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IMMOBILIZING CARBONACEOUS MATERIALS ON POLYURETHANE 

FOAM 
 

By 
 

KADILI JULIUS ATTAH 
 

December 2023 
 

Chairman : Associate Professor Abdul Halim bin Abdullah, PhD 
Faculty  : Science 
 

This study reports the preparation of new polyurethane (PU) composite foams by dip-
coating method and evaluates their performances in the oil-water separation process. Oils 
and organic solvents were chosen as models because of the menace of oil spills during 
exploration, transportation, and storage and indiscriminate discharge of industrial 
petrochemical wastes are potential risk factors for human health and the environment. 
Conventional methods for oil spill cleanup have reached a threshold with various 
collateral effects. Oils and organic solvents absorption onto solid absorbents, especially 
hydrophobic polyurethane (PU) foam, is an excellent technique for oil spill cleanup due 
to high sorption capacity, selectivity, and reusability arising from the synergistic effect 
of PU foam and carbonaceous fillers. Therefore, this research aimed to produce a flexible 
hydrophobic/oleophilic polyurethane foam for efficient oil/water separation. The 
absorbents were prepared by facilely coating PU foam skeletons with graphene oxide 
(GO), graphite (GT), and hydroxylated multiwalled carbon nanotubes (MWCNTs-OH) 
using polydimethylsiloxane (PDMS) as an effective adhesive. In this work, 12 different 
absorbents were prepared at stage one involving four samples each with graphene oxide 
contents of 3.6, 5.8, 8.0 and 11.1 wt.%; graphite contents of 4.76, 9.09, 13.04, and 15.73 
wt.%; and MWCNT contents of 3.61, 6.97, 10.11 and 12.83 wt.% dip-coated for 1 h on 
PU foam blocks with dimension 1.5 𝑥 1.5 𝑥 1.5 cm3. A pristine PU foam was included 
as a reference in each group of samples. The absorption performance of each foam 
sample (PU, PU/GO, PU/GT, PU/CNT) was tested in engine oil, and the optimum sample 
for each carbon material was selected for further treatment. At stage two, PU composite 
foams with optimal carbon contents were treated with 1.5, 2.5, 5.0, 10.0, and 20.0 mg/mL 
PDMS prepolymer (Sylgard 184A) and curing agent (Sylgard 184B) at a weight ratio of 
10:1. From these, the absorbents-PU/GO-PDMS; PU/GT-PDMS and PU/CNT-PDMS 
with optimal PDMS content of 5.49, 8.91 and 6.52 wt.% respectively were chosen for 
absorption performance test in oils (engine oil, cooking oil) and organic solvents 
(chloroform, acetone, cyclohexane), followed by reusability test in engine oil only. For 
application in oil/water separation, the hybrid foams were used in the separation of 
engine oil from water under stable (no external force) and dynamic (under magnetic 
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stirring) systems with separation efficiency >90%. Furthermore, an attempt was made to 
mimic a continuous oil spill cleanup process. The absorbent was fitted into one pipe end 
and immersed into a beaker containing a mixture of cyclohexane (stained with Sudan III 
red) and water, with the other end connected to a vacuum pump via a suction flask. The 
pump was used to create a pressure difference, which selectively removed the colored 
organic solvent into the suction flask, leaving the water in the beaker. The kinetic 
experiments were carried out in engine oil, cooking oil, acetone, and cyclohexane using 
the PU foam hybrids. The kinetic data for each absorbent suggests that three major 
factors, including oil-sorbent affinity resulting from hydrophobicity, surface 
morphological characteristics of the sorbents, and physical properties of the test oil, 
determine the sorption performance of carbon-modified PU foams. The physicochemical 
properties of both pristine and modified PU foams were studied using water contact angle 
(WCA), FTIR, FESEM-EDX, and compression tests. The influence of carbonaceous 
fillers and polydimethylsiloxane on PU foam's wettability and absorption performance 
was studied. The modified PU foam absorbents possessed superhydrophobicity, with 
optimal water contact angles of 151.95°, 150.76° and 153.59° for PU/GO-PDMS, 
PU/GT-PDMS, and PU/CNT-PDMS, respectively, and were found to be stable (greater 
than 150°) over a broad range of pH (2-12), confirming their superhydrophobic stability 
in corrosive environments. The FESEM results show highly interconnected spherical 
pore structures of the hybrid foams with microscale holes, capable of absorbing oil from 
an oil/water mixture with high absorption capacity and selectivity. The influence of 
different carbon loading and PDMS concentrations on the oil absorption performance of 
the hybrid foams was also studied. The results suggest 5.8, 13.04, and 6.97 wt.% as the 
optimal contents of GO, GT, and MWCNTs, respectively, and 5.49, 8.91, and 6.52 wt.% 
PDMS reveals remarkable improvement in the absorption performances of the materials, 
with absorption capacity ranging from 29.63 to 68.30 g/g in engine oil, cooking oil, 
chloroform, acetone, and cyclohexane. The recyclability test showed that the hybrid 
foams retained at least 90% of their initial oil absorption capacity after 10 absorption-
desorption cycles. The PU/GO-PDMS, PU/GT-PDMS, and PU/CNT-PDMS hybrid 
foams, which are low-cost, highly reusable, and durable hybrid materials, exhibit 
excellent absorption characteristics, confirming their potential as suitable candidates for 
efficiently removing oil and organic solvents from water. 
 

