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Hepatocellular carcinoma (HCC) is among the most common liver cancers 
globally with more than 600,000 new patients diagnosed annually. The 
limitations of chemotherapy in treating HCC include poor aqueous solubility, non-
specific targeting of anticancer drugs, low retention of drugs in the tumor, and 
multi-drug resistance. The development of innovative intervention tools for early 
diagnosis and treatment has gained exceptional interest in HCC management. 
However, HCC is a multifactorial disease that requires a combination of 
treatment plans rather than a single therapeutic agent targeting only a single 
target. The complication of the disease, such as liver cirrhosis, limits surgical and 
therapeutic options due to liver malfunction might result in alteration of the safety 
profiles of systemic agents. Thus, multi-target inhibitors (MTIs) and multi-drug 
inhibitors (MDIs) that combine several drugs to inhibit numerous pathways are 
vital in treating HCC, but they may induce systemic toxicity due to liver 
malfunction. The concept of employing nanoparticles (NPs) in delivering multi-
target inhibitors (MTIs) and multi-drug inhibitors (MDIs) has a strong potential in 
the therapeutic strategy and offers impressive outcomes to address HCC. 
Chitosan nanoparticles (ChNPs) have a great potential to be used as a drug 
delivery system in HCC therapy over conventional drug therapy. Furthermore, 
the anti-HCC drug-loaded ChNPs can lessen the dosage amount and duration 
of treatment and could resolve the problems of low and poor compliance, 
therefore, significantly reducing the side effects. In this work, encapsulated, 
single-loaded, and dual-loaded FDA-approved anti-HCC drugs (small molecule 
kinase inhibitors); cabozantinib (CBZ) and sorafenib (SF), and the antimetabolite 
drug, 5-fluorouracil (5FU) into chitosan NPs, were synthesized for better efficacy 
on HCC treatment with fewer drug side effects. These novel nanocarriers 
enhanced effective permeation through the cells, better stability in the 
bloodstream, and demonstrated controlled release capability of the 
encapsulated drugs, resulting in more potent multitarget inhibitors for HCC 
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treatment. In this study, the ionic gelation technique was used to synthesize 
chitosan NPs, loaded with MTIs and MDIs, via a crosslinking agent, sodium 
tripolyphosphate (TPP) with various Ch to TPP ratios (1:1.25, 1:2.5, 1:5, 1:10, 
1:20). Subsequently, the impact of the amount of TPP on the reaction yield, 
particle size, entrapment efficiency, anticancer activities, and in-vitro drug 
release was explored. The increase in the TPP concentration led to a smaller 
particle size. The chitosan nanocarriers were found to be uniform in size with 
high drug loading and encapsulation efficiency. At the ratio of 1:2.5, ChNPs with 
single-loaded MTI were found to be in the range of 100 nm in their mean particle 
size distribution (PSD), compared to around 50 nm for dual drug-loaded ChNPs. 
The encapsulation efficiencies for single-loaded drugs are in the range of 40-
50% compared to 50-70% for the dual-loaded. The XRD and FTIR of chitosan 
nanoparticles revealed an amorphous nature, which confirmed that the crystal 
structure of the drug was tapered. All the drugs from all the nanocarriers systems 
underwent a sustained release as evident in the in-vitro release study, as 
indicated by the TGA/DTG thermograms. Overall, the majority of the drugs show 
90-100% release within the first 120 hours for all the samples. The cytotoxicity 
of these synthesized nanodelivery systems was evaluated by In Vitro study using 
normal human dermal fibroblast adult cells (HDFa) cells and human liver 
hepatocellular carcinoma (HepG2) cell lines. The nanocarriers system for the 
MTIs and MDIs showed low toxicity to the normal humandermal fibroblast adult 
cells (HDFa). The single- and dual-loaded drug systems exhibited anticancer 
effects, which were better achieved with MDIs compared to MTIs. Conclusively, 
CS/TPP concentration is one of the most important factors in optimizing the 
formulation for the development of anti-HCC nanocarriers. Dual drug-loaded 
CSNP systems are a novel and promising approach to enhancing therapeutic 
efficacy and reducing the deleterious effects of MDIs and MTIs. Findings from 
this work could lead to a new generation of nanodrug delivery systems of tailor-
made multifunctional properties with better efficacy and accuracy. 
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Karsinoma hepatoselular (HCC) adalah antara kanser hati yang paling biasa di 

