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Inflation causes many people to move to gold as an option for savings because gold may
be used as a hedging tool against currency devaluation and purchasing power erosion.
This has contributed to the increased interest in forecasting the prices at the gold market,
just like predicting the prices at the stock market, which exhibits uncertain movement,
which can be described mathematically with Geometric Brownian Motion (GBM) and
Geometric Fractional Brownian Motion (GFBM). This study aims to model Malaysian
gold prices using both GBM and GFBM processes and compare the accuracy of these
models. Absolute moment and aggregated variance techniques are used to estimate the
Hurst exponents to model the prices with GFBM. These models are simulated using the
Monte Carlo simulation via the Euler scheme, where the modeled prices will be tested for
their accuracy using Mean Average Percentage Error (MAPE). Based on the findings, the
MAPE values for both models exhibited significantly low MAPE values, which implies high
accuracy in forecasting the gold prices for a long-term period. Nevertheless, the GFBM
produces much lower MAPE values than the GBM, thus indicating that the former is more
accurate than the latter.

Keywords: gold price; Hurst exponent; Monte Carlo simulation; long-memory phenom-
ena.
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1. Introduction

Geometric Brownian motion (GBM) is a stochastic process that implies normal distribution and inde-
pendent stock returns. This approach can be used to replicate short-term stock price movements as
well as to model financial processes. According to the Efficient Market Hypothesis (EMH) [1], stock
prices exhibit uncertain movement, and its historical stock price is reflected by the current stock price.
Due to the unpredictability of stock prices, many studies applied GBM which includes randomness,
volatility, and drift, to aid investors in making smart decisions on short-term investments, particularly
for forecasting and predicting future prices. For instance, Refs. [2] and [3] used GBM to predict stock
prices and indices in Bursa Malaysia. Besides that, Ref. [4] studied GBM to simulate the stock prices
and test whether simulated prices matched the real market returns. They adopted a sample of daily
stock prices from significant, publicly traded Australian firms that are included in the S&P/ASX 50
index over a 12-month period. Apart from that, Ref. [5] asserted that prices may be represented as
a GBM process. The sample data was collected from the Malaysian Rubber Board’s official website
between December 1 and December 31, 2015, for five distinct grades of Standard Malasian Rubber
(SMR) and centrifuged latex rubber. According to the study, simulation prices for the entire month for
the two distinct types of rubber were nearly identical to the actual prices. The results demonstrated
that the simulated prices are nearly 100 percent accurate, and the MAPE is less than 10 percent, indi-
cating a high degree of accuracy. Then, Ref. [6] conducted a study to forecast stock values using GBM
over a 12-month period. They employed data from the Jakarta Composite index for their analysis,
which covered daily market close prices from January 2014 to December 2014. As a result of using
MAPE to assess the accuracy of simulated pricing, the GBM model was found to have a high accuracy
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rate, with the value obtained less than 20 percent being the outcome. Prior studies have shown that
GBM can be used to anticipate or simulate accurate stock prices.

However, the limitations of GBM in capturing long-range dependence and volatility clustering have
motivated the development of more sophisticated models by relaxing the assumptions made by GBM.
One known modification is the Geometric Fractional Brownian Motion (GFBM), an extension of GBM,
which incorporates a fractional parameter called the Hurst exponent [7] that allows the modeling of
long-term dependencies and captures the persistence of volatility observed in financial time series.
In recent years, there has been a growing interest in using GFBM to simulate prices in finance and
economics, such as the work of [8] demonstrated the modelling of return distribution for the S&P 500
and STOXX Europe 600 indexes with GBM and GFBM, and found that the latter is more suitable
than the former.

In [9], GBM and GFBM were used to simulate Malaysia’s crude palm oil prices, and to determine
whether they exhibit persistent or anti-persistent behaviour across various time periods. The findings
demonstrated that both models generated precise price forecasts; where GFBM is more precise than
GBM. In [10], several Hurst estimators were used to determine the Hurst exponents in order to be
utilized in GFBM to simulate rubber prices. The study found that the smaller the value of the Hurst
exponent, more precise simulated rubber prices were generated.

