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This research aims to develop a parametric cure model for lifetime data in the pres-
ence of right and interval- censored data with fixed predictors. The research begins
by extending the existing Mixture Cure Model (MCM), utilizing Generalized Mod-
ified Weibull (GMW) and Exponentiated Weibull Exponential (EWE) distributions
to accommodate both right- and interval-censored data with fixed covariates.

Bounded Cumulative Hazard (BCH) and the Geometric Non-Mixture Cure
(GeNMC) models, are also explored, offering alternative approaches in cure mod-
elling methodologies. These models are developed based on GMW and EWE distri-
butions, are extended in the presence of right and interval censored data with fixed
covariate.

Maximum likelihood estimation (MLE) method is employed to estimate model pa-
rameters. Simulation studies are carried out to assess the performance of the MLE
estimates. The MLE performance is evaluated using bias, standard error (SE), and
root mean square error (RMSE) metrics across varying sample sizes and censoring
proportions. The width of the interval (len) for the interval-censored data (observa-
tional gap times) is also being considered (len=0.5). The results of the simulation
studies reveal increased bias, SE, and RMSE of the estimates with higher censor-
ing proportions and decreased sample sizes. Moreover, the MLE demonstrates effi-
ciency, evidenced by declining RMSE values with increasing sample sizes across all
censoring proportions.
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To further support the findings of the simulation studies, four real-life datasets are
utilized, sourced from cancer and smoking studies. The first dataset comprises of
right-censored observations from a bladder cancer study. The second dataset is
an interval-censored data taken from a smoking cessation study. This dataset in-
cludes smoking relapse times that were collected annually over a 5-year follow-up
period from participants living in 51 zip code areas in the South Eastern region of
Minnesota, USA. The third dataset includes right-censored data from a study on
leukemia, focusing on treatment as the covariate. The fourth dataset is a right-
censored data related to melanoma cancer, considering sex, treatment, and age as
covariates.

Comparing the MCM, BCH, and GeNMC models based on GMW, EWE, Fréchet,
and Gompertz distributions using bladder data, the results indicate that the MCM,
BCH, and GeNMC models based on the EWE distribution performed better than
the other competing models in this study. While the GMW distribution with the
three cure models provides a slightly better fit than the EWE distribution, consider-
ing smoking cessation data. For leukemia data, both GMW and EWE distributions
emerge as best choices for modeling the survival times of susceptible patients. For
the melanoma data, while all models show similar outcomes, the MCM model with
the EWE distribution exhibits the best fit.

Keywords: Parametric cure model, Right-and interval-censored data, Maximum
likelihood estimation method, Mixture cure model, Non-mixture cure model, Gener-
alized modified Weibull distribution, Exponentiated Weibull exponential distribution

SDG: GOAL 3: Good Health and Well-Being

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

TABURAN WEIBULL TERITLAK TERUBAHSUAI DAN EKSPONEN
WEIBULL TEREKSPONEN BAGI MODEL PECAHAN SEMBUH

PESAKIT KANSER

Oleh
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November 2023

Pengerusi: Mohd Shafie bin Mutafa, PhD
Fakulti: Sains

Penyelidikan ini bertujuan untuk membangunkan model penyembuh parametrik un-
tuk data sepanjang hayat dengan kehadiran data tertapis kanan dan tertapis selang
dengan peramal tetap. Penyelidikan bermula dengan melanjutkan Model Penyem-
buh Campuran (MCM) sedia ada, menggunakan taburan Weibull Terubahsuai Ter-
itlak (GMW) dan taburan Eksponen Weibull Tereksponen (EWE) bagi menampung
kedua-dua data tertapis selang dan tertapis kanan dengan kovariat tetap.

Model Bahaya Kumulatif Terbatas (BCH) dan Model Penyembuh Bukan Campu-
ran Geometrik (GeNMC), juga diterokai, menawarkan pendekatan alternatif dalam
metodologi pemodelan penyembuhan. Model-model ini dibangunkan berdasarkan
taburan GMW dan EWE, dilanjutkan dengan kehadiran data tertapis kanan dan ter-
tapis selang dengan kovariat tetap.

