ENZYMATIC SYNTHESIS OF PALM-BASED FERULATE ESTER AS SUNSCREEN AGENT

By
LIM SHEO KUN

May 2006

Chairman: Professor Mahiran Basri, PhD
Faculty: Science

The invention of modifying palm oils to produce sunscreen agent, ferulate ester (RBD-FE) had been investigated through transesterification reaction of RBD palm olein with ferulic acid (4-hydroxy-3-methoxy-cinnamate, FA) by enzymatic synthesis. Ferulic acid is a natural substance which has free radical scavenging effects and helps to prevent damage to our cells caused by UV light. However, incorporation of ferulic acid into cosmetic compositions is problematic due to its instability in aqueous solution and limited solubility in water in oil emulsions. Besides, currently used sunscreen agent in 90 percent of all sunscreen products throughout the world; octyl methoxycinnamate (OMC) is reported could be toxic to human skin.
This process has been studied as one approach in order to overcome these problems to provide a natural cosmetic ingredient with enhanced efficiency and stability. It combines the ultraviolet-absorbing properties of a cinnamate (ferulic acid) with the water-insoluble properties of a lipid (RBDPO) resulting in ultraviolet-absorbing lipids (RBD-FE) made from all natural ingredients under mild, solvent-free conditions to ensure a safe, clean and cosmetically acceptable product.

Enzyme screening revealed Novozym 435 to be the most efficient biocatalyst for the reaction and was chosen for optimization studies. The important parameters that may affect the synthesis of RBD-FE had been investigated. The corresponding optimal conditions for the transesterification reaction was time, 96 h; temperature, 40 °C; mole ratio of ferulic acid: RBDPO, 1:3; and amount of enzyme used, 0.10 g resulting in highest percentage of conversion (24.51%) to ultraviolet-absorbing lipids (RBD-FE) that works as a sunscreen agent.

Identities of product were verified using TLC, gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), High Performance Liquid Chromatography (HPLC), GC-Mass Spectroscopy (GC-MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy analyses. Thermal and oxidative stability of the RBD-FE were also evaluated. Later, palm-based ferulate ester was also formulated into cosmetic formulations to evaluate it as sunscreen agent followed by Sun Protection Factor (SPF) analysis.
RBD-FE showed higher thermal stability and better oxidative stability. Besides, it became an active ingredient in sunscreen formulation which acted as a broadband sunscreen agent which covers both UVA and UVB rays. It showed a wider light absorption peak between 290 and 400nm.
Usaha untuk mengubahsuaui minyak sawit untuk menghasilkan agen penabir suria, ester ferulate (RBD-FE) telah dikaji melalui proses penginteresteran antara olein sawit dan asid ferulik dengan menggunakan enzim. Asid ferulik adalah komponen semulajadi yang mempunyai kesan mengaut radikal bebas dan mencegah kerosakan ke atas sel-sel yang disebabkan oleh cahaya ultra-lembayung. Namun, penggunaan asid ferulik di dalam komposisi kosmetik adalah bermasalah disebabkan oleh ketidakstabilannya dalam larutan akueus dan keterlarutan terhad dalam emulsi air dalam minyak. Selain itu, agen penabir suria yang digunakan hampir 90 % di merata dunia; oktil metoksisinamat (OMC) dilaporkan adalah toksik ke atas kulit manusia.
Proses ini telah dikaji sebagai satu usaha untuk mengatasi masalah-masalah tersebut untuk menghasilkan satu bahan kosmetik yang semulajadi yang lebih berkesan dan stabil. Ia menggabungkan sifat penyerap ultra-lembayung dari sinamat dengan sifat kalis air lemak (RBD olein sawit), menghasilkan lemak penyerap ultra-lembayung (RBD-FE) yang diperbuat daripada bahan semula jadi dalam keadaan sederhana, lembut dan tanpa kehadiran pelarut untuk memastikan penghasilan produk yang selamat, bersih dan diterima secara kosmetik.