Most studies applied the Monte Carlo Simulation (MCS) to simulate prices, which is a mathemati-
cal approach for predicting potential outcomes of an uncertain event [3-6,8-10]. It is a computational
approach that combines random sampling and statistical analysis to model complicated systems in
order to analyze past data and forecast a range of future events depending on a choice of action. Ref-
erence [11] recommended MCS to obtain numerical results for option valuation problems by simulating
the underlying asset prices. This approach is straightforward and is adaptable to various processes
governing stock returns. In addition, this technique is distinctive in that the distribution used to gen-
erate the underlying stock need not have a closed-form analytic expression, allowing option values to
be derived using empirical stock return distributions.

Kijang Emas are gold coins from Bank Negara Malaysia, which serves as an indicator of overall
economic health, making it crucial for investors navigating uncertainties. In [12], it stated that the
modelling of Kijang Emas future price is beneficial for investment purposes in Malaysia; hence to
predict its prices accurately, is beneficial to investors. Various forecasting model have been developed
to predict the movement of gold price, such as regression method [13], ARIMA [14], and random
walk [15]. Hence, the aim of this study is to model the Kijang Emas prices using mathematical
models, specifically GBM and GFBM, to determine which model accurately describes the movement
of the Kijang Emas prices. The organization of the remaining of this paper is as follows. Section 2
describes the GBM and GFBM dynamics that are assumed to be followed by the Kijang Emas price.
Section 3 outlines the data and methodology used to simulate the Kijang Emas prices; while Section 4
documents the results and discussion. Section 5 concludes the study.

2. The model

In this section, a brief description of the processes, which 05 ‘ ‘ ‘ ‘ {A
|
Y

are the geometric Brownian motion (GBM) and geometric
fractional Brownian motion (GFBM) is presented.
Generally, the Wiener process is defined as:

ﬂﬂ ]
W) (P ﬂm‘ |
dxr = adt+ bdz, (1) VVA\,WWM\ ﬂ,% 'Mﬂ
where a and b are constants. In Eq. (1), the adt term e /w
implies that x has an expected drift rate of per unit of \ JA '
time. Figure 1 depicts the Wiener process. 10 o o oo

Let S be the Kijang Emas price. It is assumed to be t

governed by GBM and GFBM dynamics, respectively, as Fig. 1. The Wiener process.
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follows:
dS =pSdt+oSdw, (2)
dS =puSdt+ocSdWy, (3)
where dS is the changes in the asset prices, W is the Brownian Motion, p is the constant drift, o is the
constant volatility, and Wy is an Fractional Brownian Motion with H € (0, 1) is the Hurst exponent.
On that account, by letting f = In .S, and applying Ito’s lemma, yields the solution for (2):

S(t) = §(0) elr 27w, (4)
which is the stochastic differential equation for InS. Meanwhile, by using the Wick Ito Skorohod
integrals, the solution to Eq. (3) for any arbitrary initial value S(0) is obtained as [16]:

Su(t) = 8(0) el#t=30" )+ Wi (D), (5)
The Hurst exponent, H, measures the long-term memory of a time series, or the degree by which that
series deviates from a random walk. The exponent is a real number, which has been explored using
numerous estimator approaches such as rescaled range, aggregate variance, and regression residuals [10].
According to [16], depending on the value of H, FBM exhibits different properties, as outlined in
Table 1.

Table 1. Interpretation of the Hurst exponent.

Hurst Exponent | Interpretation

H <05 The disjoint increments are negatively correlated which exhibit long memory
dependency or anti-persistent.
H=05 There is no correlation and the process is a Wiener Process.
H>05 The disjoint increments are positively correlated which exhibit short
memory dependency or persistent.

3. Data and methodology

In this section, we describe the data used in this study, and the definitions used for parameters esti-
mations.

This study uses daily historical Kijang Emas prices from May 2022 to April 2023 for three different
types of Kijang EFmas — 0.250z, 0.5 oz, and 1.0 0z, which are retrieved from the official website of Bank
Negara Malaysia [17]. Figure 2 plots the Q-Q plot of the Kijang Emas prices.

Q-Q Plot Q-Q Plot Q-Q Plot
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-4 2 0 2 4 4 2 2 4 4 2
Normal theoretical quantiles Normal theoretical quantiles Normal theoretical quantiles

Sample data quantiles
°

Sample data quantiles
o
Sample data quantiles

2 4

Data Data Data

a (0.25 oz) b (0.50 oz) ¢ (1.0 oz)
Fig. 2. The Q-Q plot.