Kaedah Anggaran Kebolehjadian Maksimum (MLE) digunakan untuk menganggar
parameter model. Kajian simulasi dijalankan untuk menilai prestasi penganggar
MLE. Prestasi MLE dinilai menggunakan metrik pincang, ralat piawai (SE) dan
punca min kuasa dua ralat (RMSE) merentas pelbagai saiz sampel dan kadaran pe-
napisan. Lebar selang (len) bagi data tertapis selang (jurang masa cerapan) juga di
pertimbangkan (len=0.5). Keputusan kajian simulasi menunjukkan bahawa pincang,
SE dan RMSE meningkat dengan kadaran penapisan yang lebih tinggi dan penguran-
gan saiz sampel. Tambahan pula, MLE menunjukkan kecekapan, dibuktikan dengan
penurunan nilai RMSE dengan peningkatan saiz sampel merentas semua kadaran
penapisan.
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Selanjutnya, empat set data kehidupan sebenar daripada punca kajian kanser dan
merokok, digunakan untuk menyokong keputusan kajian simulasi. Set data pertama
terdiri daripada cerapan tertapis kanan dari kajian kanser pundi kencing. Set data
kedua adalah data tertapis selang diambil daripada kajian pemberhentian merokok.
Set data ini merangkumi masa berulang merokok yang dikumpul setiap tahun sepa-
njang lima tahun tempoh susulan peserta yang tinggal di kawasan poskod 41 dalam
Wilayah Timur Selatan Minnesota, USA. Set data ketiga termasuk data tertapis
kanan daripada kajian leukimia, memfokus rawatan sebagai kovariat. Set data ke-
empat adalah data tertapis kanan berkaitan kanser melanoma, dengan mempertim-
bangkan jantina, rawatan dan umur sebagai faktor kovariat.

Membandingkan model MCM, BCH dan GeNMC berdasarkan taburan GMW, EWE,
Frechet dan Gompertz menggunakan data pundi kencing, keputusan menunjukkan
bahawa prestasi model MCM, BCH dan GeNMC berdasarkan taburan EWE ada-lah
lebih baik daripada semua model pesaing yang lain dalam kajian ini. Manakala tabu-
ran GMW dengan tiga model penyembuh memberikan penyuaian yang sedikit lebih
baik daripada taburan EWE, dengan mengambil kira data pemberhentian merokok.
Bagi data leukemia, kedua-dua taburan GMW dan EW muncul sebagai pilihan ter-
baik bagi memodelkan masa daya tahan bagi pesakit yang terdedah. Bagi data
melanoma, sementara semua model menunjukkan hasil yang sama, model MCM
dengan taburan EWE mempamerkan kesesuaian yang terbaik.

Kata kunci: Model penyembuh parametrik, Data tertapis kanan dan tertapis
selang, Kaedah Anggaran Kebolehjadian Maksimum, Taburan Weibull Terubahsuai
Teritlak, Taburan Eksponen Weibull Tereksponen, Model penyembuhan campuran,
Model penyembuhan bukan campuran

SDG: MATLAMAT 3: Kesihatan dan Kesejahteraan Baik
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Survival analysis is a branch of statistics that studies how long it will take for an
event to occur. This field of statistics was born out of the need to track the impact
of medical treatments on patient’s survival in clinical trials. For instance, consider
the case of a group of cancer patients who are given a new form of treatment. The
results of the treatment may be analyzed in terms of the patients’ life expectancy
using survival analysis. Depending on the type of application, survival analysis is
also known as, time-to-event analysis, lifetime data analysis, event history analysis,
duration analysis, and reliability analysis.

One of the obstacles of survival analysis is that only a portion of the study group will
have experienced the event by the end of the follow-up period. Therefore, survival
durations will be unknown for a subset of the study group. This phenomenon is
known as censoring, which arises when a study participant has not yet encountered a
relevant event (such as relapse or death) by the end of the study. Censoring may occur
for various reasons. For instance, the study participant fails to follow-up, withdraws
from the study, or is still alive or disease-free at the end of the study period.

