
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

Improving YoloPX using YoloP and Yolov8 for Panoptic 
Driving Perception 

Xie Yumeng a, Noridayu Binti Manshor a,*, Nor Azura Husin a,  Liu Chengzhi a

a Faculty of Computer Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia  

Corresponding author: *ayu@upm.edu.my 

Abstract—Autonomous driving technology (ADS) has seen significant advancements over the past decade, with car manufacturers 

investing heavily in its development to meet the growing demand for safer, more efficient, and eco-friendly transportation solutions. 

The panoptic driving perception system is central to ADS, essential for accurately interpreting the driving environment. This system 

requires high precision, lightweight design, and real-time responsiveness to detect surrounding vehicles, lane lines, and drivable areas 

effectively. This study introduces an enhanced YOLOPX model that combines YOLOP and YOLOv8 to create an adaptive multi-task 

learning network capable of traffic object detection, drivable area segmentation, and lane detection. The model integrates YOLOP's 

detection head with YOLOPX's anchor-free detection head to improve generalization, incorporates YOLOv8's advanced backbone 

structure to enhance feature extraction accuracy, and retains YOLOP's three-neck architecture to optimize multi-task processing. The 

improved model employs a mode loss function for segmentation tasks, enhancing generalization and improving lane detection accuracy. 

Experiments conducted using the BDD100k dataset demonstrated the model's effectiveness: achieving 98.8% accuracy and 27.6% IoU 

for lane line detection, 90.4% mIoU for drivable area segmentation, and 85.9% recall and 76.9% mAP50 for traffic object detection. 

This model represents a significant advancement in ADS, enhancing both the safety and reliability of autonomous vehicles. 
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I. INTRODUCTION

Deep learning has made significant advances in computer 
vision, integrating it into applications such as facial 
recognition, workpiece gap detection, and medical imaging. 
One notable application is Autonomous Driving Systems 
(ADS), which transform driving by increasing comfort, 
reducing human error, avoiding traffic hazards, maximizing 
efficiency, and improving safety. The panoramic driving 
awareness system is essential to ADS, utilizing a multi-task 
approach to interpret complex traffic scenarios and provide 
real-time environmental data. The system divides drivable 
areas, identifies objects, and detects lanes to ensure efficient 
and safe driving in complex conditions. Despite its 
advantages, there are still challenges in improving detection 
capabilities. Ongoing research is essential to improve these 
systems' flexibility and reliability and ensure ADS's safety 
and efficiency. 

Panoptic driving perception systems [1] form the 
foundation of advanced driver-assistance system (ADAS) 
technology, and there are two primary development 

approaches: systems based on deep learning and computer 
vision [2] and those based on multi-sensor models [3]. 
The first approach employs cameras and deep learning-based 
computer vision algorithms to detect the surrounding 
environment. This method is cost-effective, easy to integrate, 
and capable of achieving high real-time performance (over 30 
FPS), which is crucial for timely decision-making to ensure 
driving safety. Accuracy and speed are critical in making 
decisions to safeguard driving. 

The second approach integrates advanced sensors, such as 
LiDAR [4], [5] to obtain more comprehensive environmental 
data. However, the complexity of integration presents 
challenges in achieving real-time performance and managing 
higher costs. Some neural network models, such as YOLOP, 
HybridNet, and Faster R-CNN [6], [7], [8], [9], [10], [11] 
have demonstrated promising results. YOLOP stands out for 
its accuracy and real-time processing capability, making it an 
ideal choice for ADS, although it struggles with the precision 
of small object detection. HybridNet performs well but incurs 
high computational costs, while Faster R-CNN, despite its 
high accuracy, is too slow for real-time applications. 
Considering the real-time requirements of panoptic driving 
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perception systems, the YOLOP series algorithms are 
preferred. 

In Autonomous Driving Systems (ADS), panoptic driving 
perception models are vital for autonomous vehicles' safe and 
efficient navigation. These models integrate multiple tasks, 
including object detection, drivable area segmentation, and 
lane detection, into a unified system to provide 
comprehensive situational awareness. Although models such 
as YOLOP, YOLOPv2, U-PDP, and HybridNet have 
progressed, achieving high precision in real-time multi-task 
processing remains a significant challenge. 

In [12], the authors employed a model based on the 
YOLOPX algorithm. While this model achieved certain 
optimizations by integrating lane detection, object 
recognition, and drivable area segmentation, it still faces 
challenges. Specifically, the model utilizes a Path 
Aggregation Network (PAN) as the backbone of the encoder. 
Although PAN can handle features at different scales and 
adapt to complex scenarios, its multi-scale feature extraction 
and complex feature aggregation mechanisms significantly 
increase computational complexity and expand the model's 
parameter size.  

