THE EFFECT OF BENZO (A) PYRENE (BAP) ON THE RESPIRATORY TRACT OF DOGS

HAZILA WATI HAMZAH, D. V.M

FPV 2000 3
THE EFFECT OF BENZO(a)PYRENE (BAP) ON THE RESPIRATORY TRACT OF DOGS

By

HAZILAWATI HAMZAH, D.V.M

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Veterinary Science in the Faculty of Veterinary Medicine
Universiti Putra Malaysia

September 2000
DEDICATION

This thesis is dedicated with appreciation to my
Husband, father and mother, father and mother-in-law, Wan,
Abang, Along, Mie, Kak Yan, Dr. Lan, Dr. Rina, Imah, Ayo, Ijam and Adik Wan,
who provide my inspiration,
and also not forget to
Nabilah Huda, Nurul Farahana Hazira, Nurul Hanis Fazliana and Mohd. Afiq:
"May the understanding of these impacts reduce the
burden they impose on all our lives".

-WATI-
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Veterinary Science.

THE EFFECT OF BENZO(A)PYRENE (BAP) ON THE RESPIRATORY TRACT OF DOGS

By

HAZILAWATI HAMZAH, D. V. M.

September 2000

Chairman: Dr. Noordin Mohamed Mustapha

Faculty: Veterinary Medicine

The global impact of air pollution encompasses the population health and the economic status of a nation. Air pollution or 'haze' contains a variety of noxious agents including benzo(a)pyrene (BaP). This compound is known to induce acute or chronic deleterious effects. The objectives of the study were to determine the effect of BaP on the physiology, defense mechanism and pathology of the lung, to suggest sensitive diagnostic techniques for the diagnosis of early carcinogenesis and to recommend preventive measures to minimise the effect of BaP.
An experiment was conducted in 27 dogs that are allocated to nine groups simulating different environmental condition and health status. The groups comprising of three dogs each were as follows: control, BaP, cyclosporine (Cyclo), Selenium (Se), BaP+Cyclo, BaP+Se, BaP+Cyclo+Se and Tricaprylin (Tri). Benzo(a)pyrene was given at the dose of 120 μg/dog intratracheally twice, six week apart, Se 20 μg/dog/day and cyclosporine at the dose 50 mg/m². The tidal volume (Vt) and whole blood glutathione peroxidase (GSH-PX) activity was analysed weekly for 12 weeks. While at necropsy, bronchoalveolar lavage (BAL) cytology, alveolar macrophage (AMØ) activities, BAL immunoglobulin (Ig) G and Ig A level, gross and histopathology of lungs were also analysed.

The finding revealed that the tidal volume (Vt) remain unchanged in all groups during the experimental period. The pulmonary immune response includes AMØ number, phagocytic and intracellular killing activities, and Ig A level in bronchoalveolar lavage (BAL) that was markedly suppressed in the BaP, Cyclo and BaP+Cyclo groups. Subsequently, the BaP and BaP+Cyclo+Se group exhibited gross and microscopic appearance of tumorigenesis, which was diagnosed as pulmonary adenocarcinoma with expression of mutant p53 protein while the BaP+Cyclo and BaP+Se had atypical adenomatous hyperplasia (AAH).

Based on the finding, exposure to BaP can lead to pulmonary immuno-suppression and tumorigenesis in dogs. It is also showed that during haze episode, immuno-stressed
individuals are more prone to the development of pulmonary immuno-suppression and tumorigenesis. Selenium supplementation or cyclosporine has great potential in combating these deleterious effects. However, simultaneous supplementation of Se together with cyclosporine during haze is not advised, since this will promote tumorigenesis in the lung.

In conclusion, intratracheal instillation (twice, six week apart) of 120 ng BaP/dog causes insignificant reduction of Vt, pulmonary immunosuppression and pulmonary carcinogenesis. The immunocytochemical detection of p53 can be used as a sensitive diagnostic technique for the diagnosis of early pulmonary carcinogenesis. Daily oral administration of Se as a supplement has great potential in minimising the adverse effect of BaP.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Mater Sains Veterinar.

