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Early research on game problems described by a system of partial differential equa-
tions is followed by a reduction to those described by an infinite system of ordinary
differential equations using the method of decomposition. Every infinite n-system of
ordinary differential equations, n ≥ 2 has a solution with a unique fundamental ma-
trix which is then applied to study differential games in various perspectives. This
thesis focuses in finding solutions to pursuit differential game problems of an infinite
3-system of first order ordinary differential equations in Hilbert space l2. The model
of the game is first formulated and then rewritten in a matrix form. The homoge-
neous solution of the model is obtained where a fundamental matrix is identified.
Some notable properties of the fundamental matrix are proved and applied to find
the particular solution of the model and simplify the calculations in the study of the
differential game. The existence and uniqueness of the general solution of the game
model in l2 space are then proved.

The study of pursuit game begins with the problem of one pursuer and one evader
where the pursuer aims to bring the state of the system from an initial state to the
origin. On the other hand, the evader tries to prevent this from occurring as it moves
freely. The game is studied separately with two different types of constraints on
players’ control functions, which are integral and geometric constraints. The control
problem is studied where the control function is first constructed and then shown to
be admissible. The control function is to transfer the state of the system into origin
and to be applied in construction of admissible strategy for the pursuer. Sufficient
conditions are obtained for pursuer to complete the pursuit in a finite time interval.
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This thesis also examines pursuit differential games of both integral and geometric
constraints where the pursuer’s motive is to transfer an initial non zero state of the
system into another non zero state. This investigation also requires the control prob-
lem to be solved so that it can be used to establish an admissible strategy for the
pursuer to bring the system to another non zero state within a finite time interval.

A more refined study is carried out to solve optimal pursuit problem of the game
with integral constraints where the evader moves with its own strategy rather than
moving freely. In this investigation, an optimal control function is constructed and
proven to be admissible. It is then utilised in establishing optimal strategies for both
pursuer and evader to achieve the optimal pursuit time of the game.

The final part of this thesis is about a study of pursuit game that involve finitely
many pursuers versus one evader with model of the game is similar to the model
of the previous games. The control function of each player is subjected to integral
constraint. It is assumed that the combined resources of all pursuers is greater than
the resource of the evader. An admissible strategy for each pursuer is constructed
where two cases are considered. The first case is to show that the game of pursuit
can be terminated by one of the pursuers at some time in a finite time interval in
which the evader moves freely. The second case is to find the optimal number of
pursuers needed to terminate the game in which the evader moves with constructed
admissible strategy.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PERMAINAN PEMBEZAAN PENGEJARAN SISTEM TIGA-DIMENSI
TAK TERHINGGA PERSAMAAN PEMBEZAAN DI DALAM RUANG

HILBERT

Oleh

DIVIEKGA NAIR A/P MADHAVAN

November 2023

Pengerusi: Idham Arif bin Hj Alias
Fakulti: Sains

Kajian awal mengenai masalah permainan yang diperihalkan oleh sistem persamaan
pembezaan separa diikuti dengan penurunan kepada yang diperihalkan oleh sistem
tak terhingga persamaan pembezaan biasa menggunakan kaedah penguraian. Se-
tiap n-sistem tak terhingga persamaan pembezaan biasa, n ≥ 2 mempunyai penye-
lesaian dengan matrik asasi unik yang kemudiannya diaplikasikan untuk mengkaji
permainan pembezaan dalam pelbagai perspektif. Tesis ini memfokuskan dalam
mencari penyelesaian kepada masalah permainan pembezaan pengejaran 3-sistem
tak terhingga tertib pertama persamaan pembezaan biasa di dalam ruang Hilbert l2.
Model permainan telah diformulasi terlebih dahulu dan kemudiannya ditulis semula
dalam bentuk matrik. Model penyelesaian homogen telah diperoleh di mana matrik
asasi telah dikenal pasti. Beberapa sifat penting matrik asasi telah dibuktikan dan
diaplikasikan untuk mencari penyelesaian khusus model dan mempermudah pengi-
raan dalam kajian permainan perbezaan. Kewujudan dan keunikan penyelesaian am
model permainan di dalam ruang l2 kemudiannya telah dibuktikan.

Kajian permainan pengejaran bermula dengan masalah satu pengejar dan satu pen-
gelak di mana pengejar bermatlamat untuk membawa keadaan sistem dari keadaan
awal ke asalan. Sebaliknya, pengelak cuba untuk menghalangnya daripada berlaku
di mana ia bergerak bebas. Permainan ini telah dipelajari secara berasingan den-
gan dua jenis kekangan yang berbeza pada fungsi kawalan pemain, iaitu kekangan
kamiran dan kekangan geometri. Masalah kawalan telah dipelajari di mana fungsi
kawalan telah dibina terlebih dahulu dan kemudiannya ditunjukkan teraku. Fungsi
kawalan tersebut ialah untuk memindahkan keadaan sistem ke asalan dan telah diap-

iii



© C
OPYRIG

HT U
PM

likasikan untuk membina strategi teraku pengejar. Syarat cukup telah diperoleh bagi
pengejar melengkapkan pengejaran dalam suatu selang masa terhingga.