As the latest version in the YOLO series, YOLOv8 
incorporates several improvements, including a more efficient 
network architecture, optimized training processes, and better 
inference performance. Integrating it into YOLOPX is 
expected to enhance the model's accuracy further. Combining 
YOLOP’s multi-task capabilities can augment the model's 
panoptic perception abilities in complex driving scenarios, 

improving the reliability and safety of ADS. Moreover, the 
loss functions from publicly available code, including 
classification, object, and regression loss, were integrated and 
assigned fixed hyperparameter weights in the experimental 
setup. This approach may limit the model's applicability 
across different scenarios and datasets. 

This study aims to enhance the panoptic driving perception 
capabilities of the YOLOPX model in Autonomous Driving 
Systems (ADS) by optimizing its structure and training 
strategies. Specific goals include optimizing the encoder 
model structure to improve the accuracy of model outputs. 
This study also refines the loss functions in the decoder to 
achieve a modular design, allowing for the independent 
adjustment of weights for classification loss, object loss, and 
regression loss, ensuring accurate detection and effectiveness 
of the model under various conditions. 

This study reviews extensive literature and explores 
various panoptic driving perception technologies to deepen 
understanding. It begins with traditional methods and details 
the development of tasks and integrated processing 
techniques within panoptic perception technology. The focus 
is on the model design of the panoptic driving perception 
system, highlighting contributions and limitations of models 
like TwinLiteNet, HybridNets, YOLOP, YOLOPv2, and 
YOLOPX. These studies discuss innovations in neural 
network architectures, performance metrics, and challenges 
related to computational demands. The comparison of 
different algorithms is shown in Table I. 

TABLE I 
COMPARE DIFFERENT ALGORITHMS OF THE PANOPTIC DRIVING PERCEPTION MODEL. 

Ref. Description and Contribution Future Research 

[8] This study presents an innovative object detection approach by integrating a 
Region Proposal Network (RPN) with Fast R-CNN, making detection near 
real-time. Key contributions include: 1) a cost-effective RPN sharing features 
with the detection network, 2) integration of RPN and Fast R-CNN into a 
single efficient network, and 3) achieving state-of-the-art accuracy and high 
processing speed on multiple datasets. 

1). Performance depends on input data quality. 2). 
Training and fine-tuning complexities for specific 
applications. 3). Optimization needed for speed-
accuracy balance in diverse real-world scenarios. 

[12] This study presents an anchor-free multi-task learning network for panoptic 
driving perception, integrating object detection, drivable area segmentation, 
and lane detection. Key contributions include: 1) simplifying training with an 
anchor-free approach, 2) a novel lane detection head using multi-scale 
features, and 3) achieving state-of-the-art performance on the BDD100K 
dataset with higher recall, mAP50, and mIoU. 

1). The model’s increased complexity and 
parameter count. 2). The need for further validation 
of the model’s generalizability. 3). The potential for 
high computational demand, which may limit its 
deployment on resource-constrained systems. 

[13] This study introduces a novel panoptic driving perception network combining 
traffic object detection, drivable area segmentation, and lane detection into a 
single model. Key contributions include: 1) a unified architecture for multiple 
tasks, 2) high performance on the BDD100K dataset, 3) real-time processing 
on embedded devices, and 4) ablative studies validating the multi-task 
approach's effectiveness. 

1) Increased complexity and computational 
demands. 2) Limited exploration of model 
adaptability to diverse datasets. 3) Balancing 
accuracy across different tasks. 

[14] This study modifies YOLOv3 for better scene understanding in autonomous 
driving by integrating object detection with semantic and instance 
segmentation. Key contributions are: 1) adapting YOLOv3 for panoptic 
segmentation, 2) implementing dual segmentation heads for comprehensive 
scene analysis, and 3) achieving real-time performance, crucial for 
autonomous driving. 

1). Increased complexity from the enhanced model 
structure. 2). Higher computational demands may 
affect deployment in resource-limited settings. 3). 
Need to balance accuracy and speed in challenging 
environments. 

[15] "HybridNets" presents an end-to-end perception network for autonomous 
driving, efficiently handling multiple tasks like traffic object detection, 
drivable area segmentation, and lane detection using a weighted bidirectional 
feature network. The study’s main contributions include:  
1). An innovative architecture that effectively fuses features for multi-tasking.  
2). Customized anchor boxes for improved object detection accuracy.  
3). A balanced training strategy and efficient loss function for optimizing 
network performance. 

1) Multitask network complexity impacts 
computational resources and real-time application. 
2) Limited effectiveness across diverse datasets or 
real-world scenarios. 3) Balancing accuracy and 
efficiency across tasks is challenging. 
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Ref. Description and Contribution Future Research 

4). High performance on the BDD100K dataset, demonstrating both accuracy 
and efficiency. 

[16] "YOLOPv2" enhances the YOLOP network for improved panoptic driving 
perception, focusing on traffic object detection, drivable area segmentation, 
and lane detection with better accuracy and speed. Key contributions include 
a refined multi-task model, advanced data preprocessing, a novel hybrid loss 
function, increased FPS, and strong generalization capabilities for various 
scenarios. 