KESAN BENZO(A)PYRENE KE ATAS SISTEM PERNAFASAN ANJING

Oleh

HAZILAWATI HAMZAH, D. V. M.

September 2000

Pengerusi: Dr. Noordin Mohamed Mustapha

Fakulti: Perubatan Veterinar

Kesan global pencemaran udara memudaratkan kesihatan populasi dan juga status ekonomi negara. Pencemaran udara atau 'jerebu' mengandungi berbagai jenis bahan-bahan merbahaya termasuk benzo(a)pyrene (BaP). Bahan ini diketahui boleh menyebabkan kesan akut dan kronik yang merbahaya. Tujuan ujikaji ini dijalankan adalah untuk menentukan kesan BaP ke atas fisiologi, mekanisma pertahanan dan patologi paru-paru, untuk mencadangkan teknik diagnosis yang sensitif untuk diagnosis awal barah paru-paru dan mencadangkan untuk mencadangkan langkah-langkah pencegahan bagi meminimumkan kesan BaP.
Ujikaji telah dijalankan pada 27 ekor anjing yang telah dibahagikan kepada sembilan kumpulan berdasarkan ke atas simulasi persekitaran dan status kesihatan yang berbeza. Kumpulan-kumpulan tersebut yang masing-masing mempunyai tiga ekor anjing adalah: kontrol, BaP, siklosporin (Cyclo), Selenium (Se), BaP+Cyclo, BaP+Se, BaP+Cyclo+Se dan Trikaprilin (Tri). Benzo(a)pyrene (BaP) telah disuntikkan pada dos 120 μg/anjing secara intratrakea sebanyak dua kali berselang enam minggu. Isipadu tidal dan aktiviti glutation peroksidase (GSH-Px) darah telah dianalisis setiap minggu selama 12 minggu. Sitologi dan basuhan bronkiol alveolus (BAL), aktiviti makrofaj alveolus (AMØ), tahap immunoglobulin (Ig) G dan Ig A dalam BAL, patologi makro dan mikro paru-paru telah dianalisis semasa nekropsi.

Hasil kajian menunjukkan isipadu tidal (Vt) kekal tidak berubah di dalam semua kumpulan sepanjang jangkamasa ujikaji. Tindakbalas keimunan paru-paru termasuk jumlah AMØ, aktiviti fagositosis dan pembunuhan intrasel, dan paras Ig A di dalam BAL menunjukkan perubahan yang sangat ketara dalam kumpulan BaP, Cyclo dan BaP+Cyclo. Seterusnya, kumpulan BaP dan BaP+Cyclo+Se menunjukkan pembentukan barah paru-paru secara kasar dan mikroskopi, yang mana telah didiagnosis sebagai adenokarsinoma pulmonari dengan kemunculan protein mutan p53, sementara itu kumpulan BaP+Cyclo dan BaP+Se mempunyai hiperplasia atipikal seperti adenoma (AAH).

Berdasarkan kepada penemuan ini pendedahan kepada BaP boleh menyebabkan penurunan keimunan pulmonari dan pembentukkan barah pada anjing. Ini juga
menunjukkan bahawa semasa jerebu, individu yang mempunyai tahap keimunan yang rendah lebih mudah terdedah kepada menurunan keimunan pulmonari dan pembentukkan barah. Pengambilan Se atau siklosporin mempunyai potensi yang besar untuk melawan kesan bahaya ini. Walau bagaimanapun, pengambilan Se serentak bersama siklosporin semasa jerebu adalah sangat tidak digalakkan kerana ia akan merangsangkan pembentukkan barah di dalam paru-paru.