Survival models are commonly used in medical research to evaluate time-to-event
data, in which individuals are tracked over some time, and the time until an event of
interest occurs is recorded. For instance, a study to model the time after colon cancer
patients’ treatment until death or the time from the first heart attack to the second. It
is usually believed that if a study subject is followed long enough, he or she would
eventually experience the event of interest. Nevertheless, even after a lengthy period
of time, the event may not occur in some subjects. For example, in a breast or
prostate cancer study, it is typical for some patients to never have cancer relapse
following treatment. In this situation, the patients are not censored in the usual sense
and are thus firmly believed to be cured. Therefore, classical survival models such
as the accelerated failure time and Cox proportional hazard models are inappropriate
for such instances and this type of data. As a result, cure rate models have been
mostly developed to deal with this kind of data. In the cure model formulation, the
censored observation group is split into two subgroups: those who are event-free,
and therefore, cured or immune; and those who will ultimately experience events if
they are observed for a sufficiently long time.

In the literature, there are two main types of cure models that have been suggested
to fit lifetime data in medical studies, namely, the mixture cure model introduced by
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Farewell (1977) and Farewell (1982), and the promotion time cure model suggested
by Tsodikov et al. (1996). These models can be used to analyze real-life data in
different domains other than medicine, such as economics, reliability, criminology,
sociology education, and marketing, to name a few. The modeling approach varies
based on the researcher’s event of interest; the common idea is to observe time until
the event, but for some subjects, the event will never occur.

At the end of the observation period, the survival times of some individuals may be
censored. As a result, if the follow-up is long enough, the dataset might contain
cured individuals. However, broadly, cured individuals include a subset of censored
individuals. The challenge in fitting cure models on survival data is that the exis-
tence of a cure rate in the sample is not evident. Therefore, it is recommended to
test whether there is an immune portion in the given dataset before fitting the cure
models, as well as if the follow-up period is long enough (Maller and Zhou, 1996).

1.2 Scope of Study

This thesis focuses on the problems of estimating the cure fraction and the influence
of covariates on the probability of being cured and the survival times of suscepti-
ble subjects. This study is organized into two parts. The first part will be devoted
to extending the parametric cure models to incorporate right and interval-censored
data with or without fixed covariates. The analysis is based on two parametric dis-
tributions, recently introduced in the literature: Generalized Modified Weibull and
Exponentiated Weibull exponential distributions. Comprehensive simulation stud-
ies were carried out to determine the parameter estimates of these models, and this
involved maximum likelihood estimation techniques, assessing the bias, standard er-
ror, and root mean square error of the parameter estimates across various sample
sizes and levels of censoring. In the other part, the practical application of the newly
proposed models is illustrated by using four datasets from oncology and clinical trial
studies.

1.3 Problem Statement

Many cure models have been developed to analyse survival data with long-term sur-
vivors. The parametric technique is one method for predicting the cure probability
and survival function for uncured subjects. Numerous parametric distributions, in-
cluding Weibull, Fréchet, and lognormal, have been applied in both Mixture Cure
Model (MCM) and Non-Mixture Cure model, such as Bounded Cumulative Hazard
(BCH) and Geometric Non-Mixture Cure (GeNMC) model , for analysing survival
data involving cure proportion. These distributions are preferred for their flexibil-
ity in hazard functions and the ease of parameter estimation. However, their utility
comes with some limitations:
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• They may encounter challenges in accurately modelling complex hazard func-
tions, and their ability to capture a diverse range of shapes in survival functions
may be constrained, rendering them less suitable for scenarios with intricate
hazard patterns.

• These distributions are not well-suited for situations where hazards deviate
from a strictly proportional pattern, leading to inadequate fits when hazard
rates undergo non-proportional changes over time.

• Their effectiveness diminishes when handling heterogeneous datasets charac-
terized by varying failure behaviors across subsets. In such cases, these dis-
tributions struggle to accommodate the diverse patterns present in the data,
limiting their efficacy in capturing the inherent complexity of heterogeneous
datasets.