1) Increased complexity from enhanced model 
structure. 2) Higher computational demands, 
affecting deployment in resource-limited settings. 
3) Need to balance accuracy and speed in 
challenging environments. 

[17] Introducing a neural network for simultaneous detection of drivable areas, 
lane lines, and traffic objects, optimizing multi-task learning in autonomous 
vehicles. Contributions include: 1) An integrated framework for concurrent 
detection of key navigation elements. 2) A context tensor for information 
sharing between decoders. 3) Improved accuracy and efficiency on 
benchmark datasets. 

1). Occasional misclassification issues, such as 
incorrectly identifying non-drivable areas. 2). 
Challenges with detecting intermittent lane 
markings, leading to potential false negatives. 

[18]  Introducing a lightweight neural network for real-time drivable area and lane 
segmentation, optimized for embedded systems in self-driving cars. Key 
contributions: 1) Efficient dual-decoder network structure. 2) Integration of 
dual attention modules for enhanced feature fusion. 3) Achieves high-speed 
segmentation with a mIoU of 91.3%. 

1). Slightly lower accuracy compared to the very 
latest models. 2). Lane detection performance that, 
while competitive, does not top all benchmarks. 
3). Limited validation across different datasets or 
diverse real-world driving conditions. 

[19] Introduces a unified multi-task framework for panoptic driving perception, 
handling vehicle detection, lane detection, and drivable area segmentation. 
Key contributions: 1) Integrates multiple perception tasks. 2) Utilizes 
dynamic convolution kernels for efficient feature processing. 3) Achieves 
high accuracy on BDD100K dataset. 4) Suitable for real-time autonomous 
driving with fast processing. 

1. Complexity in implementing a unified multi-
task framework. 2. Performance validation mainly 
on BDD100K, limited exploration on other 
datasets. 3. Need for further investigation into 
model's generalization and scalability. 

[20] Enhance object detection by optimizing the architecture for accuracy and 
efficiency. Key contributions: 1) Optimized feature extraction with deeper 
networks for precision. 2) Enhanced data augmentation and preprocessing. 3) 
Improved multi-scale object detection capabilities. 

1) Single-object detection limits multi-task 
applicability. 2) High computational needs restrict 
deployment of resource-limited devices. 3) 
Integrating multi-task models enhances 
comprehensive driving perception systems. 

 
YOLOv8, the latest model in the YOLO series [8], [21], 

[22], [23] achieves more efficient detection through its 
advanced architecture and optimized training processes [20]. 
However, despite its impressive performance in single-object 
detection, YOLOv8 may not fully meet the complex needs of 
panoptic driving perception systems, which require 
simultaneous multi-task processing. This limitation is 
particularly evident in scenarios where real-time detection 
and processing of multiple tasks—such as object detection, 
lane detection, and drivable area segmentation—are critical. 
Thus, while YOLOv8 excels in accuracy, its focus on single-
object tasks limits its direct applicability in comprehensive 
ADS environments. 

YOLOP, designed to handle multiple sensing tasks 
simultaneously, attempts to increase computational efficiency 
and real-time capability by executing multiple tasks in a single 
forward pass. This capability allows YOLOP to streamline the 
multi-task process and balance efficiency and performance 
[13]. However, YOLOP struggles with the accuracy of small 
object detection and maintaining high precision in dynamic or 
complex driving scenarios. The updated YOLOPv2 enhances 
YOLOP's accuracy and speed by incorporating deeper feature 
extraction networks, improved training methods, and 
successful multi-task learning algorithms [16]. Despite these 
improvements, YOLOPv2 continues to face challenges in 
balancing the complexity of its multi-task architecture with 
the need for real-time performance. The increased network 
depth and the associated computational demands can hinder 
its application in scenarios requiring rapid decision-making. 

U-PDP introduces a novel approach by integrating vehicle 
detection with future path prediction, allowing ADS to better 
adapt to dynamic environments [19]. While this integration of 

detection and predictive capabilities offers significant 
advantages in decision-making and path planning, it also 
introduces substantial computational challenges. The 
complexity of combining real-time detection with behavior 
prediction makes U-PDP less feasible for systems with 
stringent real-time performance requirements. 

HybridNet employs a weighted bi-directional feature 
network to process multiple tasks, such as traffic object 
detection, drivable area segmentation, and lane detection [15], 
[16]. Although HybridNet’s architecture effectively combines 
these tasks, its complexity can impact real-time applications 
due to the high processing demands required to maintain 
performance across all tasks. 

