electronic structure, properties, and 
behaviour of MOFs. DFT is a quantum mechanical approach that models the electronic 
properties of a system based on the electron density distribution rather than solving the 
Schrödinger equation directly for each electron. It provides a powerful and efficient 
method for understanding the behavior of MOFs at the atomic and electronic levels. 
Experimental validation and comparison with other theoretical methods are carried out 
to ensure the accuracy and reliability of the DFT methods and algorithms. DFT 
calculation for MOFs usually consists of geometry optimization, determining the basis 
set and pseudopotentials, building unit cells and supercells, as well as electronic structure 
analysis. For example, DFT calculations were used to analyze the adsorption mechanism 
of H2S, SO2 and SF6 on MOF-505 analogue (Li et al. 2021). Based on the analyzing 
adsorption energy and binding distance, density of states (DOS), charge transfer, charge 
densities and electron localization function, selectivity relationship of organic ligands 
and metal sites was SO2 ≥ H2S > SF6. The adsorptions of SO2 and H2S were occurred via 
chemical adsorption, thus the MOF-505 analogue can be better adsorbent for fault 
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recovery of SF6 circuit breaker. In another study, DFT optimization elucidated changes 
in electronic properties of MOF-5 after its doped variants (M@MOF-5, M = Co, Fe, Ni 
and Mn) (Panda et al. 2022). The results suggested that unoccupied d orbitals on the 
dopants caused reducing of the band gap and the ligand to metal charge transfer (LMCT) 
in M@MOF-5. The existence of more empty d orbitals along with easy LMCT gave rise 
to the narrowest band gap in Fe@MOF-5 as it nominated for a promising visible-light-
driven photocatalyst.  
 

1.3.2 Grand Canonical Monte Carlo (GCMC) 
 

GCMC simulations are a powerful computational technique that can be used to study the 
adsorption and desorption of molecules in porous materials like MOFs. The simulations 
are carried out in the grand canonical ensemble, where the number of adsorbate 
molecules, the volume of the system, and temperature are allowed to fluctuate, while the 
chemical potential is fixed. The simulations aim to calculate various properties, such as 
adsorption isotherms, adsorption heats, and diffusion coefficients, providing valuable 
insights into the MOF's gas adsorption behavior and performance. GCMC simulations 
for MOFs involve modeling the adsorption process of adsorbate molecules into the MOF 
structure at a given temperature, pressure, and chemical potential. As an example, the 
adsorption capacity of HKUST-1 and MIL-101 for CH4 and CO2 gases was explored by 
GCMC simulation were found to be consistent with the experimental data within 5-10% 
error ranges (Teo, Chakraborty, and Kayal 2017). As a result, two distinct types of 
adsorption sites were identified: van der Waals potential pore sites with dispersive 
interactions and CUSs with Coulomb attraction. By analyzing experimental and 
hypothetical heat of adsorption (Qst) data, it was determined that HKUST-1 was very 
micro-porous and possessed high Coulomb attractions towards adsorptive molecules. 
The unique structural features of HKUST's micropores contribute to increased surface 
area and adsorption interactions and, consequently, higher heats of adsorption. In another 
literature, GCMC was utilized for study of adsorption and separation behaviors of pure 
CO2 and mixture CO2/N2 in three MOFs; MOF-5, MOF-74 and ZIF-8 (Tao, Zhang, and 
Xu 2022). The authors observed that MOF-5 had the highest saturation adsorption 
capacity for pure CO2 (35 mmol.g-1) at room temperature, whereas MOF-74 showed the 
highest CO2 uptake (11 mmol.g-1) under 10 bar. Also, the selectivity of CO2 over N2 in 
MOF-74 was found to be the highest, approximately 38, because of the strongest binding 
force with CO2.       
 