Many statistical estimation methods were used so far in the frame of cure models
estimation, such as the Maximum Likelihood Estimation (MLE), Bayesian estima-
tion, Expectation-Maximization algorithm, and Profile Likelihood. These methods
offer distinct approaches to parameter estimation for cure models. Collectively, they
address diverse statistical scenarios, enhancing the robustness and flexibility of pa-
rameter estimation across various fields.

In this research, we will consider two recent parametric distributions, namely the
Generalized Modified Weibull (GMW) distribution and the Exponentiated Weibull
Exponential (EWE) distribution. It is noteworthy that the GMW distribution has
not been employed in the framework of the GeNMC model, and similarly, the EWE
distribution has not been used yet with the MCM, BCH model, and the GeNMC
model. Compare to Weibull, Fréchet, and lognormal distributions, the GMW and
EWE distributions exhibit the following characteristics:

• Their extra parameters, enhancing the ability to model intricate hazard func-
tions. This increased flexibility enables these distributions to effectively cap-
ture a broader spectrum of shapes in the survival function, making them ap-
plicable in scenarios where the hazard cannot be adequately described by
Weibull, Fréchet, and lognormal distributions.

• While the Weibull, Fréchet, and lognormal distributions satisfy proportional
hazards property, GMW and EWE distributions offer additional flexibility,
making them more suitable for situations where hazards do not strictly adhere
to a proportional pattern. This adaptability proves beneficial when dealing
with data exhibiting non-proportional hazards, where hazard rates experience
changes as time progresses.

• GMW and EWE distributions excel in handling heterogeneous datasets char-
acterized by varying failure behaviours across different subsets. Their inherent
flexibility allows them to accommodate the diverse patterns present in such
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datasets, making them well-suited for capturing the complexity inherent in
heterogeneous data, which is not the same in case for the Weibull, Fréchet,
and lognormal distributions.

Maximum Likelihood Estimation (MLE) is considered in this study due to its nu-
merous advantages. Firstly, MLE provides efficient estimates, meaning that under
specific conditions, the estimates derived from MLE are asymptotically unbiased and
have the smallest variance compared to all other unbiased estimators (Ren and Wang,
2023). Secondly, MLE estimators exhibit desirable asymptotic properties such as
consistency, asymptotic normality, and asymptotic efficiency, indicating that as the
sample size increases, MLE estimates converge towards the true parameter values
(Kim et al., 2010). Additionally, MLE demonstrates precision when dealing with
continuous data following a uniform distribution (Mindrila, 2010). Furthermore,
MLE offers flexibility as it does not require distributional assumptions beyond those
implied by the likelihood function, setting it apart from methods reliant on specific
distributional assumptions (Chan, 2021). MLE plays a crucial role across various
statistical modeling methods, particularly in nonlinear modeling with non-normally
distributed data (Myung, 2003). Moreover, MLE methods possess favorable math-
ematical properties and optimality characteristics, evolving into minimum variance
unbiased estimators as sample size increases (Schneider, 2018). They also exhibit
approximate normal distributions and sample variances, enabling the construction of
confidence intervals (Heckert et al., 2002). Finally, under specific conditions, MLE
achieves the Cramér-Rao lower bound, making it the most efficient estimator among
all unbiased estimators, ensuring optimal performance in parameter estimation tasks
(Pfanzagl, 2011). These advantages collectively justify the consideration of MLE in
this study.

The expected novelty of the findings of this research is outlined as follows:

1. The utilization of the GMW and EWE distributions in the context of MCM,
BCH and GeNMC models for cancer patients is anticipated to enhance the
statistical rigor of cancer research. By employing advanced parametric mod-
eling techniques, this research seeks to improve the precision and reliability of
estimates related to cure rates, offering a more nuanced understanding of the
dynamics of cancer patient outcomes.

2. This research is expected to contribute to the advancement of cure fractions
models for cancer patients. By extending MCM, BCH and GeNMC models
with the GMW and EWE distributions to accommodate right and interval-
censored data in the presence of fixed covariates, we aim to enhance the cur-
rent understanding of the factors influencing cure rates and survival patterns
in cancer populations. This novel application could reveal insights into the
underlying mechanisms of long-term survival and remission.