In order to simulate the Kijang Emas prices with geometric Brownian motion (GBM), we computed
the values of mean p and standard deviation o obtained as such:

M St
D= Ingy

1% M (6)
2
M S
2 P {hl 5T~ :“} 7)
N M—1 '

In addition, the Hurst exponent is calibrated using absolute moment and aggregated variance methods.
The former is computed as follows [16]:
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Sy IR (k) — R

Hgps = N/m ) (8)

while the latter [18]:

N/m R(m) L N/m R(m) L 2
,,, = 2kt ( <>)_< <>>,

N/m N /m
which divides the logarithmic returns R into N/m blocks with size m, and

POl (k—1ym X (t)

RM™ (ke 10
(k) = =m0, (10)
N
_ 1 X(t
for t =1,2,...,N/m. Following that, we simulate the Kijang Emas prices with geometric fractional

Brownian motion (GFBM) by using the computed standard deviation ¢ and mean [ obtained as
such [19]:

RS (12)
ValrNd
=2
e o

where At = ty —ty_1. The fractional Gaussian noise that governs GFBM is chosen to follow the
Cholesky decomposition [20].

4. Numerical results

This section documents the illustration of the modeling of Kijang Emas using the GBM and GFBM
models, as presented previously in Sections 2 and 3. Given the historical Kijang Emas prices, we
calibrated the mean and standard deviation of the given data set. This is recorded in Table 2.

The mean and standard deviations are ob- Table 2. Mean and standard deviations.
tained by calibrating the historical prices, and GBM GFBM
. . . . . Type — —
are used in the simulation using geometric 1 o i G
Brownian motion (GBM) and geometric frac- 0.250z | 2.4801e-04 0.0083 | 2.8284e-04 0.0083
tional Brownian motion (GFBM)’ respectively. 0.50z 2.4652e-04  0.0083 2.8120e-04 0.0083
We generate the simulated prices for Kijang 1.00z | 2.4648e-04 0.0083 | 2.8113e-04 0.0083

Emas using GBM and GFBM. The estimated values of the Hurst exponents which are obtained using
absolute moment and aggregated variance methods are as given in Table 3. Additionally, we simulate
the prices usng GFBM at H = 0.5 as a control model, since GFBM reduces to GBM when H = 0.5.

a (0.25 oz) b (0.50 oz) ¢ (1.0 oz)

Fig. 3. Kijang Emas price paths simulation for a 12-month period.

Figures 3a, 3b and 3¢ plot the historical and simulated Kijang Emas prices for a 12-month period.
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Table 3. Hurst exponents, H. It can be seen that the simulated prices fol-

Type | Absolute Moment Aggregated Variance low a similar trend as the historical prices, and

0.25 oz 0.5044 0.4661 display fluctuations. To further evaluate the ac-

0.50z 0.4796 0.4560 curacy of the simulated prices, we computed the

1.00z 0.4796 0.4558 MAPE values, and used the judgement scale as
given in Table 4 (see [21]).

Table 4. Evaluating forecast accuracy using MAPE. We computed the MAPE values for both
MAPE Evaluating of forecast accuracy GBM and GFBM as tabulated in Table 5. It
< 10% Highly accurate shows that both models produced highly accu-

11% until 20% Good accurate rate simulated prices for Kijang Emas since all
21% until 50% Reasonable forecast values fall below the 10% threshold. However,
> 51% Inaccurate forecast on average, the MAPE value for GBM is 6.4399,

while for GFBM, 3.8363 (absolute moment) and 4.3842 (aggregated Variance). The control GFBM
has a MAPE value of 7.0252, on average. This implies that GFBM produced a slightly more accurate
simulated Kijang Emas prices, compared to GBM.

As a result of this compu-

Table 5. MAPE values (%) for a 12-month period. tation, both GBM and GFBM

Type | GBM GFBM . are highly accurate mo.dels

H =0.5 Absolute moment Aggregated variance since both models obtained

0250z | 5.8249 | 6.0123 3.2702 3.9054 MAPE values less than 10%,

0.50z | 8.3844 | 9.3159 4.5340 5.5454 but GFBM produced lower
1.00z | 5.1105 | 5.7473 3.7047 3.7018

MAPE values. Hence, GFBM
showed a better accuracy and effectiveness in long term period, which implies the GFBM is more
accurate than the GBM.

5. Conclusion

Overall, this study contributes valuable insights into the application of mathematical models for fore-
casting, specifically, Kijang EFmas that we considered, with implications for investors to identify the
best strategy and minimize risk by making it easier to analyze possible investment outcomes. This
helps investors make well-informed decisions, improving their capacity to minimize risk.