1.3.3 Molecular Dynamics (MD) 
 

MD simulations are another widely used computational technique for studying the 
behaviour of molecules in MOFs. MD simulations allow for the dynamic evolution of 
the MOF system over time, providing valuable insights into its structural stability, 
thermal properties, and molecular interactions. In MD simulations for MOFs, the MOF 
structure and adsorbate molecules are treated as a collection of atoms whose positions 
and velocities are propagated forward in time according to the laws of classical 
mechanics. The interactions between the atoms are described by a force field, which 
includes bonded and non-bonded interactions such as covalent bonds, van der Waals 
forces, and electrostatic interactions. MD simulations well employed for study of 
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dynamics behavior of MOF frameworks during adsorption process. For instance, 
rotational and the translation mobility of xylene isomers adsorbed in MOF-5 was 
explored by nuclear magnetic resonance (NMR) spectroscopy and MD simulations 
(Witherspoon et al. 2017). The experiments showed that for the para-, meta-, ortho-, 
xylene isomers, the translational motion activation energies were 15.3, 19.7, and 21.2 
kj.mol-1 and the rotational motion activation energies were 47.26, 12.88, and 11.55 
kj.mol-1, respectively. So, para-xylene indicated faster transitional motion than other 
isomers. The results obtained from MD simulations confirmed that para-xylene had the 
lower free energy barrier for hopping away from its binding sites. The presence of inter-
crystalline space is demonstrated to have significant influence on the adsorption, 
structure, and dynamics of the adsorbed fluid, although most molecular simulation 
studies rely on perfect single-crystal models of MOF materials (Gautam and Cole 2020). 
In a recent study assisted by MD simulation, Dhiman and colleagues found the 
relationship between single-crystalline space and adsorption sites in Mg-MOF-74 
(Dhiman et al. 2023). They found that wider inter-crystalline spacing, anomalous loading 
was depended on the translational diffusivity of CO2. Also, inter-crystalline spacing 
suppresses the rotational motion of CO2.   
    

1.4 Problem Statement and Hypothesis  
 

Although many factors have been identified to influence the adsorption in MOFs, several 
are still not thoroughly studied. The functionalization of organic linkers has been studied 
extensively in the past years. This is because the functionalization of MOF’s organic 
linker can significantly promote adsorption (Razavi and Morsali 2019a). However, there 
are still many gaps in the understanding of the effect of varying the functionalization 
sites or the number of groups. For example, although amine functionalization on organic 
linkers has been extensively studied, the effect of increasing the number of amine groups 
on drug adsorption has not been elucidated. The works on a single amine group (Xu and 
Yan 2016a) and two groups (para) functionalization (Leo et al. 2019a) on phenyl ring 
have never been compared before. Functionalizing with diamine (-2NH2) groups on 
organic linkers allows for ortho, meta and para isomerism. These sets of amine-
functionalized linkers may generate different electronic and dynamic conditions on the 
MOF’s pore wall, assuming the overall framework topology is unaffected. There is still 
no evidence that a three- or four-group amine-substituted phenyl ring can be effectively 
synthesized. This limits the ability to investigate the effect of the number and position of 
amine-functionalized linkers in a physical laboratory. A good alternative is to use 
computer simulations to model the theoretical amine-functionalized MOFs and study 
their physical and electronic properties which can serve as a blueprint for further 
synthetic studies. 
 

Xylene, with the chemical formula of C8H10, consists of three major isomers namely 
ortho-xylene (ox), meta-xylene (mx), and para-xylene (px). The separation of xylene 
isomers is quite challenging owing to their overlapping physicochemical properties (G. 
Zhang et al. 2021a). The adsorptive separation of xylene isomers is crucial in various 
processes and industries for optimizing industrial processes, ensuring product quality, 
and addressing environmental concerns. However, the adsorptive separation of xylenes 
using porous material has been shown to be highly effective (Y. Yang, Bai, and Guo 
2017a). MOFs with “breathing” behavior such as MIL-53 derivatives have been reported 
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to possess preferential selectivity for xylene isomers (Finsy et al. 2009a). Nevertheless, 
the effect of non-polar functional groups with different positions on phenyl ring organic 
linkers on the selective adsorption of xylene isomers could be further investigated. 
Although there is a broad number of classical simulation studies on the adsorption and 
separation of xylene isomers, the adsorption of similar structural isomers over MOFs 
sites is still a challenge since conventional general-purpose force fields based on 
Lennard–Jones, and electrostatics do not accurately describe them (Fischer, Gomes, and 
Jorge 2014a). On the other hand, QM approaches can produce accurate adsorption 
energies and favorable geometries which are in good agreement with experimental 
reports (Piccini et al. 2015a) (Fellah 2014a). 
 