Tesis ini turut meneliti permainan perbezaan pengejaran bagi kedua-dua kekan-
gan kamiran dan geometri di mana motif pengejar ialah untuk memindahkan sis-
tem dalam keadaan awal bukan sifar ke keadaan bukan sifar yang lain. Kajian ini
juga memerlukan masalah kawalan diselesaikan supaya ianya boleh digunakan un-
tuk membina strategi teraku pengejar untuk membawa sistem ke keadaan bukan sifar
yang lain dalam suatu selang masa terhingga.

Kajian yang lebih terperinci telah dilaksanakan untuk menyelesaikan masalah penge-
jaran optimal bagi permainan dengan kekangan kamiran di mana pengelak bergerak
dengan strateginya yang tersendiri berbanding bergerak secara bebas. Dalam kajian
ini, fungsi kawalan optimal telah dibina dan dibuktikan terakukan. Ia kemudiannya
digunakan dalam membina strategi optimal untuk kedua-dua pengejar dan pengelak
bagi mencapai masa pengejaran optimal permainan.

Bahagian terakhir tesis ini adalah mengenai kajian permainan pengejaran yang meli-
batkan pengejar yang terhingga banyaknya melawan satu pengelak dengan model
permainan yang serupa dengan model permainan sebelumnya. Fungsi kawalan setiap
pemain adalah tertakluk kepada kekangan kamiran. Telah diandaikan bahawa gabun-
gan sumber semua pengejar adalah lebih besar daripada sumber pengelak. Strategi
teraku setiap pengejar telah dibina di mana dua kes telah dipertimbangkan. Kes per-
tama adalah untuk menunjukkan bahawa permainan pengejaran boleh ditamatkan
oleh satu pengejar pada suatu waktu dalam selang masa terhingga di mana penge-
lak bergerak bebas. Kes kedua adalah untuk mencari bilangan optimal pengejar yang
diperlukan untuk menamatkan permainan di mana pengelak bergerak dengan strategi
teraku yang dibina.
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CHAPTER 1

INTRODUCTION

Overview of the Chapter

This chapter describes the basic concepts of game theory followed by differential
game theory and some fundamental concepts that are related to our study. Besides
that, this chapter covers the method of decomposition that reduces a system of partial
differential equations into an infinite system of ordinary differential equations. We
also discuss the motivation, problem statement, objectives, scope, methodology and
organisation of the thesis.

1.1 Game Theory

The development of knowledge in various areas or disciplines including game theory
is due to the continuous efforts taken by researchers. These efforts include examina-
tion of real-life phenomena, investigation and finding solution of any problems that
arise, implementation of reforms and improvement, and development of novel theo-
ries for universal use. Game theory serves as a decision-making tool in conflicting
scenarios involving two parties of opposite objectives. It establishes some acceptable
strategies to be utilised by the party that want to accomplish its goal.

Some of the well-known games in game theory are the Achilles and Tortoise race
and the Lion and Man puzzle. The race between Achilles (pursuer) and a tortoise
(evader) is a paradox introduced by Zeno (Sainsbury (2009)), in which both of them
move on a straight line and in the same direction with the tortoise given a head start.
Zeno asserted that no matter how fast Achilles runs, he will never be able to catch up
with the tortoise because the tortoise will always be ahead. However, this problem
is proved to be solvable by many researchers such as Ardourel (2015) and Driessen
(2018).

The puzzle of a lion (pursuer) and a man (evader) takes place in a circle-shaped arena
in which the lion wants to capture the man with the man avoids being captured. The
game is considered in three different circumstances depending on the speed of the
players. The lion seeks to catch the man at the shortest possible time but the man
tries to keep the evasion at the longest possible time. In particular, if the speed of the
lion equals to the speed of the man, it has been proven that evasion is possible with
a smallest distance between both of them (Nahin (2007)).
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1.2 Differential Game Theory

The theory of differential game is a cross between game theory and optimal The
theory of optimal control deals with determination of control and state trajectories
for dynamic system by considering the objective function to produce an optimized
system. Differential game theory is representation of game theory involving two
moving players which are governed by some differential equations but of contrasting
objectives, in which optimal control theory is applied to develop strategized control
for these dynamic players. Thus, the main focus of differential game theory is to
describe the game and construct admissible strategy based on the control function to
be used by the players to move accordingly in order to accomplish their respective
objective and achieve the termination of the game.

The solution to a differential game problem depends on the design of the game which
varies according to the equation of game, the space of game, the objective of players,
the number of players, the type of constraints imposed on the control functions of
players and the type of the game.

Differential game may occur in a finite dimensional space such as Euclidean space
R2,R3 or Rn,n ∈ Z or an infinite dimensional space like Hilbert space l2 or l2

r+1.
Specifically, the game in an infinite dimensional space is described by an infinite
system.

There are two kinds of moving players with contrasting objectives, that are:

1. Pursuer who intends to capture evader in which the position of the pursuer
coincides with the position of the evader at some time on a finite time interval
to complete the pursuit.

2. Evader who aims to avoid being caught by pursuer in which the state of the
evader does not coincide with the state of the pursuer either on a finite time
interval (definitely) or for all time (indefinitely) to ensure the evasion is possi-
ble.

In an infinite system, pursuer wants to transfer a state of the system into another state
at some time to complete the pursuit. On the other hand, evader strives to avoid that
from happening.