Given these challenges, the specific limitations of YOLOP, 
YOLOPv2, U-PDP, and HybridNet underline the necessity of 
a more streamlined solution that balances multi-task processing 
with real-time performance. YOLOPX offers such a solution 
by utilizing an anchor-free multi-task learning strategy that 
combines object detection, drivable area segmentation, and 
lane detection within a single model. By employing a shared 
CNN backbone for initial feature extraction, YOLOPX reduces 
training time and enhances overall performance. This design 
effectively manages computational resources, overcoming 
many limitations in other models. Despite these advantages, 
YOLOPX [12] is not without its challenges. The model's 
complexity requires substantial processing resources, which 
may limit its deployment on resource-constrained devices. 
Additionally, the training process for multi-task learning is 
intricate, necessitating extensive tuning and debugging to 
achieve optimal performance across various tasks. 
Furthermore, YOLOPX's generalizability can be constrained 
by the diversity and quality of the training data, leading to 
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potential misclassifications or detection errors in complex or 
crowded environments. Small object detection, in particular, 
remains a challenge when image resolution is low, or object 
features are minimal. 

To address these issues, this paper proposes an enhanced 
version of YOLOPX that integrates YOLOP's multi-task 
capabilities with YOLOv8's accuracy. This improved model 
will leverage anchor-free detection techniques, enabling 
simultaneous execution of tasks like object detection, drivable 
area segmentation, and lane detection while maintaining a 
consistent loss function to minimize inference time and boost 
real-time processing. The proposed enhancements aim to 
increase YOLOPX's accuracy, making it more suitable for 
panoptic driving perception and improving the safety and 
efficiency of ADS. 

II. MATERIALS AND METHOD 
This study utilized the BDD100K dataset, which is publicly 

available at the University of California, Berkeley. This 

dataset comprises 100,000 images encompassing six weather 
conditions: clear, cloudy, overcast, rainy, snowy, and foggy. 
It also includes six scene types: residential, highway, urban 
streets, parking lot, gas station, and tunnel, as well as three 
periods: dawn/dusk, daytime, and nighttime. 

Inspired by YOLOP, YOLOPX, and YOLOv8, this study 
proposes an improved YOLOPX model that integrates 
YOLOP's multi-task detection, YOLOv8's CNN backbone, 
and YOLOPX's anchorless detection. The model uses an 
encoder-decoder network with a shared encoder and three 
task-specific decoders for traffic object detection, drivable 
area segmentation, and lane detection. A modular loss 
function handles segmentation tasks, enhancing flexibility, 
adaptability, and generalization while reducing inference 
time. This approach significantly increases processing 
capacity and accuracy, making the model highly suitable for 
panoptic driving perception systems. Figure 1 illustrates the 
model structure. 
 

 

 
Fig. 1  Architecture of Improved YOLOPX Model 

 

Figure 1 displays the architecture of the improved 
YOLOPX network for panoptic driving perception. Initially, 
pre-processed data is input through the encoder-decoder 
structure of the improved model. The data first reaches the 
encoder's backbone network, where it undergoes grouped 
convolution and SPPF (Spatial Pyramid Pooling in Fast R-
CNN) layers for initial feature extraction from the input 
images. These features are then processed and refined in the 
neck using a Feature Pyramid Network (FPN). Subsequently, 
the data is passed to the decoder, which is divided into two 
types of detection heads: an object detection head and a 
drivable area segmentation head. The heads constitute the 
final part of the model, responsible for producing final outputs 
such as class probabilities, object bounding boxes, and 
confidence. The heads employ the same loss methodology to 
compute results. 

Compared to YOLOPX, the encoder structure in this study 
essentially retains its backbone and neck configurations but 
incorporates certain modifications. Specifically, the backbone 
has been enhanced by replacing the SPP module with the 
SPPF module. The C3 structure has been substituted in the 
neck with the C2F structure. This study has preserved the 
detection head structure utilized in YOLOPX regarding the 
decoder module. However, this study has optimized the loss 
function in this research to achieve modularization, allowing 
the hyperparameter weights for classification loss, object loss, 
and regression loss to be adjusted independently. This ensures 
that the model can be broadly applied to various scenarios. 

In summary, the encoder in the YOLOPX design is a 

complex and crucial component, primarily utilizing a shared 
backbone network and a neck with both bottom-up and top-
down structures, while the decoder utilizes three separate 
detection heads to perform three distinct tasks. The encoder-
decoder structure provides a foundation for the network's 
performance across various tasks. By combining advanced 
convolutional techniques, architectural developments, and 
efficiency optimizations, the improved model offers real-
time, accurate environmental perception for automated 
systems. 