In conclusion, this study highlights the effectiveness of mathematical models, particularly GBM and
GFBM, in forecasting Kijang Emas prices using historical prices. The GFBM model demonstrates
higher accuracy over extended time periods compared to the GBM model, as proven by its lower
MAPE values. This suggests that incorporating the Hurst exponent in the GFBM model allows for the
modeling of long-term dependencies and the persistence of volatility, making it a more suitable choice
for accurate forecasting over extended time periods. These findings mark the importance of utilizing
mathematical approaches for informed decision-making in volatile financial markets, in which GBM
and GFBM provide insightful information by capturing the underlying uncertainties and complexities
of financial markets. Hence, the GFBM model outperformed the GBM model in terms of accuracy in
forecasting gold prices over the specified time intervals.

Future work may consider incorporating mean-reversion into modeling the Kijang EFmas prices and
using other variance reduction techniques for the Monte Carlo simulation.
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BknioyeHHs1 A4OBrocTtpokoBoi Nnam’siTi B MOAeNtoBaHHA LiH Ha 30J/10TO

Pammun C. ®@. A2, I6parim C. H. I.12, Jlaxam M. @.!

I Inemumym mamemamurux docaioncenn, Ywisepcumem Iympa Manatizis, 43400 UPM Cepdane, Manatisis
2Kagedpa mamemamuru ma cmamucmury, DPaxysomem npupodnunus nayk, Yuisepcumem ITympa Manatisii,

48400 UPM Cepdane, Manatizis

Tadasanis cnonykae baraTbox JIozeil mepeiiTu 10 30J10Ta K BaAPiaHTY 320113/ ?KEHb, OCKL/Ib-
KU 30JI0TO MOYKE BUKOPUCTOBYBATHUCH K IHCTPYMEHT XeJI?KYBaHHS Bi/I JIeBaJIbBaIlil BAJIIOTH
Ta 3HUKEHHs KYMiBe/JIbHOI CIipoMOKHOCTI. Ile cripusiio miBUINEHHIO iHTEpecy /10 MPOTHO-
3yBaHHS IIH HA PUHKY 30JI0TAa TaK CaMO, K 1 JI0 TPOTHO3YBAHHS IiHU Ha (DOHIOBOMY
PUHKY, IO JIEMOHCTPYE HEBU3HAYEHWII PyX, sIKAN MOXKHA OMHUCATH MaTEMaTUIHO 33 J10-
[IOMOTI'0I0 reOMeTpUYHOro 6poyHisebkoro pyxy (GBM) i reomerpudanoro apo6oBoro 6poy-
HiBcbkoro pyxy (GFBM). Ile mocitimkeHHs cpsiMOBaHe Ha MOJIEJIIOBAHHS IIiH HA 30J10TO B
Mauraiisii 3a gomomororo mporecisB GBM i GFBM ta nopiBHsSIHHSI TOYHOCTEl IUX MOJIeJIeN.
BukopucToBytoThes MeToin abCOTIOTHONO MOMEHTY Ta arperoBaHOl AUCIEPCil M1 OIiHKH
MOKA3HUKIB Xepcra 3 MeTor Moje oBanHs il 3a gomomororo GFBM. i momeni cumy-
JIIOIOThCA 3a gormoMororo Merosa Monrre-Kapiio 3a cxemoro Eitnepa, e 3Moae1p0BaHi IiHT
[epeBipsITUMYTh Ha TOYHICTH 3a JONOMOTOI0 cepeiHbol Bincorkosoi moxubku (MAPE).
Buxonsuu 3 orpumanux jganux, 3uadenass MAPE s 060x Mozesieil 1IpoieMOHCTPyY BTl
3HaYHO HMK4i 3HadeHHst MAPE, 110 ¢BiiunTh Ipo BUCOKY TOYHICTH IIPOrHO3yBaHHSI IIiH HA
30/10TO Ha JoBrocrpokoBuii nepiog. Tum e menm, GFBM nae mabararo Huxk4i 3HaAYEHHS
MAPE, uizk GBM; Takum 9uHOM, Iie BKA3y€ HA Te, IO HePHIuil MeTO| € OLIbIIT TOYHUM,
HiXK JIpyTHil.

Knto4osi cnoBa: yinu na 3040mo; nokasnux Xepema; modearosarns memodom Monme—
Kapao; asuwa mpusanoi nam’smi.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1128-1134 (2024)