The players involved in the game could be in the form of one pursuer-one evader, one
pursuer-many evaders, many pursuers-one evader or many pursuers-many evaders.

2
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Generally, the control function of pursuer at time t is given by u(t) and the control
function of evader at time t is referred as v(t). In every differential game, control
function of the players are subjected to some types of constraints and the two most
common are the following;

1. Geometric constraints is a norm-based constraints which usually limits the
speed of players in the game. The general form of control functions u(t) of
pursuer and v(t) of evader constrained by geometric constraints is given by

||u(t)|| ≤ ρ, t ∈ [t0,T ],

and
||v(t)|| ≤ σ , t ∈ [t0,T ],

respectively where ρ,σ are given positive numbers, ||u(t)|| represents the
speed of the pursuer and ||v(t)|| is that of the evader.

2. Integral constraints is an integral-based constraints which restricts the total
resources of players that can be exhausted due to consumption such as energy
or fuel. The general form of control functions u(t) of pursuer and v(t) of
evader constrained by integral constraints is given by∫ T

t0
||u(t)||2dt ≤ ρ

2

and ∫ T

t0
||v(t)||2dt ≤ σ

2

respectively where ρ,σ are given positive numbers,
∫ T

t0
||u(t)||2dt indicates the

total resources of the pursuer and
∫ T

t0
||v(t)||2dt represents the total resources

of the evader.

Note that t0 is an initial time and T is a finishing time of the game.

In order to win the game, players are equipped with some admissible strategies that
adhere to some constraints. There are two types of differential game described as
follows;

1. Pursuit differential game is a game where pursuer moves in accordance to
constructed admissible strategy that guarantees the pursuit can be completed
at a guaranteed pursuit time, while the evader moves at its discretion. However,
the game could end at an earlier time known as optimal pursuit time. It is the
earliest possible time that the pursuer can catch the evader as the evasion is still
possible before that time, since the evader also moves with its own admissible
strategy.

2. Evasion differential game is a game where evader’s movement is based on con-
structed admissible strategy that ensures the evasion is possible in the game,

3
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against the freely moving pursuer.

The game is called as pursuit-evasion differential game when both pursuit and eva-
sion games are examined. However, the conditions set for these two games are dif-
ferent from one another and hence strategies are developed separately for pursuer
and evader.

1.3 Fundamentals Concepts

In this section, we introduce some fundamental concepts that are related to our study.

1.3.1 Basic Definitions and Results

In this subsection, basic definitions and results are stated, together with some expla-
nations wherever necessary.

Definition 1.3.1 Homogeneous Linear Differential Equations (Arnold (1992))
The equation of the form

dy
dx

= f (x)y

is a first-order homogeneous linear differential equations.

(Cain and Reynolds (2010)) Suppose that y1,y2, ...,yn are dependent variable and t is
an independent variable. The system of first order linear differential equations with
constant coefficients is in the form of

y′1(t) = a11y1(t)+a12y2(t)+ ...+a1nyn(t)+ f1(t)

y′2(t) = a21y1(t)+a22y2(t)+ ...+a2nyn(t)+ f2(t)

:

y′n(t) = an1y1(t)+an2y2(t)+ ...+annyn(t)+ fn(t)

where ai j is a constant, 1 ≤ i ≤ j ≤ n and fi(t) for i = 1,2, ...,n are either constants
or functions of t.

Lemma 1.3.1 Unique solution of Initial Value Problem (Hartman (1982))
The initial value problem

y′ = AAA(t)y+ f (t)

where AAA(t) is a continuous n× n matrix and f (t) a continuous vector on t ∈ [a,b]

4
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and
y(t0) = y0, t0 ∈ [a,b]

has a unique solution y = y(t) and y(t) exists on t ∈ [a,b].

Definition 1.3.2 Eigenvalue and corresponding eigenvectors (Cain and Reynolds
(2010))
Suppose AAA is a square matrix. An eigenvalue for AAA is given by scalar λ if there ex-
ists a non-zero vector v such that AAAv = λv. Any non-zero vector which satisfy the
equality is known as eigenvector corresponding to the eigenvalue λ .

Definition 1.3.3 Characteristics polynomial of matrix (Cain and Reynolds (2010))
Let AAA be a n×n matrix and III be a n×n identity matrix. The equation det(AAA−−−λλλ III)= 0
indicates the characteristics equation of matrix AAA whereas det(AAA−−−λλλ III) represents
the characteristics polynomial of matrix AAA.

Definition 1.3.4 Partial differential equations (Cain and Reynolds (2010))
Let u = u(x, t), then equation defined by F(x, t,u,ux,ut ,uxx,uxt ,utt ,utx, ...) = 0 is a
partial differential equations. A partial differential equations is an equation bearing
an unknown function made up of several variables and its partial derivatives with
respect to the variables.

Definition 1.3.5 Inner product space (Alabiso and Weiss (2014))
Let V be a linear space over R or C. The function ⟨·, ·⟩ is said to be an inner product
if for all α,β ,γ ∈V and p,q ∈ R or C and obeys the following;

i. Symmetry: ⟨β ,α⟩= ⟨α,β ⟩,

ii. Linearity: ⟨α, pβ +qγ⟩= p⟨α,β ⟩+q⟨α,γ⟩,

iii. Positive Definite: ⟨α,α⟩ ≥ 0,∀α ∈V ,

iv. ⟨α,α⟩= 0 if and only if α = 0.