Penyaringan enzim menunjukkan bahawa Novozym 435 adalah biomangkin yang paling cekap dalam tindak balas tersebut lalu dipilih untuk kajian pengoptimuman. Parameter utama yang mungkin mengganggu sintesis RBD-FE telah dikaji. Tindak balas pengeraman berlangsung dalam keadaan tanpa pelarut selama 96 jam pada suhu 40°C dengan menggunakan 0.1 g enzim Novozym 435 pada nisbah 1:1 bahan tindak balas, memberikan hasil peratusan tertinggi (24.51%) menghasilkan lemak penyerapan lembayung ultra-unggu (RBD-FE) yang bertindak sebagai agen penabir suria.

Identiti produk tersebut telah disahkan melalui teknik TLC, kromatografi gas (GC), spektroskopi inframerah tertransformasi-Fourier (FT-IR), Kromatografi Cecair perlaksanaan tinggi (HPLC), kromatografi gas-spektroskopi jisim (GC-MS) dan analisis resonans magnet nuklues (NMR). RBD-FE dikaji untuk mengetahui sifat-sifat seperti kestabilan haba, dan nilai peroksida. Selain itu, RBD-FE juga dimasukkan ke dalam formulasi barangan kosmetik untuk menilai sifatnya sebagai penabir cahaya matahari dan faktor pelindung matahari (SPF).
RBD-FE berasaskan minyak sawit menunjukkan kestabilan terhadap haba dan pengoksidaan. Malah, ia juga bertindak sebagai bahan aktif dalam formulasi krim penabir matahari dengan memberikan perlindungan yang baik dalam julat UVA and UVB. Ia menunjukkan puncak penyerapan cahaya yang luas antara 290 dengan 400nm.
ACKNOWLEDGMENTS

I wish to express my sincere appreciation and gratitude to Prof. Dr. Mahiran Basri, the chairman of my supervisory committee, for her acceptance to be my supervisor, her guidance, sincere assistance and continuous supervision. Gratitude is also extended to Prof. Dr. Abu Bakar Salleh, for his valuable time, comments and encouragement during this research project.

My sincere thanks and deepest gratitude are also extended to Dr. Roila Awang, as my supervisor, for giving me the opportunity to complete my work in the Advanced Oleochemicals Technology Division (AOTD) institute, MPOB. I am deeply grateful for her overwhelming guidance, support and excellent supervision she paid to me during my studies. Her reinforcement made this dissertation possible.

I am grateful to all staff of AOTD their help in one way or another. Further thanks are also extended to MPOB for the financial support that was given to me during the course of the study. My deepest appreciation also extended to my colleagues and friends; Feong Kuan, Pei Sin, Joon Ching, Hon Peng, Choon Kiat and Ratna for their cheerful assistance on occasions too numerous to mention. No words are sufficient to express my thanks and love to best friends William Ng and Jaz Woo. The patience, sacrifice, encouragement, care and support freely given by them during my study and my life were invaluable. Last but not least, I wish to thank my family for their patience, tolerance and never-ending support.
I certify that an Examination Committee has met on 9 May 2006 to conduct the final examination of Lim Sheo Kun on her Master of Science thesis entitled "Enzymatic Synthesis of Palm-Based Ferulate Ester as Sunscreen Agent" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

**Raja Noor Zaliha Raja Abdul Rahman, PhD**  
Associate Professor  
Faculty of Biotechnology and Biomolecular Science  
Universiti Putra Malaysia  
(Chairman)

**Irmawati Ramli, PhD**  
Associate Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Internal Examiner)

**Abdul Halim Abdullah, PhD**  
Associate Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Internal Examiner)

**Mamot Said, PhD**  
Associate Professor  
Faculty of Science and Technology  
Universiti Kebangsaan Malaysia  
(External Examiner)