seluruh dunia dengan lebih daripada 600,000 pesakit baharu didiagnosis setiap 

tahun. Kemoterapi yang terhad dalam merawat HCC termasuk keterlarutan 

akueus yang lemah, ubat antikanser yang bukan spesifik khusus, pengekalan 

ubat yang rendah dalam tumor dan rintangan pelbagai ubat. Pembangunan alat 

intervensi yang inovatif untuk diagnosis dan rawatan awal telah mendapat 

tarikan yang luar biasa dalam pengurusan HCC. Walaubagaimanapun, HCC 

ialah penyakit disebabkan oleh pelbagai faktor yang memerlukan gabungan 

pelan rawatan dan bukan hanya satu agen terapi yang menyasarkan hanya satu 

sasaran. Komplikasi penyakit seperti sirosis hati mengehadkan pilihan 

pembedahan dan terapi akibat kerosakan hati yang mungkin mengakibatkan 

perubahan profil keselamatan agen sistemik. Oleh itu, perencat berbilang 

sasaran (MTI) dan perencat berbilang ubat (MDI) yang menggabungkan 

beberapa ubat adalah penting dalam merawat HCC untuk menghalang banyak 

kesan. Namun begitu, gabungan ini boleh menyebabkan ketoksikan sistemik 

akibat daripada kerosakan hati. Konsep menggunakan zarah nano (NP) dalam 

menyampaikan perencat berbilang sasaran (MTI) dan perencat pelbagai ubat 

(MDI) mempunyai potensi yang kuat dalam strategi terapi dan menawarkan hasil 

yang mengagumkan untuk menangani HCC. Nanopartikel kitosan (ChNPs) 

mempunyai potensi besar untuk digunakan sebagai sistem penyampaian ubat 

dalam terapi HCC berbanding terapi ubat konvensional. Tambahan pula, ChNP 

yang sarat dengan ubat anti-HCC boleh mengurangkan jumlah dos dan tempoh 

rawatan serta boleh menyelesaikan masalah pematuhan yang rendah dan 

lemah. Oleh itu, ubat ini boleh mengurangkan kesan sampingan dengan ketara. 

Dalam bidang ini, ubat anti-HCC yang diluluskan oleh FDA (perencat kinase 

molekul kecil); cabozantinib (CBZ) dan sorafenib (SF), dan ubat antimetabolit, 
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5-fluorouracil (5FU) ke dalam NP kitosan, telah disintesis untuk keberkesanan 

yang lebih baik pada rawatan HCC dengan kesan sampingan ubat yang lebih 

sedikit. Pembawa nano novel ini meningkatkan resapan berkesan melalui sel, 

kestabilan yang lebih baik dalam aliran darah dan menunjukkan keupayaan 

pelepasan terkawal bagi ubat terkapsul yang menghasilkan perencat berbilang 

sasaran yang lebih kuat untuk rawatan HCC. Dalam kajian ini, teknik 

pengadukan ionik digunakan untuk mensintesis NP kitosan yang ditambah 

dengan MTI dan MDI melalui agen penghubung silang, natrium tripolifosfat 

(TPP) dengan pelbagai nisbah Ch kepada TPP (1:1.25, 1:2.5, 1:5, 1:10, 1:20). 

Seterusnya, kesan jumlah TPP ke atas hasil tindak balas, saiz zarah, kecekapan 

pemerangkapan, aktiviti antikanser dan pelepasan ubat in-vitro telah diterokai. 

Peningkatan kepekatan TPP membawa kepada saiz zarah yang lebih kecil. 