Keyword: Absorption, Composite, Polyurethane, Reusability, Superhydrophobic 
 
SDG: GOAL 6: Clean Water and Sanitation, GOAL 11: Sustainable Cities and 
Communities, GOAL 13: Climate Action 
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MENINGKATKAN PENYINGKIRAN MINYAK DAN PELARUT DARIPADA 
AIR OLEH BAHAN KARBON TERSEKAT-GERAK PADA BUSA 

POLIURETANA 
 

Oleh 
 

KADILI JULIUS ATTAH 
 

Disember 2023 
 

Pengerusi : Profesor Madya Abdul Halim bin Abdullah, PhD 
Fakulti : Sains 
 

Kajian ini melaporkan penyediaan busa komposit poliuretana (PU) baharu dengan 
kaedah salutan celup dan menilai prestasinya dalam proses pengasingan minyak-air. 
Minyak dan pelarut organik dipilih sebagai model kerana ancaman tumpahan minyak 
semasa penerokaan, pengangkutan, dan penyimpanan serta pelepasan industri secara 
sembarangan. Sisa petrokimia merupakan faktor risiko yang berpotensi untuk kesihatan 
manusia dan alam sekitar. Kaedah konvensional untuk pembersihan tumpahan minyak 
telah mencapai hadnya dengan pelbagai kesan sampingan. Penyerapan minyak dan 
pelarut organik pada penyerap pepejal, terutamanya buih poliuretana hidrofobik (PU), 
adalah teknik yang sangat baik untuk pembersihan tumpahan minyak kerana kapasiti 
penyerapan yang tinggi, selektiviti dan kebolehgunaan semula yang timbul daripada 
kesan sinergistik busa PU dan bahan pengisi berasaskan karbon. Oleh itu, penyelidikan 
ini bertujuan untuk menghasilkan busa poliuretana hidrofobik/oleofilik yang fleksibel 
untuk pengasingan minyak/air yang cekap. Penyerap disediakan dengan menyalut 
rangka busa PU dengan grafin oksida (GO), grafit (GT), dan nanotiub karbon bertembok 
berbilang terhidroksilasi (MWCNTs-OH) menggunakan polidimetilsiloksana (PDMS) 
sebagai pelekat yang berkesan. Dalam kajian ini, 12 penyerap berbeza telah disediakan 
pada peringkat pertama melibatkan empat sampel setiap satu dengan kandungan grafin 
oksida 3.6, 5.8, 8.0 dan 11.1 wt.%; kandungan grafit 4.76, 9.09, 13.04, dan 15.73 wt.%; 
dan kandungan MWCNT 3.61, 6.97, 10.11 dan 12.83 wt.% bersalut celup selama 1 jam 
pada blok busa PU dengan dimensi 1.5 𝑥 1.5 𝑥 1.5  cm3. Busa PU asal dimasukkan 
sebagai rujukan dalam setiap kumpulan sampel. Prestasi penyerapan setiap sampel busa 
(PU, PU/GO, PU/GT, PU/CNT) telah diuji dalam minyak enjin, dan sampel optimum 
bagi setiap bahan karbon telah dipilih untuk rawatan selanjutnya. Pada peringkat kedua, 
busa komposit PU dengan kandungan karbon optimum dirawat dengan 1.5, 2.5, 5.0, 10.0, 
dan 20.0 mg/mL prapolimer PDMS (Sylgard 184A) dan agen pengawetan (Sylgard 
184B) pada nisbah berat 10:1. Daripada ini, penyerap PU/GO-PDMS; PU/GT-PDMS 
dan PU/CNT-PDMS dengan kandungan PDMS optimum masing-masing 5.49, 8.91 dan 
6.52 wt.% telah dipilih untuk ujian prestasi penyerapan dalam minyak (minyak enjin, 
minyak masak) dan pelarut organik (kloroform, aseton, sikloheksana) , diikuti dengan 
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ujian kebolehgunaan semula dalam minyak enjin sahaja. Untuk aplikasi dalam 