A. Encoder 

The encoder primarily consists of the backbone and neck. 
The backbone first extracts multi-scale features from raw 
images, capturing low-level and high-level information. 
Subsequently, the neck, typically implemented as a feature 
pyramid or path aggregation network, refines and integrates 
these features, enhancing the model's capability to detect 
objects and segment areas across varying resolutions. This 
interaction ensures the coordination of features at different 
scales, which is crucial for lane detection tasks that require fine 
details and broader contextual understanding. The model 
balances detection accuracy by optimizing the information flow 
from the backbone to the neck and task-specific heads while 
reducing the required parameters and computational cost, 
making it suitable for ADS systems. In our improved model 
backbone, the SPPF instead of the SPP module was used in 
YOLOPX. In the neck, use C2F to change the C3 module. The 
SPPF part can reduce computational cost to improve efficiency 
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and reduce redundancy and be implemented with fewer layers 
and operations to improve speed. 

B. Decoder 

The role of the decoder is to translate the features extracted 
by the encoder into actual detection outputs, such as bounding 
boxes, class labels, and performance metric scores.   This 
process is crucial for mapping deep network features to 
specific detection tasks.   The decoder typically resides at the 
end of the YOLO architecture, following the encoder for 

feature extraction and possibly the feature fusion part (such as 
a feature pyramid network).   The decoder expected to be 
employed in this model is responsible for interpreting the 
high-dimensional feature maps extracted by the encoder and 
converting them into outputs usable for the specific task.  The 
decoder consists of two detection heads: the detection head 
and the segmentation head. This paper retains the structure of 
the YOLOPX head. The details of the architecture of this 
study model are shown in Figure 2. 

 
Fig. 2  Encoder-Decoder Architecture. 

 

C. Loss Function 

The loss function is a key component in fine-tuning the 
training process. It quantifies network performance by 
calculating the discrepancy between the network's predictions 
and the actual label data. In developing panoptic driving 
perception models, managing multiple tasks simultaneously, 
each with its own success metrics, is essential. The loss 
function plays a crucial role in model training, providing a 
metric that demonstrates how closely the model's predictions 
align with actual data. In panoptic driving perception, the 
model must reliably interpret visual inputs, and the loss 
function is critical in ensuring that the network learns to 
generate reliable and accurate predictions that can be used for 
ADS navigation and obstacle avoidance. This study will 
utilize the same loss function across all segmentation tasks to 
improve the model’s generalizability. 

The loss function strategy adopted by YOLOPX. The loss 
function strategy in this study wants to address and enhance 
the weaknesses of the YOLOPX loss function techniques. We 
propose a new optimization approach: 

1) Code Organization and Modularization: We have 
redesigned the codebase with clearly defined different loss 
functions, each class focusing on specific functionality, such 

as handling class imbalance, calculating the IoU of bounding 
boxes, or computing key point losses. This modular approach 
allows each component to be used and tested independently, 
making the code easier to maintain and read. 

2) Documentation Clarity and Usability: Each loss 
function class is accompanied by detailed documentation 
comments and examples explaining how to use them. This 
method enables other developers to understand and deploy 
these loss algorithms more quickly. 

3) Applicability: The loss functions to cater to various 
simple and advanced applications. This approach is 
instrumental in determining the most suitable loss function for 
various tasks. 

4) Flexibility and Scalability: Each loss function is 
designed as an independent module, which can be easily 
added to or modified within the existing architecture. This 
enhances flexibility and scalability, allowing for future 
adjustments or enhancements. 

These improvements aim to provide more robust and 
adaptable solutions by addressing the deficiencies of existing 
loss functions. Thus, they enhance the overall effectiveness 
and practicality of the loss function strategy and make it 
suitable for a variety of tasks and scenarios. The composite 
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loss function consists of three parts: the object detection loss 
����, the drivable area segmentation loss ����, and the lane 
detection loss ������ . Equation 1 shows the specific formulas: 

 �	�� = ���� + ���� + ������ (1) 

The formula for object detection loss is as shown in Equation 
2: 

 ���� = �
���
�� + �������� + �������� (2) 

The category loss is�
��, corresponding to the 'FocalLossV1' 
module. A standard loss function calculates the difference 
between the model's predicted classification probabilities and 
the actual binary labels. In object detection tasks, it is used to 
determine whether an anchor contains a target, as shown in 
Equation 3: 

 �
�� = −�������� + �1 − �� ��� ��� �1 − ��  " (3) 

The bounding box regression loss ����, is used to measure the 
deviation between the predicted bounding box and the actual 
bounding box, as shown in Equation 4: 

 �����#$, #$&' = −(��$&' − � ��� ��� �#$  + �� − �$ ��� ��� �#$&'  ) (4) 

Among them, #$，#$&'are as shown in Equations 5 and 6: 

 #$ = *+,-.*
*+,-.*+

 (5) 

 #$&' = *+.*
*+.*+,-

 6) 

In this, y represents the actual coordinates of the bounding 
box, �$ and �$&' represent the two adjacent coordinate values 
(upper and lower limits) in the predicted bounding box 
coordinate distribution. This distributed representation 
method allows the model to predict a continuous distribution 
of bounding box positions, rather than a fixed point. #$ and 
#$&' represent the actual bounding box coordinates. Finding 
the relative position in the prediction distribution can be 
imagined as looking for two prediction points in the prediction 
distribution that are closest to the actual coordinate y and 
calculating the relative position of y based on these two points 
so that the loss function can optimize this relative position. 
This method helps to capture the uncertainty of the bounding 
box. 