Pembawa nano kitosan didapati bersaiz seragam dengan penambahan ubat 

yang tinggi dan kecekapan pengkapsulan. Pada nisbah 1:2.5, ChNP dengan 

MTI tambahan tunggal didapati berada dalam julat 100 nm dalam taburan saiz 

zarah puratanya (PSD) berbanding dengan ChNP yang ditambah dengan dua 

ubat hampir 50 nm. Kecekapan enkapsulasi untuk ubat tambahan tunggal 

adalah dalam julat 40-50% berbanding 50-70% untuk ubat dwi-tambahan. XRD 

dan FTIR nanopartikel kitosan mendedahkan sifat amorf, yang mengesahkan 

bahawa struktur kristal ubat itu tirus. Semua ubat daripada semua sistem 

pembawa nano menjalani pelepasan berterusan seperti yang terbukti dalam 

kajian pelepasan in-vitro yang ditunjukkan oleh termogram TGA/DTG. Secara 

keseluruhan, majoriti ubat menunjukkan pelepasan 90-100% dalam tempoh 120 

jam pertama untuk semua sampel. Sitotoksisiti sistem penghantaran nano yang 

disintesis ini dinilai oleh kajian In Vitro menggunakan sel-sel dewasa fibroblast 

dermal manusia (HDFa) normal dan sel-sel karsinoma hepatoselular hati 

manusia (HepG2). Sistem pembawa nano untuk MTI dan MDI menunjukkan 

ketoksikan yang rendah kepada sel dewasa fibroblast manusia biasa (HDFa). 

Sistem ubat tunggal dan dua tambahan mempamerkan kesan antikanser yang 

lebih baik dicapai dengan MDI berbanding MTI. Kesimpulannya, kepekatan 

CS/TPP adalah salah satu faktor terpenting dalam mengoptimumkan formulasi 

bagi pembangunan pembawa nano anti-HCC. Sistem CSNP yang sarat dengan 

dua ubat adalah pendekatan baru dan menjanjikan untuk meningkatkan 

keberkesanan terapi dan mengurangkan kesan buruk MDI dan MTI. Penemuan 

daripada kajian ini boleh membawa kepada generasi baharu dalam sistem 

penyampaian ubat nano dengan pelbagai fungsi khusus yang lebih berkesan 

dan tepat.  
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Background of research  
 

Cancer has been the leading cause of death globally after cardiovascular 
disease although tremendous efforts have been devoted to improving the early 
diagnosis capacity and therapeutic strategies (Nagai & Kim, 2017). Lately, a few 
studies were conducted to assess the leading cause of mortality in high-, middle- 
and low-income countries and the findings demonstrated that cancer has 
overtaken cardiovascular disease (CVD) as the primary cause of death in high-
income countries (HICs) (Mahase, 2019; The Lancet, 2019; Stringhini & 
Guessous, 2018). According to a report from the Prospective Urban and Rural 
Epidemiologic (PURE) study published in The Lancet, cancer is twice as many 
deaths (CVD) in HICs including Saudi Arabia, United Arab Emirates, Canada 
and Sweden.  
 

As demonstrated in Figure 1, the GLOBOCAN, the GLOBOCAN database has 
projected that there will be an estimated 19.3 million new cancer cases and 
approximately 10 million deaths worldwide in the year 2021 (Sung et al., 2021). 
It was then forecasted the new cancer cases will hit 28.4 million by 2040. 
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Figure 1.1: Estimated new cases and death in the year 2021 without 
including basal cell and squamous cell skin cancer and in situ carcinoma 
except for urinary bladder 
(Source: Siegel, 2021) 
 