pengasingan minyak/air, busa hibrid digunakan dalam pengasingan minyak enjin 
daripada air di bawah sistem stabil (tiada daya luaran) dan dinamik (di bawah kacau 
magnet) dengan kecekapan pemisahan >90%. Tambahan pula, percubaan telah dibuat 
untuk meniru proses pembersihan tumpahan minyak yang berterusan. Penyerap dipasang 
pada satu hujung paip dan direndam ke dalam bikar yang mengandungi campuran 
sikloheksana (diwarnai dengan perwarna Sudan III merah) dan air, dengan hujung satu 
lagi disambungkan ke pam vakum melalui kelalang sedutan. Pam digunakan untuk 
mencipta perbezaan tekanan, yang secara selektif mengeluarkan pelarut organik 
berwarna ke dalam kelalang sedutan, meninggalkan air di dalam bikar. Eksperimen 
kinetik telah dijalankan dalam minyak enjin, minyak masak, aseton, dan sikloheksana 
menggunakan busa hibrid PU. Data kinetik bagi setiap penyerap menunjukkan bahawa 
tiga faktor utama, termasuk pertalian penyerap minyak yang terhasil daripada 
hidrofobisiti, ciri morfologi permukaan penyerap, dan sifat fizikal minyak ujian, 
menentukan prestasi penyerapan busa PU yang diubah suai dengan karbon. Sifat 
fizikokimia kedua-dua busa PU tulen dan diubah suai telah dikaji menggunakan sudut 
sentuhan air (WCA), FTIR, FESEM-EDX, dan ujian mampatan. Pengaruh pengisi 
berkarbon dan polidimetilsiloksana terhadap kebolehbasahan dan prestasi penyerapan 
busa PU telah dikaji. Penyerap busa PU yang diubah suai mempunyai sifat hidrofobik 
yang tinggi, dengan sudut sentuhan air optimum masing-masing 151.95°, 150.76° dan 
153.59° untuk PU/GO-PDMS, PU/GT-PDMS dan PU/CNT-PDMS, dan didapati stabil. 
(lebih daripada 150°) pada julat pH yang luas (2-12), mengesahkan kestabilan sifat 
hidrofobiknya dalam persekitaran yang menghakis. Keputusan FESEM menunjukkan 
struktur liang sfera yang sangat saling berkait bagi busa hibrid dengan liang mikro, 
mampu menyerap minyak daripada campuran minyak/air dengan kapasiti penyerapan 
dan selektiviti yang tinggi. Pengaruh pemuatan karbon yang berbeza dan kepekatan 
PDMS terhadap prestasi penyerapan minyak busa hibrid juga telah dikaji. Keputusan 
menunjukkan bahawa 5.8, 13.04, dan 6.97 wt.% sebagai kandungan optimum GO, GT, 
dan MWCNTs, masing-masing, dan 5.49, 8.91, dan 6.52 wt.% PDMS mendedahkan 
peningkatan yang luar biasa dalam prestasi penyerapan bahan, dengan penyerapan 
kapasiti antara 29.63 hingga 68.30 g/g dalam minyak enjin, minyak masak, kloroform, 
aseton dan sikloheksana. Ujian kebolehkitar semula menunjukkan bahawa busa hibrid 
mengekalkan sekurang-kurangnya 90% daripada kapasiti penyerapan minyak awalnya 
selepas 10 kitaran penyerapan-penyahserapan. Busa hibrid PU/GO-PDMS, PU/GT-
PDMS dan PU/CNT-PDMS, yang merupakan bahan hibrid yang kos rendah, sangat 
boleh digunakan semula dan tahan lama, mempamerkan ciri penyerapan yang sangat 
baik, mengesahkan potensinya sebagai calon yang sesuai untuk menyingkirkan minyak 
dan pelarut organik daripada air dengan cekap. 
 