Definition 1.3.6 Vector space (Muscat (2014))
The vector space V over a field F is a set that is closed under addition and scalar
multiplication. Let α,β ,γ ∈V and p,q ∈ F, then the vector space V holds

i. Additive associativity: α +(β + γ) = (α +β )+ γ ,

ii. Additive commutativity: α +β = β +α ,

iii. Additive identity: 0+α = α +0 = α ,

iv. Addictive inverse: α +(−α) = 0,

v. Multiplicative associativity: p(qα) = (pq)α ,

5
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vi. Scalar Sums Distributivity: (p+q)α = pα +qα ,

vii. Vector Sums Distributivity: p(α +β ) = pα + pβ ,

viii. Multiplicative identity: 1 ·α = α ·1 = α .

(Cloud et al. (2014)) Let x, y ∈ Rn where Rn = {x = (x1,x2, ...,xn)|xi ∈ R},

i. the inner product is given by

< x,y >=
n

∑
k=1

xkyk,

ii. and norm is given by

x =
√
< x,x >

=

√
n

∑
k=1

x2
k .

Definition 1.3.7 Normed space (Alabiso and Weiss (2014)), (Muscat (2014))
A linear space V over R or C with the function called norm || · || : V −→ R or C for
any x,y ∈ V, λ ∈ R or C which satisfies

i. Homogeneity: ||λx||= |λ |||x||,

ii. Triangle Inequality: ||x+ y|| ≤ ||x||+ ||y||,

iii. Positivity: ||x|| ≥ 0, ||x||= 0 iff x = 0,

iv. Linearity: ||− x||= ||x||,

v. Reverse Triangle Inequality: ||x− y|| ≥ ||x||− ||y||,

vi. ||x1 + x2 + ...+ xn|| ≤ ||x1||+ ||x2||+ ...+ ||xn||.

Definition 1.3.8 Matrix norm (Horn and Johnson (2012))
A function || · || : MMMnnn → R is a matrix norm, where MMMnnn is a n× n dimension, if it
satisfies

i. Non-negativity: ||AAA|| ≥ 0

ii. Positivity: ||AAA||= 0 iff AAA = 0,

iii. Homogeneity: ||cAAA||= |c|||AAA||, ∀c ∈ R,

iv. Triangle Inequality: ||AAA+BBB|| ≤ ||AAA||+ ||BBB||,

6
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v. Submultiplicativity: ||AAABBB|| ≤ ||AAA||||BBB||,

for all AAA,,,BBB ∈ MMMnnn.

Definition 1.3.9 Induced matrix norm (Horn and Johnson (2012)), (Ford (2014))
Let || · || is a vector norm, AAA is a m× n matrix and x is a n× 1 vector. The matrix
norm of AAA induced by || · || is

||AAA||= max
||x||=1

||AAAx||.

Particularly, from Cloud et al. (2014), ||AAA|| is a number such that

||AAAx|| ≤ ||AAA||||x||

for all x ∈ Rn.

Definition 1.3.10 Measurable criterion (Kadets (2018))
Let (Ω1,∑1) and (Ω2,∑2) be sets endowed with σ -algebras of its subsets. A map of
f : Ω1 → Ω2 is said to be measurable if f−1(A) ∈ ∑1 for all A ∈ ∑1.

(Kadets (2018)) Let (Ω ,∑) be a set endowed with a σ -algebra of its subsets and all
the functions are assumed to be defined on Ω . The elements of the σ -algebra are
referred as measurable sets.

Definition 1.3.11 Measurable function (Kadets (2018))
A function f on Ω is said to be measurable with respect to the σ -algebra ∑, if for
any Borel subset A ⊂ R, the set f−1(A) is measurable.

(Kadets (2018)) A set E ⊂ Ω is said to be set of measure zero if for every positive
ε , there exists a finite or countable number of open intervals I1, I2, I3, ... such that
E ⊂ j I and ∑ j |I j|< ε . Set E is contained in a measurable set of measure zero.

(Kadets (2018)) The property P about points of the set Ω is said to hold almost
everywhere if set of all points t, t ∈ Ω where P is false is negligible.

Definition 1.3.12 Continuous function (Bartle and Sherbert (2000))
Let A ⊆ R and c ∈ A. The function f : A → R is considered continuous at a point
x = c if ∀ε > 0, ∃δ > 0 such that | f (x)− f (c)| < ε whenever |x− c| < δ . If f fails
to be continuous at c, then f is discontinuous at c.

(Hoffman (2011)) Every differentiable function is continuous, but some continuous
functions are not differentiable. Every continuous function is integrable, but some
integrable functions are not continuous. Differentiablity implies continuity and con-
tinuity implies integrability.
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Definition 1.3.13 Absolute continuous function (Berberian (2013))
A function f : [a,b] → R is said to be absolutely continuous if for all ε > 0, there
exists a positive δ such that pairwise disjoint subintervals I1, I2, ..., In of [a,b] where
Ik,k = 1,2, ...,n, has endpoints ak,bk with ak ≤ bk,k = 1,2, ...,n, obeys

n

∑
k=1

bk −ak ≤ d,

which then implies
n

∑
k=1

| f (bk)− f (ak)| ≤ ε.