Among types of cancer, it was reported that cancer of the liver was the fifth most 
common cancer in males while the ninth most common in females (Ndom, 2019).  
Although liver cancer was not the top 3 most common cancer in both genders, 
the fatality rate of liver cancer was ranked no. 3 with 830,000 deaths reported in 
2020 (Trézéguet et al., 2021). Hepatocellular carcinoma (HCC) – was the most 
common liver cancer with more than 600,000 new diagnosed cases each year 
which is prominent in Asia and sub-Saharan Africa where chronic hepatitis B 
virus infections are endemic (Sung et al., 2021). On the contrary, the 
predominant risk factors in Western countries are alcohol, hepatitis C virus 
infection, and prevalence of non-alcoholic steatohepatitis. Underlying liver 
cirrhosis is a common underlying condition in HCC patients, which limits surgical 
and therapeutic options due to malfunctioning liver might result in alteration of 
safety profiles of systemic agents (Galle et al., 2018).  
 

Surgery, radiation therapy and chemotherapy are the most common treatment 
choices for cancer. The selection of the treatment choices is relatively dependent 
on several factors including the size and location of the tumor. Besides, the stage 
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of cancer also plays a crucial role in deciding the treatment options. 
Chemotherapy was the main therapeutic approach for both localized and 
metastasized cancer. The primary strategy of conventional chemotherapy in 
destroying cancer cells is interfering with the DNA synthesis and mitosis process 
via chemical substances. Occasionally, chemotherapy was recommended to be 
combined with other forms of therapy such as surgery and radiation therapy to 
have better efficacy in cancer therapy. 
 

Despite the promise of conventional chemotherapy in cancer treatment, it suffers 
several limitations including poor aqueous solubility, non-specific targeting of 
anticancer drugs, low retention of drugs in the tumor and multi-drug resistance 
(MDR) (Wei et al, 2021; Zhao et al., 2018). Chemotherapeutic drugs such as 
doxorubicin, paclitaxel cabozantinib, sorafenib and fluorouracil are hydrophobic 
and require solvents (alcohol and acid) to formulate the dosage form which 
frequently leads to severe toxicity. Besides, owing to its low selectivity properties, 
chemotherapeutic drugs also destroy other normal healthy cells in the body that 
naturally grow at a faster pace for instance hair, skin, blood cells and cells in the 
gastrointestinal (GI) tract (Senapati et al., 2018; Zhao et al., 2018). Additionally, 
in many instances, only a small amount of the administered drug reaches the 
tumor site which eventually leads to a relatively low therapeutic efficacy. MDR 
was the major blockade that limited the efficacy of conventional chemotherapy. 
MDR is the result of the overexpression of several proteins in the cell membrane 
such as P-glycoprotein (Pgp) which plays a role in transporting the 
chemotherapeutic drugs out of cells (Pomilio & Mercader, 2018). Therefore, 
eradication of cancer remains a major challenge owing to its heterogeneous 
nature and inability of delivering chemotherapeutic drugs to cancer cells and at 
the same time, minimizing the toxicity in normal healthy cells. 
 

Nanotechnology is accepted as a window of new opportunities and solution for 
cancer care, and amazing treatment outcomes with its application has been 
published. Extensive reviews of advantages and limitations of nanotechnology 
for carcinogenesis treatment and their relevant factors and characteristics are 
available in literature (Friberg & Nyström, 2015; Kawasaki & Player, 2005; Wicki, 
Witzigmann, Balasubramanian, & Huwyler, 2015). It is recognized that 
nanotechnology manifests potential in substituting conventional cancer therapy 
owing to its unique advantages for specific delivery to target cells (Climent et al., 
2018; Li, Yin, Cheng, & Lu, 2012). Target agents (antibodies, aptamer and 
peptides) functionalized on drug nanocarriers are commonly used to enhance 
the selectively targeting specific cell surface receptors which predominantly 
present on cancer cells; consequently, an adequate amount of the 
chemotherapeutic drug is transported to cancer cells and minimized the 
treatment impact on normal healthy cells. Hence, high drug dose is unnecessary 
to yield the similar or even better therapeutic effecf, which eventually brings down 
the treatment cost. Moreover, the ability remote control over the release of 
chemotherapeutic drug by responsive toward external (light, magnetic field and 
ultrasound) (Angelatos, Radt, & Caruso, 2005; Ge, Neofytou, Cahill, Beygui, & 
Zare, 2012; Rodzinski et al., 2016) or internal (pH, temperature) (Angelos et al., 
2009; Du et al., 2009; J. Zhang & Misra, 2007) stimuli lessen the possibility of 
premature drug release during the circulation in the body. The advent of 
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nanotechnology in treating cancer has numerous positive outcomes as 
compared to conventional cancer therapy such as lengthen circulation time and 
therefore better bioavailability, improved solubility of chemotherapeutic drugs, 
slow-release of the drug and tailor-made properties such as multi-modal and 
multi-functional. 
 