Kesimpulannya, suntikan BaP secara intratrakea (dua kali, berselang enam minggu) pada dos 120 ng/anjing menyebabkan penurunan Vt yang tidak ketara, penurunan mekanisme pertahanan paru-paru dan pembentukan barah pulmonari. Pengesanan p53 secara immunositokimia boleh digunakan sebagai satu teknik diagnosis yang peka bagi karsinogenesis awal. Pengambilan tambahan Se secara oral setiap hari mempunyai potensi yang besar untuk meminimumkan kesan buruk BaP.
ACKNOWLEDGMENTS

I am especially grateful to my supervisors, Dr. Noordin Mohamed Mustapha, Prof. Dato' Dr. Sheikh Omar Abdul Rahman, and Dr. Daud Ahmad Israf Ali for their help in many ways and for their consistent advice, encouragement, moral support and excellent supervision throughout the course of the study.

I am also particularly grateful to Dr. Panayiotis Loukopoulos, Dr. Ng Kok Han, Mrs. Nor Azura Salim, Mrs. Azlina Mohd Salim, Mrs. Hartina Abdul Khan, Mr. Hari Govindan, Mrs. Azimah and Mrs. Sakdiah for their kind guidance in immunology and special staining technique. Thank is also extended to the excellent help of Tuan Haji Mohamad Nor and Mr. Jamil for their guidance in processing and preparation of histology specimens. Special thanks to Dr. Shizhen Zhang, Dr. Thoria, Dr. Muthafar, Dr. Goh Yong Meng, Mr. Ghazali Yusof, Mr. Noraziman Sulaiman, Mr. Apparao a/l Somanaidu, Chamdre a/l Vengadasamy, Miss. Maizatul Akmal Moktar, all the staff of the Faculty of Veterinary Medicine, Universiti Putra Malaysia (U.P.M) for their technical support and to all the staff of the Dog Unit, Dewan Bandaraya Kuala Lumpur, for providing healthy dogs for this study.

Sincere gratitude is also conveyed to the Ministry of Science, Technology and the Environment of Malaysia for the provision of the IRPA grant (06-02-04-0071) and the National Sciences Fellowship for the scholarship.
Last but not least, the consistent moral and technical support, patience and understanding of my loving husband, Dr. Mohd Rosly Shaari throughout the course of the study will always be remembered and appreciated.
I certify that an Examination Committee met on 26th September 2000 to conduct the final examination of Hazilawati Binti Hamzah on her Master of Veterinary Science thesis entitled "The Study of the Effect of Benzo(a)pyrene (BaP) on the Respiratory Tract of Dogs" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Rasedee Abdullah, B.Sc., M.Sc., Ph.D
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noordin Mohamed Mustapha, D.V.M., M.S., Ph.D
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Dato' Sheikh Omar Abdul Rahman, B.V.Sc., M.V. Sc., M.R.C.V.S
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Daud Ahmad Israf Ali, D.V.M., M.S., Ph.D
Lecturer
Institute of Bioscience
Universiti Putra Malaysia
(Member)

MOHGD. GHAZALI MOHAYIDIN, Ph.D
Professor,
Deputy Dean of Graduate School,
Universiti Putra Malaysia

Date: 28 NOV 2000
This thesis submitted to the senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Veterinary Sciences.

KAMIS AWANG, Ph.D,
Associate Professor
Dean of Graduate School,
Universiti Putra Malaysia

Date: 11 JAN 2001
I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Date: 27 NOV 2000

Hazlizawati Hamzah, D.V.M.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

I Introduction

- Air Pollution
- Haze
- Haze Episodes in Malaysia

II Literature Review

- The Physiology and Anatomy of the Respiratory System
 - The Conducting Airway of the Respiratory Tract
 - The Gaseous Exchange Portion
- The Pathophysiology of the Lung during Air Pollution
 - Pulmonary Function Test
 - Clinical Signs
 - Functional Changes
 - Patterns of Disordered Lung Function
- The Pulmonary Defense System during Air Pollution
 - Pulmonary Defense Mechanism
 - Pulmonary Immunosuppression
 - Prevention and Treatment
 - Benzo(a)pyrene (BaP)
- Pathological Changes of the Lung during the Influx of Polluted Air
 - Pathological Changes of Lung Injury by pollutants
 - Classification of Lung Cancer
 - Influence of Lung Tumour on Proto-oncogenes, p53 and PCNA