Although many organic linkers can be functionalized, there are still some limitations. 
First, certain functional groups can be chemically influenced by solvothermal conditions 
(high temperature and pressure) which led to producing unwanted crystal structures 
(Tanabe and Cohen 2011). Also, functionalization methods are sometimes unable to 
equally distribute a mixture of functional groups on MOF structures (H. Deng et al. 
2010). Moreover, depending on functional groups, they could potentially interact with 
CUS (McDonald et al. 2012). Therefore, it is best to avoid the functionalization of 
organic linkers for MOFs that contain a high concentration of CUSs such as HKUST-
1(Cu) MOF. A potential alternative is the direct replacement of organic linkers with ones 
containing heteroatoms. Borazine is a compound that has similar structural geometry as 
benzene (Bettinger, Kar, and Sánchez-García 2009). Since phenyl ring is commonly used 
as part of organic linkers, the structural features of borazine make it a compelling 
replacement. Employing borazine as the organic linker fragment in place of phenyl may 
reduce problems associated with functionalization and generate higher polarity on 
MOF’s surfaces (Fasano et al. 2021). HKUST-1(Cu) has suitable frameworks to be 
constructed based on borazine as it is rationally designed with tritopic organic linkers 
and this allows borazine rings to connect to three sides with boron atoms. Using 
computational methods, this new hypothetical MOF can be modelled and tested. The gas 
adsorption ability of the hypothetical, borazine-based HKUST-1(Cu) MOF can be 
compared with the original using DFT and GCMC methods. 
 

One of the prominent problems encountered when considering MOFs as adsorbents is 
the fact that they cannot be produced in large quantities and the synthesis is usually 
costly. A proper method for the synthesis of scalable MOF is required to carefully select 
suitable solvents, reactants, and pieces of equipment. The revised autocorrelations 
(RACs) analysis using the machine learning (ML) method has recently been updated and 
there are more than 90,000 synthesized and 500,000 predicted MOF structures (Moosavi 
et al. 2020). However, among this large number of existing MOFs, only some types of 
MOFs could be practically employed in pilot-scale production (Ren et al. 2017a). 
Recently, Shimizu et al. have synthesized a highly scalable zinc-based MOF, CALF-
20(Zn) (Calgary Framework 20) (Lin et al. 2021). More than 35% of dried solid CALF-
20 was extracted per total amount of solvents used, plus an extraordinary space-time 
yield (STY) for the precipitation step of 550 kg/m3 per day. Although CALF-20 can be 
considered a promising scalable MOF for CO2 adsorption, its capability for the 
adsorption of other toxic gases has not yet been established. Adsorption of these gases is 
important in terms of the environmental and health aspects since are among these are the 
most toxic gases with a high level of immediately dangerous to life or health (IDLH) 
status (Barea, Montoro, and Navarro 2014) (Korica et al. 2022). Moreover, a study on 
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the adsorption of such polar and non-polar gases in CALF-20(Zn) would give us a point 
of view about the chemical environment of the pore surface. Screening the ability of 
CALF-20(Zn) for the adsorption of polar and non-polar toxic gases will provide an 
important understanding of the potential of the MOF to be employed in a vast number of 
applications. This can be achieved using computational methods such as GCMC and MD 
simulations. Important properties such as adsorption isotherm, loading capacity and 
interaction energies of polar and non-polar gases can be compared. 
 