Several types of nanocarriers as shown in Figure 2 such as metallic 
nanoparticles (Baffou & Quidant, 2013; Ahmad et al., 2010; Kogan et al., 2005), 
polymer nanoparticles (Mukerjee & Vishwanatha, 2009; Tang et al., 2009; Tong 
& Cheng, 2007), silica nanoparticles (Argyo et al., 2014; Zhang et al., 2012; Lee 
et al., 2011; Tian et al., 2011), quantum dot (Delehanty et al., 2009; Medintz et 
al., 2005; Michalet et al., 2005), liposome (Allen & Cullis, 2013; Chang & Yeh, 
2012; Harris et al., 2002; Batist et al., 2001) and dendrimer (Wolinsky & Grinstaff, 
2008; Tomalia et al., 2007; Majoros et al., 2006; Majoros et al., 2005; Malik et 
al., 1999) were developed. 
 

 
Figure 1.2: Schematic diagram representing the common type of 
nanomaterials used for nanomedicine 
(Source: Fornaguera & Solans, 2017) 
 

From the abovementioned nanocarriers, polymeric nanoparticles (PNPs) have 
been drawing increased attention from a few groups of researchers after the 
initial work of Langer and Folkman in 1976 (Langer & Folkman, 1976). PNPs are 
produced from a polymeric material with the colloidal organic compounds having 
a size range from 1 to 1000 nm. Based on their origin, polymers used in 
formulating PNPs can be subdivided into natural types and synthetic. Chitosan, 
gelatin, albumin and sodium alginate are examples of natural polymers that are 
obtained from either animals or plants to be used to synthesize PNPs (Niculescu 
& Grumezescu, 2021). On the other hand, the most common synthetic polymers 
used for PNPs preparation are polylactides (PLA), polyglycosides (PGA) and 
poly(N-vinylpyrrolidine). Furthermore, as illustrated in Figure 3, PNPs are 
synthesized either into nanospheres and nanocapsules structure depending on 
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their preparation method. Nanocapsules are systems in which the drug is 
confined to an aqueous/oily core surrounded by a unique, thin polymeric 
membrane with specific characteristics. Nanospheres, are matrix systems in 
which the drug is physically and uniformly dispersed, entrapped, or adsorbed. 
 

 
Figure 1.3: Schematic diagram represented types of PNPs based on their 
preparation method 
(Source: Zielińska et al., 2020) 
 

Owing to their advantageous properties such as good stability, low toxicity, 
biodegradability and hemocompatibility, PNPs are widely used for biomedical 
applications not limited to only delivering drugs, but also used as a diagnostic 
tool in the medical field (Sharifi-Rad et al., 2021; Sanna & Sechi, 2020). A more 
detailed type of PNPs and their biomedical applications were summarized in 
Figure 1. 
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Table 1.1: Types of PNPs used in biomedical applications 
 

Particle class 

Materials  

Particle class Materials  Application 

Natural 

material/ 

derivative 

Chitosan, dextran, gelatine, alginates, 

liposomes, starch 

Drug delivery, gene 

delivery 

Dendrimers Branched polymers Drug delivery 

Fullerenes Carbon-based carrier Photodynamics drug 

deliver 

Polymer 

carriers 

Polylactic acid, poly(cyano)acrylates, 

polyethyleneimine, block copolymers 

drug delivery, gene delivery 

Polycaprolactone 

Drug delivery, gene 

delivery 

Ferrofluids SPIONS, USPIONS Imaging (MRI) 