General Summary

xiv
III METHODOLOGY
Experimental Design 48
Assessment of Lung Function 49
 Measurement of the Physiological Lung Function 49
 Bronchiol Alveolar Lavage (BAL) 50
 Bronchiol Alveolar Lavage (BAL) Cytology 50
 Acridine Orange Chemiluminescence (AO) Assay 51
 Immunoglobulin (Ig) Assay 53
 The Measurement of the GSH-Px Activity (DTNB Direct Method) 54
 Examination of Pathological Changes of the Lung 55
 Histopathological Examination of the Lung 55
 Immunocytochemistry of the Tumour Suppressor Gene and Proliferating Cell Nuclear Antigen (PCNA) 56
 Statistical Analysis 59
Discussion 60

IV THE EFFECT OF BENZO(A)PYRENE (BAP) ON THE PULMONARY PHYSIOLOGY OF DOGS
Introduction 64
Materials and Methods 64
Results 65
 Clinical Signs 65
 Functional Changes 65
Discussion 66

V THE EFFECT OF BENZO(A)PYRENE (BAP) ON THE PULMONARY DEFENSE SYSTEM OF DOGS
Introduction 68
Materials and Methods 69
Results 69
 The Glutathione Peroxidase (GSH-Px) Activity 69
 Bronchiolaralveolar Lavage (BAL) Cytology Examination 71
 An of alveolar Macrophages (AM0) Activities 72
 Immunoglobulin (Ig) Levels in Bronchoalveolar Lavage (BAL) 74
Discussion 75
<table>
<thead>
<tr>
<th>VI</th>
<th>THE PATHOLOGY OF BENZO(A)PYRENE (BAP)-INDUCED LUNG INJURY IN DOGS</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Materials and Methods</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>The incidence of tumour-like lesions</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Gross Pathology</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Microscopic Pathology</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Immunocytochemistry and special stain</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VII</th>
<th>GENERAL DISCUSSION AND CONCLUSION</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REFERENCES</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>BIODATA OF THE AUTHOR</td>
<td>138</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1: Histologic classification of lung tumours

Table 3.1: The experimental design and its analog to the experimental and health status

Table 4.1: The average body weight (kg), and tidal volume (Vt mL/breath) for the 12 week-period (mean ± SD), correlation of tidal volume (Vt) on body weight, and comparison of linear regression.

Table 5.1: The average activity of whole blood Glutathione Peroxidase (GSH-Px) of dogs for the 12 week-period.

Table 5.2: Bronchiol Alveolar Lavage (BAL) of dogs at necropsy (mean ± SD).

Table 5.3: Alveolar Macrophage (AMØ) activities in dogs at necropsy (mean ± SD).

Table 5.4: Levels of Immunoglobulin (Ig)G and IgA in the Bronchiol Alveolar Lavage (BAL) of dogs at necropsy (mean ± SD).

Table 6.1: The presence of tumour-like lesions in the lung of dogs at necropsy.

Table 6.2: The microscopic presence of tumour-like lesions in the lung of dogs.

Table 6.3: The scoring of tumour-like lesions in the lung of dogs.

Table 6.4: The percentage of Atypical Adenomatous Hyperplasia (AAH) in the individual lung lobe of dogs.

Table 6.5: The immunocytochemistry and special staining of tumour-like lesions in the lung of dogs.

Table 6.6: The scoring of nuclear p53 in the lung of dogs.

Table 6.7: The scoring of cytoplasm p53 in the lung of dogs.
LIST OF FIGURES

Figure 1.1: Spirometric volumes.