Kata kunci: Penyerapan, Komposit, Poliuretana, Kebolehgunaan Semula, 
Superhidrofobik 
 
SDG: MATLAMAT 6: Air Bersih dan Sanitasi, MATLAMAT 11: Bandar dan Komuniti 
Mampan, MATLAMAT 13: Tindakan Iklim 
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 Background of the Study  
 

Marine oil spills and petrochemical industrial wastewater emission are of serious 
environmental and ecological concerns, and most of these occurrences are a consequence 
of upsurge in petroleum and chemical industries as well as marine transport (Dhumal et 
al., 2021; Kulal et al., 2019; Piperopoulos et al., 2020). For example, the explosion of 
BP’s Deepwater Horizon in 2010 was reported to have released about 210 million gallons 
of oil in the Gulf of Mexico (Li and Boufadel, 2010). Similarly, Fingas (2013) reported 
that daily oil spills in the United States navigable waters is about 15 incidences. Water 
pollution due to oil and toxic organic solvents spills have raised very serious 
environmental concern globally (Dhumal et al., 2021; He et al., 2021; Kulal et al., 2019). 
The release of these pollutants can occur in the process of extraction, transportation, 
storage as well as disposal (Rahmani et al., 2017). After accumulating in fish and other 
edible marine organisms, the pollutants are eventually consumed by humans, thereby 
posing severe risk to human health (Carpenter et al., 2019; Jamaly et al., 2015). This 
scenario has therefore, heightened the demand for effective method of oil and organic 
solvents removal from water. Moreover, provision of clean water and environment for 
all by the year 2030 is part of the 17th United Nation’s sustainable development goals.  
There are several methods of oil spill remediation such as enhancing the natural 
biodegradation by breaking up the oil molecules with the application of biological 
agents, mechanical cleaning, in-situ combustion, and chemical sedimentation (Doshi et 
al., 2018; Evans et al., 2001; Zahed et al, 2010). Another method of oil spill remediation 
is by absorption, in which absorbent materials such as mats, pads, and socks are used for 
oil spill clean-up (Piperopoulos et al., 2018; Yu et al., 2017). Among the various 
technologies available for water treatment, an emerging route considered as one of the 
most effective approach to oil spill clean-up is absorption. This method is widely 
accepted because of its low cost, high selectivity towards oil, easy fabrication, 
environmental harmlessness, and recyclability (He et al., 2021). Compared to many 
porous natural sorbents, such as sawdust, wool fiber, activated carbon, bentonite, and 
zeolite (Annunciado et al, 2005; Wang et al, 2013) and synthetic sorbents such as fibrous 
polypropylene and cellulose materials (Paul et al., 2016; Liu et al., 2017a), polyurethane 
(PU), a member of the 3D absorbents has been widely investigated and reported as an 
ideal sorbent material for oil-water separation (Guo et al., 2017; Zhang et al., 2017a). 
This is because, despite the high surface area and porous structures exhibited by most 
natural sorbents, most of them present low sorption capacities, poor selectivity, and no 
recyclability. On the other hand, the application of synthesized materials, although with 
good selectivity and high sorption capacity, is not only limited by expensive raw 
materials but also constrained by complex synthesis procedures. (Shamsijazeyi et al, 
2014). High oil sorption capacity, oil-water selectivity, recyclability, and low cost which 
are important parameters required of a suitable absorbent material for large scale oil spill 
clean-up have been reported for polyurethane foam by several researchers (Wang et al., 
2013; Zhu and Pan, 2014; Shi et al., 2014). These enhanced sorption performances 
characteristics of the polyurethane sorbents were achieved by means of chemical 
modification of their surface properties to make them hydrophobic and oleophilic.  