The bounding box IoU loss ����, considers the overlap, 
distance, aspect ratio, and centroid deviation between the 
predicted and actual boxes, as shown in Equations 7-10: 

 ���� = 1 − 67�8 (7) 

 67�8 = 7�8 − 9:（;,;<=）
>: − ?@ (8) 

 @ = A
B: CDE>�D�DE>�D� F<= 

G<= − DE>�D�DE>�D� F 
G H

I
 (9) 

 ? = J
�'.��� &J (10) 

CIoU stands for Complete Intersection over Union, which 
not only considers the IoU but also the distance between the 
centers of the boxes and the aspect ratio. Here, K represents 
the center of the predicted bounding box, and K��  represents 

the center of the actual bounding box. LI（K, K��） denotes 
the Euclidean distance between the two centers. IoU is the 
square of the length of the diagonal of the minimum bounding 

rectangle that encloses both the predicted and the actual 

boxes. M and ℎ represent the width and height, respectively. 

? is used to balance the loss due to aspect ratio and @ adjusts 
the consistency of the aspect ratios between the predicted and 
the actual bounding boxes. If the aspect ratios are the same, @ 
will be zero; as the inconsistency increases, @ will also 

increase. ? ensures that when the IoU is already high, @ 
contributes minimally to the overall loss, but increases its 
influence when IoU is low, thereby encouraging the model to 
predict more accurate aspect ratios. The design intention is to 
improve the quality of the model's predicted bounding boxes, 
making them more aligned with the actual boxes in both 
position and shape. 

The loss function used for object detection will be applied to 
object and lane detection, offering multiple advantages. It 
integrates various aspects, such as classification, localization, and 
shape matching, to enhance detection performance. The loss 
function used for the segmentation of drivable areas is ����, and 
its specific formula is shown from Equations 11 to 13. 

 ���� = ������ + �O��O�  (11) 

 ��� = −?��1 − P� Q ��� ��� �P>�   (12) 

 �O� = 1 − OR
OR&S�T&U�R (13) 

Translation: The ��� is the weight for the Cross-Entropy 
Loss, and �O� is the weight for the Tversky Loss. ��� is the 
cross-entropy loss used to reduce class imbalance, measuring 
the difference between the probability distribution predicted 
by the model and the actual label distribution. �O� is the 
Tversky Loss portion, which can enhance the model's ability 
to recognize smaller target categories. ?� is the sample 
weight, which can be adjusted according to class imbalance. 
P� is the probability predicted by the model, which predicts 
the probability that a given pixel belongs to a certain class. 

V represents the true label, usually a binary value where 1 
indicates the pixel belongs to a specific category and 0 
indicates it does not. TP is the number of true positives, 
representing the number of pixels correctly predicted to 
belong to a specific category. FN is the number of false 
negatives, representing the number of pixels mistakenly 
predicted to other categories despite belonging to a specific 
category. FP is the number of false positives, representing the 
number of pixels incorrectly predicted to belong to a category 

when they do not. ? and W are used to adjust the weights of 
false negatives and false positives in the Tversky Loss, 
reflecting the emphasis on these errors. This combination of 
segmentation losses can help the model better handle class 
imbalances in segmentation tasks and optimize pixel-level 
prediction performance. By adjusting the weights ��� and 
�O�, the contributions of cross-entropy loss and Tversky Loss 
to the total loss can be tailored according to the specific needs 
of the task. Such a design makes the model more accurate 
when predicting difficult or uncommon categories. 

III. RESULT AND DISCUSSION 

This section will describe the experimental process and test 
results for the panoptic driving perception model improved 
based on YOLOv8 and YOLOP. Additionally, this chapter will 
discuss the advantages demonstrated by the model and how the 
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experimental results meet the research objectives of this study. 

A. Datasets 

In this experiment, the dataset used is BDD100K, a large 
and diverse driving dataset created by researchers at the 
University of California, Berkeley [24]. This dataset 
comprises 100,000 video clips captured from various urban, 
suburban, and rural areas, encompassing a wide range of 
weather conditions and both daytime and nighttime scenes. 
The primary objective of the BDD100K dataset is to provide 
abundant training and testing resources for developing 
Autonomous Driving Systems (ADS) technologies. 

In our experiments, the 100,000 images will be divided into 
a training set, a validation set, and a test set of 70,000, 20,000, 
and 10,000 photos, respectively. To evaluate the model's 
performance, this study will use recall and mAP50 for traffic 
object detection, mIoU for drivable area segmentation, pixel 
accuracy, and IoU to assess lane detection performance. 