Definition 1.3.14 Cluster point (Bartle and Sherbert (2000))
Let A ⊆ R. A point a ∈ R is called cluster point of A if ∀δ > 0,∃x ∈ A such that
|x− c|< δ where x ̸= c.

Definition 1.3.15 Limit of a point (Bartle and Sherbert (2000))
Let A ⊆ R and c be cluster point of A. The function f : A → R be defined on an open
interval around c and limit of f (x) as x approaches c is L, then ∀ε > 0, ∃δ > 0 such
that | f (x)−L|< ε whenever 0 < |x− c|< δ .

Theorem 1.3.1 (Bartle and Sherbert (2000)) A Cauchy sequence of real numbers is
bounded.

Theorem 1.3.2 Cauchy sequence (Bartle and Sherbert (2000))
The sequence X = {Xn} is called Cauchy sequence if ∀ε > 0, ∃ natural number N
such that ||Xm −Xn||< ε for every m,n ≥ N.

Lemma 1.3.2 Cauchy convergence criterion (Bartle and Sherbert (2000))
A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Definition 1.3.16 Bounded sequence (Bartle and Sherbert (2000))
S = {Sn} is a bounded sequence if |Sn|< β for some β ∈ R for all n ∈ Z .

Definition 1.3.17 Null sequence (Knopp (1956))
S = {Sn} is a null sequence if ∀ε > 0, ∃N ∈ Z+ such that |Sn|< ε whenever n ≥ N.
Null sequence is a sequence which converges to 0.

(Knopp (1956)) Infinite series is given by

S =
∞

∑
n=1

Sn = S1 +S2 +S3 + ...
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with its partial sums that is

sk =
k

∑
n=1

Sn = S1 +S2 + ...+Sk.

Convergence of sequence of partial sums sk implies the convergence of infinite series
S. That is, if limk→∞ sk = L, then ∑

∞
n=1 Sn = L.

1.3.2 Basic Properties of Hilbert space l2

In our study, the game takes place in Hilbert space l2 and thus the basic information
of l2 space are given as follows.

Definition 1.3.18 Hilbert space (Muscat (2014))
A Hilbert space is a complete inner product space given by

l2 = {ρ = (ρ1,ρ2, ...) :
∞

∑
k=1

|ρk|2 < ∞}

where

i. the inner product of ρ,ς ∈ l2 is defined as

< ρ,ς >=
∞

∑
k=1

ρkςk

< ∞,

ii. and the norm of ρ ∈ l2 is defined as

||ρ||=
√
< ρ,ρ >

=

√
∞

∑
k=1

ρ2
k

< ∞.

(Cloud et al. (2014)) The space C(0,T ; l2) is a space of continuous function in Hilbert
space l2 on time interval [0,T ] where

i. the inner product of z(t):

∞

∑
k=1

z2
k(t)< ∞,
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ii. and the norm of z(t): √
∞

∑
k=1

z2
k(t)< ∞,

for z(t) = (z1(t),z2(t), ...) ∈ l2.

(Cloud et al. (2014)) The space L2(0,T ; l2) is a space of square-integrable function
in Hilbert space l2 on time interval [0,T ] where

i. the inner product of f (t):

< f (t), f (t)>=
∞

∑
k=1

∫ T

0
f 2
k (t)dt

< ∞,

ii. and the norm of f (t):

|| f (t)||=
√

∞

∑
k=1

∫ T

0
f 2
k (t)dt

< ∞,

for f (t) = ( f1(t), f2(t), ...) ∈ l2.

1.3.3 Basic Inequalities

The definitions listed in this subsection deals with some basic concepts of inequali-
ties that are used in our study.

Corollary 1.3.1 (Pachpatte (2005)) If a1,a2, ...,an are real numbers, then the in-
equality

(a1 +a2 + ...+an)
2 ≤ n(a2

1 +a2
2 + ...+a2

n)

holds.

Theorem 1.3.3 Cauchy-Schwarz Inequality (Alabiso and Weiss (2014))
If V is an inner product space, then for any x,y ∈ V, the Cauchy-Schwarz inequality
is as follows;

|< x,y > | ≤ ||x|| · ||y||.

Also, from Bernstein (2009), |x∗y| ≤ ||x||2||y||2 where x∗ is tranpose of x.
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Theorem 1.3.4 Cauchy-Schwarz summation inequality (Cloud et al. (2014))
Let ak,bk ∈ R for k = 1,2, ...n. Then,∣∣∣ n

∑
k=1

akbk
∣∣≤ ( n

∑
k=1

a2
k

)1/2( n

∑
k=1

b2
k

)1/2
,

equivalently, ( n

∑
k=1

akbk

)2
≤

n

∑
k=1

a2
k

n

∑
k=1

b2
k .

The inequality is also valid for infinite series.