© C
OPYRIG

HT U
PM

2 

Furthermore, the combination of nanotechnology with membrane separation technology 
has been recently considered as viable and effective approach in the enhancement of 
membrane performance (Pendergast and Hoek, 2011). Nanomaterials, including single-
walled carbon nanotubes (SWMWCNTs) and multi-walled carbon nanotubes 
(MWCNTs), graphene and its derivatives among others, have been considered materials 
of choice by researchers in the fields of material science and engineering for the 
fabrication and design of new composite membranes for water treatment application. 
This is due to their high specific surface area, high mechanical strength, excellent 
chemical inertness, and outstanding water-transport property (Goh et al, 2016; Lee et al, 
2016). Recently, nanocomposite membrane which is a combination of polymeric and 
nanomaterials has highly attracted the attention of researchers and has been employed 
for water treatment. Based on existing results from the literature, this seems to be a 
promising solution to the challenges of conventional membrane separation. 
Incorporating nanomaterials into conventional polymeric membrane enhances structural 
tunability and physicochemical properties such as hydrophobicity, porosity, thermal, and 
mechanical stability of membranes. 
 

This study is therefore, aimed at facilely fabricating robust and reusable nanocomposite 
materials, highly hydrophobic and oleophilic, which exhibits high oil sorption capacity, 
oil-water selectivity and enhanced mechanical resistance using commercially available 
polyurethane foam as substrate and carbonaceous materials such as graphene oxide, 
graphite as well as MWCNTs as fillers. The sorption performances of the prepared 
composite foams were investigated for different oils (engine oil, cooking oil) and organic 
solvents including chloroform, acetone, and cyclohexane. Various methods were 
employed to characterize the fabricated materials to identify and verify the presence of 
surface functional groups, surface wettability, morphology, mechanical strength using 
Fourier transform infra-red spectroscopy, water contact angle, Field emission scanning 
electron microscopy and compressive modulus respectively. 
 

1.2 Problem Statement and Justification 
 

Methods such as in situ burning (Aurell and Gullett, 2010), skimming (Broje and Keller, 
2007; Al-Majed et al., 2012), chemical dispersants (Kujawinski et al., 2011) have been 
previously employed in oil spill clean-up. However, these methods are not only 
expensive, ineffective and difficult to operate, but also associated with secondary 
pollution in which the end products of the absorbents after use, constitute wastes and 
contaminate the environment if not properly disposed (Abuhasel et al., 2021; Perez-
Calderon et al., 2018). 
 

Absorption method is considered the most effective approach to oil-water separation (Wu 
et al., 2014; Cao et al., 2017). This is because of the low cost, easy preparation, simplicity 
of operation and environmental harmlessness of absorbent materials (Liu et al., 2021). 
For example, natural sorbents, such as vegetable fiber, sawdust, cotton fiber and zeolite 
have been widely investigated for oil clean up purposes. This is due to their high surface 
area and porous structure. However, they present low sorption capacities, poor 
selectivity, poor handling and no recyclability (Piperopoulos et al, 2020). Similarly, 
some synthesized materials, though possess excellent sorption performance and good 
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selectivity, are limited by expensive raw materials and complex synthesis procedures 
(Shamsijazeyi et al, 2014). 
 

Furthermore, carbon materials such as nanotubes, graphite and graphene oxide have 
demonstrated successful applicability in various fields including water remediation; 
however, individual application of these materials for oil absorption purposes has been 
faced with various limitations. Their major setbacks which limit their application include 
difficulty in structure control, poor handling, poor processability, no recyclability. 
Moreover, some of these materials are expensive, their application may also lead to 
secondary pollution since they are not recyclable.  
 