Quantum dots Cd/Zn–selenides Imaging, In Vitro 

diagnostics 

Various Silica–nanoparticles, mixtures of above Gene delivery 

SPIONS = Superparamagnetic iron oxide nanoparticles, USPIONS= ultra-small 
superparamagnetic iron-oxide nanoparticles 
 

Various natural polymers such as chitosan have been widely employed in the 
medical field over the past decades profiting from their inexpensive cost 
production, renewable, biodegradability, biocompatibility, antimicrobial activity 
and relatively safe as it had been Food and Drug Administration (FDA) approved 
(Niculescu & Grumezescu, 2021). Biocompatibility is one of the most crucial 
requirements in selecting biomaterials for medical and pharmaceutical 
applications (William, 2020). Among the natural polymers, chitosan 
nanoparticles (ChNPs) have attracted tremendous attention as nanocarriers 
since they can be loaded with a wide range of natural and chemical substances 
including chemotherapeutic drugs, protein, and genes via simple chemical 
reactions. The presence of two distinct reactive functional groups (-NH2 group 
and -OH group) allows the conjugation of biological molecules. Additionally, the 
mucoadhesive properties of this polymer are the main factor that had drawn 
increasing interest from researchers as this property enable prolonged retention 
of the drug at the absorption site in which, making them suitable for oral and 
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intravenous administered nano-delivery systems (Charlie-Silva et al., 2020). 
ChNPs also play a role in protecting the loaded natural and chemical substances 
from enzymatic degradation which ensures the encapsulated substances can be 
delivered to the target site. Another remarkable advantage of ChNPs is they 
exert a continuous release of drug over an extended period, which is also known 
as sustained release, unlike liposomes and micelle which exhibit a burst-
controlled release of drugs (Herdiana et al., 2021).  
 

1.2 Problem statements 
 

Liver cancer is a serious player that can be life-threatening. It’s a multifactorial 
disease that cannot be combated with a single therapeutic agent which targets 
only a single target. Thus, multi-target inhibitors (MTIs) are vital in treating liver 
cancer to minimize the complications of the disease such as the development of 
chemotherapeutic drugs resistance. As illustrated in Figure 4, there are two 
major classes of MTIs, (a) single drug inhibitors (SDIs) that downregulate 
multiple kinases correspondingly while the other major group is (b) multi-drug 
inhibitors (MDIs) that aim more than one signalling pathways. 
 

 
Figure 1.4: Schematic of MTI that affects more than one intracellular 
signalling pathway at the same time to halt the growth cancerous cells 
(Source: Gowda et al., 2013) 
 

Small molecule kinase inhibitors for example cabozantinib (CBZ) and sorafenib 
(SF) are the most popular categories of single drug MTIs which are continuously 
evaluated as new therapeutic agents for cancer treatment. This is because these 
molecules deregulate kinase activity (Table 1) which is a vital mechanism that 
enables cancer cells to invade and controls normal cells proliferation and survival 
(Zhang et al., 2009).  
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Table 1.2: Single-agent MTIs currently undergoing preclinical and clinical 
use 
 

Agent Company Indication Targets 

Sorafenib Onyx/ Bayer RCC, HCC VEGFR, PDGFR, c-Kit, Raf 

Nilotinib Novartis CML Bcr-Abl, PDGFR, cSrc, c-
Kit 

Sunitinib Pfizer GIST, RCC PDGFR, VEGFR, c-Kit, 
RET, FLT3 

Crizotinib Pfizer NSCLC EML4/ALK, HGFR 

Motesanib Amgen/ Takeda Breast cancer PDGFR, VEGFR, c-Kit 

Vandetanib Astra Zeneca Thyroid, NSCLC EGFR, VEGFR, RET 

Lesaurtinib Cephalon AML JAK2, FLT3, Trk 

Cabozatinib Exelixis Thyroid, solid 
tumors 

VEGFR, MET, c-Kit, FLT3, 
RET, TEK 
 

Pazopanib GlaxoSmithKline RCC, sarcoma VEGFR, PDGFR, c-Kit 

(Source: Gowda et al., 2013) 
 