---

**HASANAH MOHD GHAZALI, PhD**  
Professor/Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

**Mahiran Basri, PhD**  
Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Chairman)

**Abu Bakar Salleh, PhD**  
Professor  
Faculty of Biotechnology and Biomolecular Science  
Universiti Putra Malaysia  
(Member)

**Roila Awang, PhD**  
Senior Research Officer  
Malaysian Palm Oil Board (MPOB)  
(Member)

**AINI IDERIS, PhD**  
Professor/Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

____________________
LIM SHEO KUN

Date: 20 June 2006
# TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

## CHAPTER

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sunscreen Agent</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemical/Organic Sunscreens</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Physical/Inorganic Sunscreens</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Ferulic Acid</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ferulic acid as antioxidant</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Ferulic acid as drugs</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Ferulic acid as preservatives and flavoring</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Palm Oil</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Palm oil as cosmetic ingredients</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Oleochemicals</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Palm and Palm Kernel Oils as Raw Materials for Oleochemicals</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Refined Bleached Deodorized (RBD) Palm Olein</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Lipase</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Lipase Specificity</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Immobilized Lipase</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Novozym 435</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Lipase-catalyzed synthesis</td>
<td>27</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS

Materials 30
Enzymatic Synthesis of RBD-FE 33
    Transesterification Reaction 33
Screening of Enzyme 34
Optimization Studies 35
    Effect of Temperature on Transesterification Reaction 35
    Effect of Reaction Time on Transesterification Reaction 35
    Effect of Mole Ratio of Substrates (FA/RBDPO) on Transesterification Reaction 35
    Effect of Amount of Enzyme Used on Transesterification Reaction 36
    Effect of Organic Solvents on Transesterification Reaction 36
    Optimization Conditions for Transesterification of Ferulic acid and RBDPO 38

Product Isolation and Purification 39
Product Identification 40
    Thin Layer Chromatography (TLC) 40
    Fourier Transform Infrared (FTIR) Spectroscopy 40
    High Performance Liquid Chromatography (HPLC) 40
    Preparation of TMS-Derivatives for GC and GC-MS Analysis 41
    Gas Chromatography (GC) Analysis 41
    GC-Mass spectroscopy (GC-MS) Analysis 42
    Nuclear Magnetic Resonance (NMR) Spectroscopy Analysis 42
Characteristics and Properties of RBD-FE 42
    Determination of Peroxide Value 42
    Thermal Stability Test 43
    Ultraviolet-visible (UV-Visible) Analysis 43
    Formulation Studies 43
    Determination of the Sun Protector Factor (SPF) 45
        (i) Preparing Quartz Sample Slides 45
        (ii) Measurement Procedure for SPF Analysis 45
4 RESULTS AND DISCUSSIONS
Enzymatic Synthesis of RBD-FE
Transesterification Reaction
Screening of Enzyme
Optimization Studies
Effect of Temperature on Transesterification Reaction
Effect of Reaction Time on Transesterification Reaction
Effect of Mole Ratio of Substrates (FA/RBDPO) on Transesterification Reaction
Effect of Amount of Enzyme Used on Transesterification Reaction
Effect of Organic Solvents on Transesterification Reaction
Transesterification of Ferulic Acid and RBDPO at Optimum Conditions
Product Identification
Thin Layer Chromatography (TLC)
Fourier Transform Infrared (FTIR) Spectroscopy
High Performance Liquid Chromatography (HPLC)
Gas Chromatography (GC) Analysis
GC-Mass spectroscopy (GC-MS) Analysis
Nuclear Magnetic Resonance (NMR) Spectroscopy Analysis
Characteristics and Properties of RBD-FE
Oxidative Stability
Thermal Stability
Evaluation of RBD-FE as Sunscreen Agent
Ultraviolet-visible (UV-Visible) Analysis
Sun Protector Factor (SPF) of RBD-FE and Sunscreen Formulae

5 CONCLUSION
Recommendation and Suggestion

REFERENCES
APPENDICES
BIODATA OF THE AUTHOR