On the other hand, 3D absorbent materials such as polyurethane foam composites are 
inexpensive and possess high porosity, large specific surface area, high sorption capacity, 
recyclability as well as good oil/water selectivity (Ma et al., 2016; Wu et al., 2019; 
Jamsaz and Goharshadi, 2020). However, polyurethane foams in their pristine state have 
very poor oil/water selectivity. This is because of the presence of hydrophilic groups on 
their surfaces. Hence, the need for surface modification to make polyurethane foams 
suitable for oil/water separation (Liu et al., 2013a). Therefore, combination of 
nanotechnology and membrane separation techniques as employed in this work can be a 
breakthrough in overcoming the challenges. This is achieved by formation of composites 
using bulk carbon nanomaterials and polymer foam to improve their practical 
applications. In this regard, the desired properties such as hydrophobicity, good 
mechanical properties are provided by the carbon materials while others such as high 
flexibility, improved handling, low cost, easy fabrication as well as reusability are 
contributed by the polymer. The synergistic effect of these materials results in a 
composite which overcomes the stated challenges and exploitable for oil-water 
separation. Moreover, the promising materials must possess both hydrophobic and 
oleophilic behavior to selectively absorb oil while repelling water. 
 

Polyurethane (PU) foams are a member of the family of polymer foams with a variety of 
applications in everyday life due to their unique properties and ability to be modified.  
PU foam modification for oil-water separation has been the center of many research, 
making it of great interest for oil-water separation. This is probably due to the simplicity 
of its fabrication method, coupled with its outstanding stability, cyclic lifetime, and 
separation capacity. Hence, was chosen for this research work. Similarly, MWCNTs, 
graphite and graphene oxide were chosen as polyurethane foam surface modifiers due to 
their versatility and unique features. Because of their stronger chemical and physical 
interactions, rapid equilibrium, high sorbent capacity, excellent mechanical strength, and 
tailored surface chemistry, they are considered as superior materials for the remediation 
of a wide range of organic and inorganic contaminants compared with conventional 
sorbents such as clay, zeolite, and activated carbon.  
 

Therefore, combining the highly exotic properties of these materials with those of 
polyurethane foam as demonstrated in this study, a superhydrophobic/oleophilic 
absorbent can be fabricated for oil/water separation. 
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1.3 Hypothesis 
 

Pristine polyurethane foams are highly porous and hydrophilic, hence are not suitable for 
oil-water separation. Since carbon materials are usually hydrophobic, it is hypothesized 
that the addition of carbon materials such as graphene oxide, graphite or MWCNTs will 
improve the hydrophobicity/oleophilicity of the foam thus improves the oil-water 
separation process. The amount of carbon material and PDMS coated on the foam may 
play key role in the absorption performance of the composite. If the amount of carbon 
material loaded into the foam is too low, there may be low absorption capacity and poor 
oil/water selectivity due to inadequate surface roughness and hydrophobicity. On the 
other hand, if the amount of surface modifiers is too high, there is increased weight of 
the composite, possible agglomeration, and partial clogging of the polyurethane foam’s 
pore structures. These also lead to poor absorption performance. In addition to 
hydrophobic character, the surface morphology (porosity, pore size and connectivity) of 
the PU foam absorbent as well as the intrinsic properties of the sorbate plays significant 
role in oil absorption performance. Moreover, the presence of carbonaceous filler within 
the PU foam architectures does not only enhance the sorbent’s durability due to increase 
in mechanical strength, but also its oil retention capacity and sorption capacity. Although 
the sole aim of PDMS is to act as efficient adhesive between the carbon material and the 
PU foam skeleton, it is capable of improving the hydrophobicity of the sorbent due to its 
low surface energy and hydrophobic character. 
 