In Euclidean space Rn, where x =< x1,x2, ...,xn >,y =< y1,y2, ...,yn >∈ Rn, we
have

< x,y >= x1y1 + x2y2 + ...+ xnyn,

and
< x,x >= x2

1 + x2
2 + ...+ x2

n,

also,
< y,y >= y2

1 + y2
2 + ...+ y2

n.

According to Cauchy- Schwarz inequality, we have

(x1y1 + x2y2 + ...+ xnyn)
2 ≤ (x2

1 + x2
2 + ...+ x2

n) · (y2
1 + y2

2 + ...+ y2
n)

i.e.
( n

∑
k=1

xkyk
)2 ≤

n

∑
k=1

x2
k

n

∑
k=1

y2
k .

Theorem 1.3.5 Cauchy-Schwarz integral inequality (Cloud et al. (2014))
For f (x),g(x) ∈C[a,b], the Cauchy-Schwarz inequality is(∫ b

a
f (x)g(x)dx

)2
≤
∫ b

a
f 2(x)dx

∫ b

a
g2(x)dx.

Theorem 1.3.6 Minkowski’s Inequality (Alabiso and Weiss (2014))
The inequality

||x+ y||p ≤ ||x||p + ||y||p
holds for every x,y ∈ lp where 1 ≤ p < ∞.

Theorem 1.3.7 Minkowski’s summation inequality (Cloud et al. (2014))
Let ak,bk ∈ R for k = 1,2, ...,n. We have Minkowski’s inequality in the form of( n

∑
k=1

|ak +bk|p
)1/p

≤
( n

∑
k=1

|ak|p
)1/p

+

( n

∑
k=1

|bk|p
)1/p

.

The inequality is also valid for infinite series.
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Theorem 1.3.8 Minkowski’s integral inequality (Cloud et al. (2014))
Let f (x),g(x) ∈C[a,b]. The Minkowski’s inequality is(∫ b

a
| f (x)+g(x)|pdx

)1/p
≤
(∫ b

a
| f (x)|pdx

)1/p
+

(∫ b

a
|g(x)|pdx

)1/p
.

1.4 Reduction of Partial to Ordinary Differential Equations

A variety of real-world issues or time evolutionary problems where the model of
the issue is characterised by partial differential equations. The state of the system
depends on more than one independent variables. In the midst of the studies, the
approach of decomposition technique is employed by the researchers to create an
infinite system of ordinary differential equations from a system of partial differential
equations.

This chapter discusses an overview of the method of decomposition (refer Ivanov
and Avdonin (1995)).

1.4.1 System of Partial Differential Equations

A system of the game can be described by partial differential equations as follows;

∂ z̄
∂ t

= Bz̄−u+ v,

z̄(x,0) = z̄0(x), x ∈ ψ,

(1.4.1)

where

Bz̄ =
n

∑
j,k=1

∂

∂x j

(
b jk(x)

∂ z̄
∂xk

)
, x ∈ ψ. (1.4.2)

The function z̄(x, t) which indicates the state of the system is made up of two vari-
ables that are coordinates vector x = (x1,x2, ...,xn)∈ ψ ⊂ Rn,n ≥ 1 and time t, while
z̄(x,0) refers to the state of the system at initial time t = 0. In addition, functions
ū(x, t) and v̄(x, t) are control function of pursuer and control function of evader re-
spectively. Let w̄(x, t) = −ū(x, t)+ v̄(x, t) be control function of the system. Notice
that linear differential operator (1.4.2) is dependent of coordinates vector and in-
dependent of time t. The measurable bounded function b jk(x) = bk j(x) obeys the
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conditions

c2
n

∑
j=1

ξ
2
j ≤

n

∑
j,k=1

b jk(x)ξ jξk,

∀(ξ1, ...,ξn) ∈ Rn, x ∈ ψ.

(1.4.3)

where c is a constant, c ̸= 0 (Satimov and Tukhtasinov (2005a)). The notation x ∈
ψ tells that the coordinate vector belongs to some bounded domain ψ for t > 0.
Meanwhile, the boundary of the domain ψ is denoted by ψ ′ where ψ ′ is assumed to
be piecewise smooth on finite time interval [0,T ] for T > 0.

First, as stated in Ibragimov (2002) and Satimov and Tukhtasinov (2005b), we define

lr =
{

β = (β1,β2, ...)|
∞

∑
i=1

µi
r
βi

2 < ∞

}
,

with inner product and norm given by:

< β ,γ >=
∞

∑
i=1

|µi|rβiγi, β ,γ ∈ lr,

||β ||r =

√
∞

∑
i=1

µr
i βi

2.

Also, space Hr as

Hr = Hr(ψ) =
{

g ∈ L2(ψ)|g =
∞

∑
i=1

βiFi,βi ∈ lr
}
, r ≥ 0. (1.4.4)

It is clear that ||g||= ||β || and < g,h >=< β ,γ > where h = ∑
∞
i=1 γiFi. Observe that,

(Ibragimov (2002)),

i. C(0,T ;Hr) is the space of continuous function in Hr on time interval [0,T ],

ii. L2(0,T ;Hr) is the space of square integrable function in Hr on time interval
[0,T ]

where T > 0. When r > 0, Hr+1(ψ)⊂ Hr(ψ) and when r = 0, H0(ψ) = L2(ψ).