B. Parameter setup 

Concerning the YOLOPX model experiment, the improved 
YOLOPX model was implemented on the Pytorch 
framework. The model was trained for 100 epochs using the 
SGD optimizer, with an initial learning rate of 0.01. Initially, 
the model underwent a 3-epoch warm-up training phase. 
During this warm-up phase, the momentum of the SGD 
optimizer was set to 0.8, and the learning rate for biases was 
0.1. During the training process, a linear learning rate 
annealing strategy was adopted [25]. This strategy helps 
ensure that the model learns quickly in the early stages of 
training and converges more stably later. Additionally, the 
original image dimensions were resized from 1280x720 to 
640x640, and training was conducted on an RTX 3090. A 3-
cycle warm-up strategy was applied to the network to ensure 
stable training. Cosine annealing adjusted the learning rate, 
and the momentum was set to 0.937. Notably, the model did 
not use a pre-trained model for fine-tuning. The confidence 
threshold was set to 0.25 during prediction, and the NMS 
(Non-Maximum Suppression) threshold was set to 0.45. The 
confidence and NMS settings followed those of YOLOP. 

C. Results 

In this experiment, the results are primarily based on two 
parts: the first part is the final results obtained after the 
training of the model; the second part compares the results of 
the YOLOP model, the YOLOPX model, and our model, 
which trained on the same dataset in the different weather 
conditions. The training phase is shown in Figure 3. 

 

 
Fig. 3  Experiment process 

 

The consistent performance in the later stages of training 
indicates that the model has achieved stable convergence, 
validating the effectiveness of the learning rate annealing and 
warm-up strategies employed during training. The result of 
this experiment is shown in Table II: 

TABLE II 
COMPARISON OF EXPERIMENTAL RESULTS ON LANE LINE DETECTION. 

Method Pixel Accuracy (%) IoU (%) 
YOLOP 70.5 26.2 
YOLOPX 88.6 27.2 
Ours  98.8 27.6 
 
This data shows that our model surpasses the other two 

methods in pixel accuracy, nearly reaching 99%, meaning that 
it closely matches the annotations at the pixel level. YOLOPX 
has much higher pixel accuracy than YOLOP, and YOLOP 
shows the weakest performance on both metrics. This 
indicates that the method used in our model may be more 
accurate in distinguishing between lane and non-lane pixels, 
and its IoU metric is higher than the other two methods, thus 
effectively identifying lane areas and boundaries. 

However, when applying these results to real-world 
scenarios, it's crucial to recognize the model's potential 
limitations in different driving contexts. Variations in driving 
conditions, such as lighting changes, worn road markings, 
adverse weather, and obstructions, may negatively affect the 
model's accuracy. While the model performs well on the 
BDD100K dataset, its reliability in unpredictable real-world 
situations needs further validation to ensure consistent 
performance in practical applications. 

D. Comparison Analysis 

This study conducted comparative experiments in different 
weather conditions on three lane line detection models: 
YOLOP, YOLOPX, and our model. The experiment aimed to 
evaluate each model's performance and robustness under four 
different environmental conditions: straightforward, night, 
rainy, and snowy. 

1) Comparison of model performance during clear 
weather: In Figure 4, our model excels in object detection, 
particularly in complex scenes and for distant targets. 
Compared to YOLOP and YOLOPX, our model provides 
more accurate bounding box positioning and sizing, 
significantly reducing missed detections and false positives. 
In lane line detection, our model performs exceptionally well, 
offering more accurate and continuous lane line recognition. 
Our model delivers more stable detection results in complex 
road environments without interruptions or recognition errors, 
surpassing YOLOP and YOLOPX.  

Our model also stands out in drivable area segmentation, 
with highly accurate segmentation areas and clear boundaries. 
Even in complex scenarios, the segmentation remains stable, 
with no blurred boundaries or incorrect segmentation, clearly 
outperforming YOLOP and YOLOPX. Our model shows 
significant advantages in object detection, lane line detection, 
and drivable area segmentation in clear weather conditions, 
providing more accurate and stable detection results. 
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Fig. 4  Clear-day comparison of algorithms. 

2) Comparison of model performance during the nights: 

In Figure 5, nighttime weather, our model demonstrates 
significant advantages in object detection, lane line detection, 
and drivable area segmentation. Compared to YOLOP and 
YOLOPX, our model can more accurately detect vehicles and 
pedestrians under low light conditions, with more precise 
bounding box positioning and sizing, reducing missed 
detections and false positives. Our model offers more accurate 
and continuous recognition in lane line detection, providing 
stable detection results even in complex nighttime road 
environments without interruptions or recognition errors.  

 
Fig. 5  Night Day comparison of algorithm 

 
In drivable area segmentation, our model delivers accurate 

segmentation areas with clear boundaries, maintaining 
stability even under poor lighting conditions and 
outperforming other models. These advantages make our 
model more suitable for practical applications in panoramic 
driving perception systems, significantly enhancing the safety 
and reliability of nighttime autonomous driving. 