Nearly 500 protein kinases were discovered in the human kinase map. Usually, 
more than one signalling pathway is affected in one tumour. Hence, kinase 
inhibitors commonly manufactured to target more than one oncogenic receptor 
such as vascular endothelial growth factor receptor (VEGFR), endothelial growth 
factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), or they 
manufactured to suppress the downstream intracellular pathways for example 
tyrosine-protein kinase (cSrc) and mitogen-activated protein (MAPK) pathways. 
Although tyrosine kinase inhibitor (TKI) therapy has evidently showed a 
numerous of advantages, it has its limitations as well as several adverse effects. 
Off-target activity is one of the major drawbacks of TKI therapy that causing a lot 
of adverse events, negatively influencing the patient’s quality life and 
continuation of therapy (Bhullar et al., 2018). Furthermore, cancer tends to 
undergo continual mechanisms evolution that drive drug resistance leading to 
the low efficacy of TKI medications. Thus, other than single-agent MTIs, MDIs, 
synergistic drug combinations are also getting more and more crucial in cancer 
treatment. It was hypothesized that a ratio for optimal suppression of more than 
one kinase can readily be obtained via the combination of multiple agents. 
 

The major challenge for MTIs is the safely delivering drugs and the accumulation 
of drugs primarily at the target site as the inhibition of multiple key signalling 
pathways has the tendency in causing systemic toxicity. Because of this, the 
application of nanotechnology for drug delivery is favoured to make sure that the 
MTIs assemble in the tumour vasculature and thus, enhancing the treatment 
outcome while reducing systemic adverse off-target effects. In recent years, the 
developments in nanomedicine and targeted cancer therapy brings a new insight 
into this field of therapeutic applications. Certain nanocarrier features offer 
several advantages over free drugs such as enhance drug efficacy, lessen the 
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off side of systemic adverse reactions, improve drug bioavailability, overcoming 
the biological barriers, enhance drug stability or allow for specific delivery of MTIs 
to the targeted cancer cells. Additionally, nanotechnology can bring new 
panoramas into MDIs, which can be highly efficient in connection with TKIs. 
 

Herein, ChNPs loaded with chemotherapeutic drugs (Cabozantinib, Sorafenib 
and 5-Fluorouracil) were synthesized in this study. Chitosan, a substance 
derived from chitin, has been extensively studied and developed into ChNPs. 
These nanoparticles possess unique properties that make them particularly 
suitable for ocular and oral delivery applications. Controlled release self-
nanoemulsifying drug delivery systems have emerged as a highly promising 
approach to address the challenges associated with the limited stability and 
bioavailability of numerous active pharmaceutical ingredients (APIs). Chitosan 
possesses the ability to effectively adhere to the mucus membrane, which is 
negatively charged. This characteristic leads to an extended duration of contact 
and improves the likelihood of cellular absorption. Very little research has been 
done on chitosan nanomaterial as MTI owing to the encapsulation of more than 
one chemotherapeutic drug together into ChNPs was challenging as they might 
not be compatible, which eventually caused complications. The efficient 
parameters and physio-chemical characteristics of nanocarriers have played a 
vital role in ensuring better therapy, imaging and controlled-release of drugs. For 
instance, administration of a larger size of nanocarriers via blood vessels often 
are trapped by various biological compounds not limited to protein, enzymes but 
also other organs and released chemotherapeutics agents before they reach the 
tumor cells. On the other hand, nanocarriers with very small sizes often escape 
the uptake by the targeted organs and eliminate them from the body without the 
proper release of therapeutic agents. As a result, it is crucial for scientists to 
optimize and formulate the chitosan-based nanocarrier systems with a size 
range between 50 nm to 200 nm, and loaded with an effective amount of 
chemotherapeutics agents for effective cancer treatment. 
 