Figure 5.1: The Glutathione Peroxidase (GSH-Px) of dogs during the experimental period.
LIST OF PLATES

Plate 5.1: The photomicrograph of an AMØ in Bronchiol Alveolar Lavage (BAL) with phagocytosed bacteria.

Plate 6.1: Photomicrograph, lung, dog from BaP group. Normal and Atypical Adenomatous Hyperplasia (AAH) of the Lung (x 120, H & E).

Plate 6.2: Photomicrograph, lung, dog from BaP group. Atypical Adenomatous Hyperplasia (AAH) of the lung (x 250, H & E).

Plate 6.3: Photomicrograph, lung, dog from BaP group. Adenocarcinoma of the lung (x 120, H & E).

Plate 6.4: Photomicrograph, lung, dog from BaP group. Adenocarcinoma of the lung (x 250, H & E).

Plate 6.5: Photomicrograph, lung, dog from BaP group. Adenocarcinoma of the lung (x 250, H & E).

Plate 6.6: Photomicrograph, lung, dog from BaP. Adenocarcinoma of the lung (x 500, H & E).

Plate 6.7: Photomicrograph, lung, dog from BaP group. Adenocarcinoma of the lung (x 500, H & E).

Plate 6.8: Photomicrograph, lung, dog from BaP group. Adenocarcinoma of the lung (x 500, H & E).

Plate 6.9: Photomicrograph, lung, dog from BaP group. Atypical Adenomatous Hyperplasia (AAH) of the lung (x 250, Alcian Blue).