1.4 Significance of the Research  
 

Increasing human population and urbanization, rapid development of the petroleum 
industry as well as marine transport has frequently led to oil spills, and petrochemical 
industrial wastewater emission. These are of serious environmental and ecological 
concern due to the tremendous pressure on natural resources such as water and their 
consequences on human health. Therefore, to achieve sustainable development via 
provision of clean water and environment for all as stated in the United Nation’s 
sustainable development goals, there is need to develop cost-effective, efficient, and 
durable absorbents for the remediation of oil spill and organic solvent emissions. This is 
because environmental pollution arising from these sources is almost inevitable. In this 
regard, the study of alternative method of removing oil pollutants or organic solvents 
from water is worthwhile. This study involves the surface modification of commercial 
polyurethane foam using carbonaceous materials and PDMS pre polymer and its 
application in the remediation of oil spill and organic solvents from water. From the 
findings of this research, a more efficient, cost-effective, and durable alternative means 
of water remediation will be developed to replace the conventional methods. In cases of 
water pollution due to accidental discharge of oil during transport or storage, the 
application of the techniques described in this research will be useful to environmental 
protection agencies to selectively remove oil and organic solvents from water. This will 
prevent the poisoning of aquatic organisms and humans by these hazardous pollutants. 
Furthermore, this research is useful to petrochemical industries for environmental clean-
up during oil exploration when spillage is almost inevitable. It is also noteworthy that 
since the polyurethane hybrid foam can be reused, the possibility of secondary pollution 
from disposal or burning of used absorbent is avoided. This makes this research unique 
and environmentally friendly compared to other conventional methods. However, a 



© C
OPYRIG

HT U
PM

5 

major limitation of the present study is that the prepared absorbents could only achieve 
a partial separation of oil-in-water or water-in-oil emulsions. This is because additional 
modifications required for this application could not be carried out due to limited time 
and resources. 
 

1.5 Aim and Objectives of Research 
 

The main aim of this research is to produce a flexible hydrophobic/oleophilic 
polyurethane foam for efficient oil/water separation.   
 

The specific objectives of the work are as follows: 
 

i. to prepare hydrophobic/oleophilic polyurethane foam modified with carbon and 
PDMS. 

ii. to characterize the prepared polyurethane foam absorbents using FTIR, 
FESEM-EDX, water contact angle, compressive strength 

iii. to evaluate the maximum absorption capacity of the polyurethane foam hybrids 
in oils (engine oil, cooking oil) and organic solvents (acetone, chloroform, 
cyclohexane)  

iv. to investigate the performance of the prepared absorbents in terms of reusability 
and oil/water selectivity under static and dynamic systems 

v. to evaluate the sorption kinetics of the prepared absorbents with respect to the 
diffusion rates of oils and organic solvents. 

 

1.6 Scope of the Work 
 

The scope of this work includes the preparation of 12 different absorbents at stage one. 
This involves four samples for each of graphene oxide (3.6, 5.8, 8.0 and 11.1 wt.%); 
graphite (4.76, 9.09, 13.04, and 15.73 wt.%); and MWCNTs (3.61, 6.97, 10.11 and 12.83 
wt.%) dip-coated on PU foam skeleton, with pristine PU foam sample included in each 
as reference. The absorption performance of each composite foam was tested in engine 
oil. The PU composite foams that exhibit the highest oil absorption performance were 
chosen for further treatments. At stage two, PU composite foams with optimal carbon 
contents were treated with 1.5, 2.5, 5.0, 10.0 and 20.0 mg/mL PDMS pre polymer and 
curing agent. From these, the absorbents (PU/GO-PDMS, PU/GT-PDMS and 
PU/MWCNT-PDMS) with optimal PDMS contents of 5.49, 8.91 and 6.52 wt.% 
respectively were chosen for absorption performance test in oils (engine oil, cooking oil) 
and organic solvents (chloroform, acetone, cyclohexane), followed by reusability test in 
engine oil only. For application in oil/water separation, the hybrid foams were used in 
the separation of engine oil from tap water under stable (no external force) and dynamic 
(under magnetic stirring) systems. The kinetic experiments were carried out in engine 
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oil, cooking oil, acetone and cyclohexane using each of PU/GO-PDMS, PU/GT-PDMS 
and PU/MWCNT-PDMS hybrids. The diffusion rate for each absorbent was determined 
and related to the surface features and morphologies of the absorbents as well as the 
properties of the absorbates. The foam density, porosity and pore size distribution were 
studied. Foam samples were also characterized using various techniques to determine the 
presence of surface functional groups, surface wettability, morphology and elemental 
analysis as well as mechanical strength using FT-IR spectroscopy, water contact angle, 
FESEM-EDX and compressive modulus respectively. The entire task and scope of this 
research is summarized in Figure 1.1.  
 

 

Figure 1.1: The main scope of this research 
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