1.3 Hypothesis  
 

The chitosan exhibits high surface area and high stability to hold the drugs as a 
result, the synthesized nanodelivery systems are anticipated to improve the 
delivery efficiency as well as enhance the accumulation of dose of 
chemotherapeutic drugs (CBZ, SF and 5- FU) in cancer region. Thus, it could 
enhance the anticancer action on cancer cells with minimal side effects on 
healthy cells. Moreover, due to the properties of biodegradability and high drug 
loading ability, chitosan-based nanocarriers could be a good option to deliver a 
chemotherapeutic drug to the liver cancer region and cut down the interactivities 
between drugs with normal healthy tissues during its circulation. 
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1.4 Scopes of Study 
 

Despite significant achievements that have been made in treating cancers, 
resistance to chemotherapeutic drugs remains to be a major challenge and 
responsible for most relapses as well as the high mortality rate in cancer. 
Furthermore, systemic administration of MDIs and MTIs may potentially lead to 
systemic toxicity. As a result, this study is aimed to synthesize the nanocarriers 
based on ChNPs to load Cabozantinib, SF alone and in combination with 5-
Fluorouracil. Also, to study the effect of four different concentrations (2.5, 5, 10, 
and 20 mg/mL) of crosslinking agent of sodium tripolyphosphate (TPP) on the 
yield, loading content, encapsulation efficiency, and the particle size in all 
systems. The synthesized ChNPs will be characterized by the X-Ray Diffraction 
(XRD), Field Emission Scanning Electron Microscopy (FESEM), High-Resolution 
Transmission Electron Microscopy (HRTEM), Thermogravimetric Analysis 
(TGA), Dynamic Light Scattering (DLS), Fourier Transform Inferred 
Spectroscopy (FTIR), Energy Dispersive X-ray (EDX). The release profiles and 
encapsulation/loading efficacy were investigated by UV-VIS spectroscopy. 
Moreover, the toxicity and anticancer activity of the synthesized ChNPs will be 
examined via HepG2 cells (cancer cell line) and HDFa cells (normal cell line). 
 

1.5 Significance of Study 
 

This current study aims to synthesize anticancer drug-loaded ChNPs to increase 
the anticancer efficacy of the drug against liver cancer. ChNPs was formulated 
to be utilized as nanocarriers for chemotherapeutic drugs owing to their excellent 
solubility property a high dosage of the drug can be avoided to reduce the 
treatment impact on normal healthy cells, which eventually cut down the 
treatment cost. Furthermore, it is worth noting that the incorporation of ChNPs, 
along with dual drugs, has demonstrated a remarkable synergistic effect. This 
effect has resulted in a substantial enhancement in cell inhibition when compared 
to treatments that do not involve nanocarriers or only utilise a single drug. 
 

1.6 Objective of Study  
 

1.6.1 General Objective  
 

The main objective of this work is to synthesize and characterize MTIs (CBZ-
ChNPs and SF-ChNPs) and MDIs (CBZ/SF-ChNPs, CBZ/5-FU-ChNPs and 
SF/SF-ChNPs.  
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1.6.2 Specific Objectives  
 

1. To prepare and characterize the five anti-cancer of chitosan-based 
drug delivery system - CBZ-ChNPs and SF-ChNPs, CBZ/SF-
ChNPs, CBZ/5-FU-ChNPs and SF/SF-ChNPs using different 
analytical techniques. 

2. To determine the optimum concentration of the crosslinking agent, 
(sodium tripolyphosphate, TPP) and analyze their loading content 
and encapsulation efficiency. 

3. To examine the In Vitro drug release profiles of Cabozantinib, 
Sorafenib and Fluorouracil from their ChNPs. 

4. To evaluate In Vitro cytotoxicity of the synthesized nanoparticles on 
HepG2 cells (cancer cell line) and HDFa cells (normal cell line) via 
the MTT assay.  
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