Now, we are up to consider an eigenvalue problem stated as

BF(x) =−µ(x)F(x), x ∈ ψ,

JF(x) = 0, x ∈ ψ
′.

(1.4.5)

From the solving process of eigenvalue problem (1.4.5), we can note that the linear
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operator (1.4.2) owns a spectrum of positive eigenvalues µi > 0, that is µi → +∞

as i → ∞. The eigenfunction Fi(x) corresponding to the obtained eigenvalues
µi, i = 1,2, ..., are said to be orthonormal and complete in the domain of L2(ψ)
(Chernous’ko (1992); Tukhtasinov and Mamatov (2009)). The paper of Satimov and
Tukhtasinov (2005a) and Satimov and Tukhtasinov (2006) discussed the case of lin-
ear operator bearing spectrum of negative eigenvalues of which µi →−∞ as i → ∞.

Next, we express all the involved functions in the form of Fourier series expansion
that are,

z̄(x, t) =
∞

∑
i=1

zi(t)Fi(x),

ū(x, t) =
∞

∑
k=1

ui(t)Fi(x),

v̄(x, t) =
∞

∑
i=1

vi(t)Fi(x),

w̄(x, t) =
∞

∑
i=1

wi(t)Fi(x).

(1.4.6)

Also,

∞

∑
i=1

λ
r+1
i

∫
θ

0
|zi(t)|2dt < ∞,

∞

∑
i=1

λ
r
i

∫
θ

0
|ui(t)|2dt ≤ ρ

2,

∞

∑
i=1

λ
r
i

∫
θ

0
|vi(t)|2dt ≤ σ

2,

∞

∑
i=1

λ
r
i

∫
θ

0
|wi(t)|2dt < ∞.

(1.4.7)

We note that functions z(·) ∈ L2(0,T ;Hr+1) and u(·),v(·),w(·) ∈ L2(0,T ;Hr).

1.4.2 Decomposition Method

We substitute all the relevant expansions in (1.4.6) into the system (1.4.1) and get

∂

∂ t

∞

∑
i=1

zi(t)Fi(x) = B
∞

∑
i=1

zi(t)Fi(x)−
∞

∑
i=1

ui(t)Fi(x)+
∞

∑
i=1

vi(t)Fi(x).
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For simplicity, we use w̄(x, t) instead and ignore the summation,

żi(t)F(x) = Bzi(t)Fi(x)+wi(t)Fi(x).

By bearing the knowledge of orthogonality of F(x) and comparing with (1.4.5), we
obtain

żi(t)Fi(x) =−µi(t)zi(t)Fi(x)+wi(t)Fi(x),

żi(t) =−µi(t)zi(t)+wi(t).

Hence,

żi(t)+µizi(t) = wi(t).

The initial condition is as follows;

z̄(x,0) = z(0)F(x) = z0(x),

which means

zi(0) = zi0 =
∫

ψ

zi0(x)Fi(x).

The series z̄(x, t) converges uniformly in the space Hr+1 on [0,T ]. Thus, from any
initial position z0 ∈ Hr+1 and w̄(x, t) = L2(0,T ;Hr), there exists a unique solution
z(x, t) in the space C(0,T ;Hr+1) for some r ≥ 0 (Ivanov and Avdonin (1995), Chap-
ter 3).

As such, the function zi(t), i= 1,2, ..., on [0,T ] produces solution of Cauchy problem
for infinite system of differential equations

zi(t)+µizi(t) =−ui(t)+ vi(t), zi(0) = zi0. (1.4.8)

All these suggest that the game problem described by partial differential equations
(1.4.1) can be reduced into the one described by an infinite system of differential
equations.

1.5 Motivation and Problem

It is common that most real-life problems, including some problems in differential
games, involve several factors which are usually represented as several variables. As
a result, the problem is modelled as a system of partial differential equations. The
problem-solving procedure is simplified with the use of the decomposition method
which offers such system to be reduced into an infinite system of ordinary differ-
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ential equations. A more complicated problem will have a more complex system
of partial differential equations which corresponds to a higher level of an infinite
system of ordinary differential equations. Consequently, differential game theorists
have considered and investigated various games described by infinite one and two-
system of ordinary differential equations. However, a differential game could also
occur in a much higher level of system of differential equations. Therefore, in our
thesis, we are motivated to investigate an infinite three-system of ordinary differen-
tial equations that can be associated with a more complex real-world problem.

In line with the general practice of differential games, the formulated system is then
verified to be a valid game model. Every game model of any infinite system cannot
be generalised to another and must be dealt with on its own. Thus, some pursuit
game problems based on this three-system are studied and solved by figuring out
an appropriate method, that suits the model, in establishing sufficient conditions and
constructing players’ strategies to terminate the game.

1.6 Objectives of the Thesis

The objectives of the thesis are as follows.

1. To find general solution µ(·) of the three-system given by

ẋk =−αkxk +wk1, xk(0) = x0
k ,

ẏk =−βkyk − γkzk +wk2, yk(0) = y0
k ,

żk = γkyk −βkzk +wk3, zk(0) = z0
k

(1.6.1)

where αk,βk ≥ 0,γk ∈ R and wk j = −uk j + vk j ∈ R for j = 1,2,3 and k =

1,2, ..., with x0 = (x0
1,x

0
2, ...) ∈ l2,y0 = (y0

1,y
0
2, ...) ∈ l2,z0 = (z0

1,z
0
2, ...) ∈ l2,

and prove its existence and uniqueness to prove the system can be used as a
game model.