3) Comparison of model performance during rains: 

Figure 6 shows that in rainy weather, our model shows 
significant advantages in object detection, lane line detection, 
and drivable area segmentation. Compared to YOLOP and 
YOLOPX, our model can still accurately detect vehicles and 
pedestrians under poor lighting and obstructed visibility, with 
more precise bounding box positioning and sizing, reducing 
missed detections and false positives.  

Our model offers more accurate and continuous 
recognition in lane line detection, providing stable detection 
results even on wet and reflective roads without interruptions 
or recognition errors. In drivable area segmentation, our 
model delivers accurate segmentation areas with clear 

boundaries, maintaining stability even under blurred visibility 
due to rain, with no blurred boundaries or incorrect 
segmentation. These advantages make our model more 
suitable for practical applications in panoramic driving 
perception systems, significantly enhancing the safety and 
reliability of autonomous driving in rainy weather. 

 

 
Fig. 6  Rain Day comparison of algorithms. 

4) Comparison of model performance during the snow: 

Figure 7 shows that in snowy weather, our model shows 
significant advantages in object detection, lane line detection, 
and drivable area segmentation. Compared to YOLOP and 
YOLOPX, our model can more accurately detect vehicles and 
pedestrians, especially under obstructed visibility and strong 
light reflections, with more precise bounding box positioning 
and sizing, reducing missed detections and false positives.  

 

 
Fig. 7  Snow Day comparison of algorithms 

 
Our model offers more accurate and continuous 

recognition in lane line detection, providing stable detection 
results even on snow-covered roads without interruptions or 
recognition errors. In drivable area segmentation, our model 
delivers accurate segmentation areas with clear boundaries, 
maintaining stability even on snow-covered roads. These 
advantages make our model more suitable for practical 
applications in panoramic driving perception systems, 
significantly enhancing the safety and reliability of 
autonomous driving in snowy weather. 

In conclusion, our model performs well and remains robust 
in various weather situations, particularly regarding lane 
border precision and area segmentation. This performance 
indicates that our model employs robust feature extraction and 
image processing algorithms capable of handling complex 
and variable environmental conditions. Our model's strong 
noise suppression and image enhancement abilities ensure 
stable lane detection capabilities in low light and adverse 
weather conditions. 
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IV. CONCLUSION 

This study integrates advancements from YOLOv8 and 
YOLOP to enhance the YOLOPX model for autonomous 
driving systems (ADS), addressing key challenges in 
panoramic driving perception. This study contributed to the 
improved backbone and neck structure by replacing the SPP 
module with the more efficient SPPF module and the C3 
module with the C2F module to improve multi-scale feature 
extraction and reduce computational load while retaining the 
anchor-free detection head of YOLOPX for accurate, efficient 
detection. The modular loss function as a new modular loss 
function allows independent adjustment of hyperparameters 
for classification, object, and regression losses, improving 
adaptability, generalization, and inference time for different 
tasks and environments. The extensive experimental 
validation has contributed to the experiments on the 
BDD100K dataset, showing significant improvements, with a 
lane line detection accuracy of 98.8%, a segmentation of the 
drivable area (mIoU) of 90.4%, and a recognition of traffic 
objects of 85.9% and mAP50 of 76.9%. 

This study combines the latest advancements from 
YOLOv8 and YOLOP to enhance the YOLOPX model 
comprehensively. The resulting model exhibits exceptional 
performance, flexibility, and real-time processing 
capabilities, contributing valuable advancements to 
developing robust and efficient panoramic driving perception 
systems for autonomous driving. Based on the achievements 
of the improved YOLOPX model in deep learning, future 
work can focus on multi-sensor fusion, which integrates data 
from radar, LiDAR, and cameras to enhance perception 
capabilities, thereby improving the model's accuracy and 
reliability in complex environments.  

Besides, adaptive learning mechanisms should be 
developed to enable automatic parameter adjustments, 
allowing systems to respond effectively to changing road 
conditions, such as fluctuating weather and varying traffic 
density. Real-time map updates, powered by the improved 
YOLOPX model, can provide dynamic navigation assistance 
and timely road obstacle warnings during transportation. 
Cross-domain validation is essential to test the model across 
diverse driving scenarios, ensuring its generalizability and 
practical application. Robustness and safety are critical 
priorities, necessitating rigorous testing and emergency 
handling procedures to safeguard the system against sensor 
failures. Furthermore, improving human-machine interaction 
by designing intuitive interfaces can help users better 
understand the vehicle's perception system, thereby fostering 
trust and confidence in autonomous technologies. Future 
work in these areas will advance the development of panoptic 
perception models for driving and thus increase the driving 
safety of vehicles equipped with this system. 
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