3. The comparative analysis of the GMW and EWE distributions within the
MCM, BCH and GeNMC models framework is anticipated to add a unique
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dimension to the study. By assessing the performance of these distributions in
modeling cure fractions, the research aims to identify which distribution bet-
ter aligns with the cancer datasets; Bone Marrow Transplant data (BMT) and
Melanoma E1684 data. This comparative aspect contributes to the method-
ological discourse surrounding the choice of distributions in cure models.

4. The findings from this study are expected to provide valuable insights for can-
cer treatment strategies. Understanding the distributional characteristics as-
sociated with cure fractions can inform medical professionals and researchers
about the efficacy of existing treatments and the potential for developing new
therapeutic approaches tailored to specific patient subgroups.

1.4 Research Objectives

• To extend the Mixture Cure Model (MCM), Bounded Cumulative Hazard
(BCH) model, and Geometric Non-Mixture Cure (GeNMC) model with the
Generalized Modified Weibull (GMW) and Exponentiated Weibull Exponen-
tial (EWE) distributions, accommodating right and interval-censored data in
the presence of fixed covariates.

• To apply the Maximum Likelihood Estimation (MLE) method for estimating
the parameters of the MCM, BCH, and GeNMC models based on the GMW
and EWE distributions.

• To evaluate the effectiveness of the proposed models through simulation stud-
ies, examining the bias, standard error, and root mean square error of parame-
ter estimates across various sample sizes and levels of censoring.

• To illustrate the application of the proposed models on two medical datasets,
namely the BMT and Melanoma cancer datasets, in order to assess the efficacy
of the models using real-life data.

1.5 Outline of the Thesis

There are seven chapters in this thesis. A review of literature relevant to the current
work is presented in Chapter 2. To trace the development of parametric cure models,
a brief review of these models is presented in this chapter. Special focus in this liter-
ature review is given to the research conducted on estimation methods, particularly
examining approaches that accommodate fixed covariates in the presence of right
and interval censored data.

In Chapter 3, we extend the existing mixture cure model to incorporate right- and
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interaval-censored data with fixed covariates. The survival times of susceptible indi-
viduals are modeled using the generalized modified Weibull (GMW) and exponen-
tiated Weibull exponential (EWE) distributions. The performance of this model is
compared at different sample sizes and various censoring rates via extensive simula-
tion studies.

Chapter 4 introduces a bounded cumulative hazard model (BCH) with fixed covari-
ates based on the GMW and EWE distributions with different types of censored
observations. Also, this chapter introduces a modified class of cure rates models that
can be utilized as an alternative to the MCM and BCH models. Furthermore, this
chapter evaluates the performance of the MCM, BCH, and GeNMC models across
different distributions, employing multiple criteria to determine their fit. This com-
parison utilizes two real-life datasets: bladder cancer data and smoking cessation
data.

Chapters 5 and 6 provide an in-depth exploration of the practical applications of
parametric cure models in oncology research and clinical trials. These chapters in-
vestigate the MCM, BCH, and GeNMC models, considering different parametric
distributions, censored observations, and fixed covariates. The analysis aims to un-
derstand the influence of predictors on the probability of being cured and their impact
on the survival times of susceptible individuals. In Chapter 5, the focus is on the ap-
plication of parametric mixture cure models introduced in Chapter 3, specifically
using the Bone Marrow Transplant (BMT) study dataset. Chapter 6, on the other
hand, concentrates on the implementation of parametric non-mixture cure models
discussed in Chapter 4, utilizing the E1684 Melanoma dataset from a phase III clin-
ical trial conducted by the Eastern Cooperative Oncology Group (ECOG). These
chapters provide valuable insights and practical guidance for researchers and clini-
cians in the field of oncology, enabling them to apply these parametric cure models
effectively in their own studies and trials.

Chapter 7 concludes this thesis by summarizing the key findings and offering some
recommendations for future studies.

The road map of this research is shown in Figure 1.1.
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Figure 1.1: Conceptual road map
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