Plate 6.10: Photomicrograph, lung, dog from BaP group. The cytoplasmic staining of p53 (x 400, p53 Immunocytochemistry Stain).
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH</td>
<td>atypical adenomatous hyperplasia</td>
</tr>
<tr>
<td>ADCC</td>
<td>antibody-dependent cellular cytotoxicity</td>
</tr>
<tr>
<td>AHH</td>
<td>aryl hydrocarbon hydroxylase</td>
</tr>
<tr>
<td>AM0</td>
<td>alveolar macrophage</td>
</tr>
<tr>
<td>AO</td>
<td>acridine orange</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cell</td>
</tr>
<tr>
<td>BAC</td>
<td>bronchoalveolar carcinoma</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchiol alveolar lavage</td>
</tr>
<tr>
<td>BALT</td>
<td>bronchial associated lymphoid tissue</td>
</tr>
<tr>
<td>BaP</td>
<td>benzo(a)pyrene</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CSI</td>
<td>cytoplasmic staining intensity</td>
</tr>
<tr>
<td>Cyclo</td>
<td>cyclosporine</td>
</tr>
<tr>
<td>CV</td>
<td>crystal violet</td>
</tr>
<tr>
<td>DA₂PL+CPV</td>
<td>distemper adenovirus type 2 parainfluenza leptospira + canine parvo virus</td>
</tr>
<tr>
<td>DAB</td>
<td>diaminobenzidin</td>
</tr>
<tr>
<td>Dm</td>
<td>capillary membrane</td>
</tr>
<tr>
<td>DMBA</td>
<td>dimethylbenz(a)pyrene</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTNB</td>
<td>dithio-bi-nitrobenzoic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme link immunosorbent assay</td>
</tr>
<tr>
<td>EM</td>
<td>electron microscope</td>
</tr>
<tr>
<td>ERV</td>
<td>expiratory reserve volume</td>
</tr>
<tr>
<td>FCS</td>
<td>fraction of cytoplasmic staining</td>
</tr>
<tr>
<td>FRV</td>
<td>functional reserve volume</td>
</tr>
</tbody>
</table>
FEV force expiratory volume
FEV₁ force expiratory volume in one second
FPN fraction of positive nuclei
FPC fraction of positive cytoplasm
GSH-Px glutathione peroxidase
GST glutathione S-transferase
GSTM₁ glutathione S-transferase M₁
LAL left apical lobe
LALN lung associated lymph node
LCL left cardiac lobe
LDL left diaphragmatic lobe
H & E haematoxylin & Eosin
H₂O₂ hydrogen peroxide
Ig immunoglobulin
IL Interleukin
IL-2R Interleukin 2 receptor
ILDS interstitial lung disease
IRV inspiratory reserve volume
NAC n-acetylcysteine
NCLC non-small cell lung cancer
NO oxide of nitrogen
NRC National Research Council
NSI nuclear staining intensity
PAH polycyclic aromatic hydrocarbon
PAS Periodic Acid-Schiff
PBS phosphate buffer saline
PCNA proliferating cell nuclear antigen
PCO₂ partial pressure of carbon dioxide
PCR polymerase chain reaction
PM particulate matter
RAL right apical lobe
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RacL</td>
<td>right accessory lobe</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RCL</td>
<td>right cardiac lobe</td>
</tr>
<tr>
<td>RDA</td>
<td>recommended daily allowance</td>
</tr>
<tr>
<td>RDL</td>
<td>right diaphragmatic lobe</td>
</tr>
<tr>
<td>RR</td>
<td>respiratory rate</td>
</tr>
<tr>
<td>RV</td>
<td>residual volume</td>
</tr>
<tr>
<td>rhIL2</td>
<td>recombinant human Interleukin 2</td>
</tr>
<tr>
<td>S</td>
<td>sulphur</td>
</tr>
<tr>
<td>SCLC</td>
<td>small cell lung cancer</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>Se</td>
<td>selenium</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulphur dioxide</td>
</tr>
<tr>
<td>SPM</td>
<td>suspended particulate matter</td>
</tr>
<tr>
<td>SRBC</td>
<td>sheep red blood cell</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>TLC</td>
<td>total lung capacity</td>
</tr>
<tr>
<td>Tri</td>
<td>tricaprylin</td>
</tr>
<tr>
<td>VC</td>
<td>vital capacity</td>
</tr>
<tr>
<td>Vm</td>
<td>minute ventilation</td>
</tr>
<tr>
<td>Vt</td>
<td>tidal volume</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Over centuries, the human population is very much concerned about air pollution, primarily in occupational settings and outdoors in urban areas that are mostly derived from automobile exhaust, industrial smoke and mines. Recently, air pollution becomes an important issue since its tremendous impacts are global, not only to animal and human health, but also to the economy of a nation. Nowadays, the major factor contributing to the air pollution phenomena termed 'haze', is large scale open burning of forest. It usually happened during recultivation in dry season for example at Kalimantan and Sumatra, Indonesia. Air pollutant components originating from biomass burning includes particulate matter (PM), polycyclic aromatic hydrocarbon (PAH), sulfur dioxide (SO$_2$), oxides of nitrogen (NO) and formaldehyde (Usmani et al., 1998).

Haze

Haze is defined as suspended particles that are dispersed through a portion of the atmosphere. It is invisible to the naked eye and will grow in size as humidity increases.
The formation of a haze layer requires a source of haze particles and a relatively stable atmospheric condition in the lower layer of the atmosphere.

Atmospheric air PM with an aerodynamic diameter of 2.5 μm and less, and 2.5 μm - 10 μm is defined as PM2.5 and PM10, respectively. A very significant increase in the atmospheric PM concentration, particularly the finest particle was observed during the haze which covered the Malaysia atmosphere from July to December 1997 (Khalid et al., 1998).

Polycyclic aromatic hydrocarbon (PAH), which exists as colourless, white or pale yellow-green solids as a result of combustion and pyrolysis of organic substances is traditionally associated with PM includes benzo(a)pyrene (BaP), benzo(a)anthracene, pyrene, which may contribute to deleterious short and long-term health effects in human as well as animals.

Haze Episodes in Malaysia

The visibility depends on suspended particulate matter (SPM), particle sizes and relative humidity. Slight hazy conditions are common in Malaysia with visibility often below than 10 km, especially during the period of August - September. The hazy situation becomes worst when the visibility range reaches to < 1 km.