2. To determine sufficient conditions, and construct admissible control function
in control problem and pursuer’s strategy in pursuit problem defined by (1.6.1)
where the pursuer aims to bring the initial state µ0 = (µ0

1 ,µ
0
2 , ...) ∈ l2 of the

system into origin of space l2 that is µ(t) = 0 at some time t for t ∈ [0,T ]. The
problems are considered for both integral and geometric constraints.

3. To determine sufficient conditions, and construct control and strategy of the
pursuer needed in transferring the initial state µ0 = (µ0

1 ,µ
0
2 , ...)∈ l2 of system

(1.6.1) into another non zero state µ1 = (µ1
1 ,µ

1
2 , ...) ∈ l2 that is µ(t) = µ1 at

some time t for t ∈ [0,T ]. The problems are also considered for both integral
and geometric constraints.
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4. To solve an optimal control problem followed by optimal pursuit differential
game described by (1.6.1) with compliance to integral constraints.

5. To find solution for a differential game involving a finite number of pursuers
and a single evader with players’ movement described by

ẋi
k =−αkxi

k −ui
k1 + vk1, xi

k(0) = xi0
k ,

ẏi
k =−βkyi

k − γkzi
k −ui

k2 + vk2, yi
k(0) = yi0

k ,

żi
k = γkyi

k −βkzi
k −ui

k3 + vk3, zi
k(0) = zi0

k

(1.6.2)

where αk,βk ≥ 0,γk ∈ R and ui
k j,vk j ∈ R for i = 1,2, ...,m, m is some pos-

itive integers, j = 1,2,3 and k = 1,2, ..., with xi0 = (xi0
1 ,xi0

2 , ...) ∈ l2,yi0 =

(yi0
1 ,y

i0
2 , ...)∈ l2,zi0 = (zi0

1 ,z
i0
2 , ...)∈ l2, with respect to integral constraints and

then determine optimal number of pursuers to capture the evader.

1.7 Methodology

The following are methods carried out to solve problems of the thesis.

1. Formulate an infinite first order 3-system of differential equations (1.6.1), find
solution µ(·) of the system and show the solution µ(·) ∈ C(0,T ; l2) where
C(0,T ; l2) is a space of continuous function in space l2 on time interval [0,T ]
that is to prove the solution exists and is unique. (Chapter 3)

2. Construct an admissible control function in the cases of steering the system
(1.6.1) into origin (Chapter 4) or into another non zero state µ1 (Chapter 5) at
some time and thus solve the control problems by using the sufficient condi-
tions.

3. Build an admissible strategy for the pursuer to terminate the pursuit game in
accordance to respective cases (Chapter 4 and 5)

4. Develop an admissible time-optimal control function, an admissible pursuer’s
strategy followed by an admissible evader’s strategy to obtain the optimal pur-
suit time for differential game (1.6.1). (Chapter 6)

5. Establish an admissible strategy for the pursuer together with an admissible
strategy for the evader to prove the optimal number of pursuers for the com-
pletion of the game. (Chapter 7)
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1.8 Organisation of the Thesis

We organise the thesis into eight chapters. The brief detail of every chapter is as
follows.

In Chapter 1, we present some basic definitions, properties of Hilbert space l2 and
concepts of inequalities that are related to our study. Some common examples of
games involved in the investigation of differential game theory are discussed.

Chapter 2 reviews some related past works in the field of differential game theory.
The chapter begins with brief overview of the development of differential game the-
ory followed by some previous studies on pursuit or evasion differential games in-
cluding games in infinite system of differential equations.

In chapter 3, we formulate an infinite 3-system of differential equations. First, we
provide introduction to the chapter and then examine the existence and uniqueness
of the solution of the infinite 3-system of differential equations.

Chapter 4 begins with an introduction and deals with pursuit differential game based
on the formulated model in Chapter 3. Both integral and geometric constraints are
imposed on the players’ control functions. We construct an admissible control func-
tion for the system to be steered into origin, which is to be applied for developing an
admissible pursuer’s strategy to complete the pursuit.

Next, in chapter 5, we discuss about pursuer’s aim to shift the initial state of the sys-
tem into another state of the system at some time by considering both integral and
geometric constraints. The introduction of the chapter is followed by the establish-
ment of sufficient conditions and admissible strategy for the pursuer in completing
the game.

Chapter 6 starts with an introduction. Then, we propose an optimal pursuit time for
differential game described by the system. Initially, we find solution for the opti-
mal time control problem of the system. By referring to the obtained solution, we
construct optimal strategies for the players to obtain the optimal pursuit time of the
game.

We begin Chapter 7 with an introduction and study a differential game of a finite
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number of pursuers against one evader with integral constraints. We figure out strat-
egy for the pursuers to ensure the pursuit is completed. We then consider the case
where evader has a constructed strategy in order to find the the optimal number of
pursuers to complete the pursuit.

Last but not least, in Chapter 8, we suggest and recommend some works that can be
done in the future. General conclusion of the thesis is drawn too.
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