1.5 Objectives 
 

The main goal of this project is to utilize computational methods to tackle several issues 
related to adsorption in MOFs. Adsorption is the key theme for the four different 
objectives below. The objectives attempt to make clear the impact of some factors on 
MOF’s adsorption. These factors are related and they play an important role on MOF’s 
adsorption. Based on the following objectives, the first and the second items are the 
effects of polar and non-polar functional groups on MOF’s adsorption, respectively. The 
third objective is the impact of directly employed heteroatom-substituted organic linkers 
and the last aim is the effect of the polarity of gas molecules on MOF’s adsorption. 
Therefore, the following objectives will be pursued; 
 

1. To determine the effect of different amine-functionalized IRMOF-74-III(Mg) 
MOFs towards drug adsorption using density functional theory (DFT) 
calculations and molecular docking simulations 

2. To determine the ability of dimethyl-functionalized-MIL53(Al) MOFs for the 
separation of xylene isomers using DFT calculations 

3. To elucidate the influence of organic linker substitution on the adsorption 
capacity of HKUST-1(Cu) for greenhouse gases using grand canonical Monte 
Carlo (GCMC) simulations 

4. To evaluate the performance of scalable, CALF-20(Zn) MOF in the adsorption 
of polar and non-polar gases using GCMC and MD simulations. 

 

The theme of the objectives is adsorption. For each objective, the type of MOF was 
assigned based on the unique feature of the MOF: i) IRMOF-74-III (Mg) contains 
unsaturated metal sites, and its organic linkers are able to be easily functionalized; ii) 
MIL-53 (Al) has a breathing effect and has high chemical stability for industry purposes; 
iii) HKUST-1 (Cu) has a tritopic linker that is suitable for borazine substituting; and iv) 
CALF-20 (Zn) is scalable and highly stable for gas adsorption purposes. 
 

The scope of work for this research project is designed to address four main objectives, 
all centered around the pivotal theme of adsorption in MOFs. The first objective focuses 
on investigating the impact of different amine-functionalized IRMOF-74-III(Mg) MOFs 
on non-steroidal anti-inflammatory drugs (NSAIDs), employing a combination of DFT 
calculations and molecular docking simulations. These drug compounds are frequently 
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used by numerous researchers, as they are cheap and abundantly available in laboratories. 
Due to the hydrophobic properties of NSAIDs, they are poorly water-soluble, which can 
result in erratic absorption and low bioavailability. Hence, encapsulating NSAID drug 
molecules within porous solid materials such as MOFs is highly recommended to 
improve drug adsorption and delivery. The second objective aims to assess the ability of 
dimethyl-functionalized-MIL53(Al) MOFs for the separation adsorption of xylene 
isomers, utilizing DFT calculations. The primary aims try to explain the ability of polar 
(amine group) and non-polar (methylene group) functionalized MOFs for the adsorption 
of drug molecules and xylene isomers, respectively. The third objective delves into 
elucidating the influence of organic linker substitution on the adsorption capacity of 
HKUST-1(Cu) for greenhouse gases, employing GCMC simulations. This objective 
emphasizes enhancing CO2 adsorption into MOFs by preparing borazine-based organic 
linkers. Lastly, the fourth objective aims to evaluate the performance of scalable CALF-
20(Zn) MOF in the adsorption of both polar and non-polar gases, utilizing a combination 
of GCMC and MD simulations. In this objective, the polarity of gas molecules is taken 
into account as a crucial factor that influences MOF adsorption. By systematically 
addressing these objectives, this research endeavours to contribute valuable insights into 
the multifaceted aspects of MOFs adsorption, shedding light on the effects of various 
factors such as functional groups, organic linker substitution, and gas polarity on MOF 
adsorption behavior. The chosen computational methods, including DFT, docking, 
GCMC, and MD simulations, are tailored to provide a comprehensive understanding of 
these phenomena, paving the way for advancements in the application of MOFs in 
adsorption mechanism. 
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