

UNIVERSITI PUTRA MALAYSIA

STUDIES ON THE AETIOPATHOGENESIS AND PREVENTION OF BRACHIARIA DECUMBENS INTOXICATION IN SHEEP IN MALAYSIA

SHIZHEN ZHANG

FPV 2000 5

STUDIES ON THE AETIOPATHOGENESIS AND PREVENTION OF *BRACHIARIA DECUMBENS* INTOXICATION IN SHEEP IN MALAYSIA

By

SHIZHEN ZHANG

Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Veterinary Medicine Universiti Putra Malaysia

May 2000

With appreciation and respect, this thesis is dedicated

To my grandfather, who inspired me with confidence and ambitions.

> To all my supervisors, here and abroad, who ensured it all worthwhile.

To my wife and my daughter, who made this work endurable.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

STUDIES ON THE AETIOPATHOGENESIS AND PREVENTION OF BRACHIARIA DECUMBENS INTOXICATION IN SHEEP IN MALAYSIA

By

SHIZHEN ZHANG

May 2000

Chairman: Dr. Noordin Mohamed Mustapha, Ph.D. Faculty: Veterinary Medicine

The pathogenesis of *Brachiaria decumbens* intoxication has not been well explained leading to continuing outbreaks and ineffective treatment and control. Studies conducted in this thesis were aimed at elucidating the pathogenesis which in turn will lead to a better understanding of the disease and provide pragmatic strategies in treating and preventing *B. decumbens* intoxication.

Experiments were conducted to obtain a baseline value of mineral and phytate levels in *B. decumbens*, the effect of feeding *B. decumbens* to sheep, the role of copper (Cu) in *B. decumbens* intoxication, the effectiveness of zinc (Zn) and its role in the prevention of *B. decumbens* intoxication and the isolation, characterisation and toxicity testing of the compound in *B. decumbens*.

Samples of *B. decumbens* collected from five different farms representing Peninsular Malaysia were air-dried, milled and analysed for the concentration of selected minerals and phytate. In three other separate experiments, sheep were fed *B. decumbens* either alone, with Cu or Zn or a combination of Cu and Zn. Copper and Zn were given orally in gelatin capsules on five days of the week at a dosage of 15 mg of Cu as CuSO₄5H₂O and 25 mg of ZnO/kg body weight respectively. Blood and pertinent tissues were collected at fortnightly intervals and necropsy respectively. The liver function enzymes, pertinent indicators reflecting antioxidant defense and lipid peroxidation and selected minerals were monitored, and pathologic studies both at cellular and subcellular levels were also conducted.

A non-critical variation of concentration of Cu, Fe and Zn and low phytate was found in all samples. Clinical signs of photosensitisation, jaundice and submandibular oedema and lesions of hepatocytic necrosis and renal damage are seen in sheep *fed B. decumbens* either alone or in combination with Cu and/or Zn. In all *B. decumbens* fed sheep, there was an impairment of the antioxidant defense and involvement of lipid peroxidation. The concentration of Cu, Fe and Zn in the grass *per se* is not involved in this intoxication. However, excess Cu and Zn further exacerbated the progression of the intoxication. Thus, Zn is ineffective in preventing the development of *B. decumbens* intoxication. Supplementation of Cu-rich by-products at any stages of *B. decumbens* feeding is not recommended.

Studies on the isolation and characterisation of the toxic compound yielded a diosgenin. Toxicity test of diosgenin from *B. decumbens* in mice indicated a LD_{50} of 410.5 mg/kg.

Based on the results from studies conducted, the pathogenesis of this intoxication is postulated as follows: after uptake by hepatocytes, sapogenin and its metabolites undergoes biotransformation, which is catalysed by mixed function oxidases system, yielding intermediate free radicals; hepatocytes damage at both cellular and subcellular levels due to membrane lipid peroxidation leading to interference in the transport and excretion of endogenous metabolites which in turn lead to jaundice and photosensitisation.

Abstrak tesis yang dikemukakan pada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KAJIAN MENGENAI ETIOPATOGENESIS DAN PENCEGAHAN KERACUNAN *BRACHIARIA DECUMBENS* PADA BEBIRI DI MALAYSIA

Oleh:

SHIZHEN ZHANG

Mei 2000

Pengerusi: Dr. Noordin Mohamed Mustapha, Ph.D. Fakulti: Perubatan Veterinar

Akibat kekurangan maklumat, keracunan *B. decumbens* masih berlaku tanpa ujud rawatan dan kawalan yang berkesan. Kajian yang dijalankan dalam tesis ini bertujuan untuk menerangkan patogenesis yang akan memudahkan perancanagan strategi rawatan dan kawalan yang pragmatik.

Ujikaji telah di jalankan untuk membentuk asas kandungan mineral dan fitat dalam *B. decumbens*, kesan meragut rumput ini, peranan kuprum (Cu) dan keberkesanan zink (Zn) dalam keracunan *B. decumbens* dan pengasingan, pencirian serta ujian ketoksikan sebatian dalam *B. decumbens*.

Sampel rumput yang di perolehi daripada lima buah ladang ternakan di Semenanjung Malaysia dikeringkan, dikisar dan dianalisis untuk kandungan mineral terpilih dan fitat. Dalam tiga lagi ujikaji yang berasingan, bebiri diberi makan *B. decumbens* samada secara langsung atau digabung dengan Cu atau Zn atau keduanya. Dos bagi Cu dan Zn adalah masing-masing 15 mg Cu sebagai CuSO₄·5H₂O dan 25 mg/kg Zn sebagai ZnO 25mg secara oral pada lima hari setiap minggu. Darah dan tisu berkaitan masing-masing di ambil setiap dua minggu sekali atau ketika nekropsi. Enzim fungsi hepar dan petunjuk pertahanan anti-pengoksid dan pengoksidaan lipid serta kepekatan mineral terpilih dan kajian patologi pada peringkat sel dan subsel turut dikaji.

Ketidakseragaman yang bukan kritikal secara taburan kawasan di perolehi dalam kepekatan Cu, Zn dan Fe serta kandungan fitat yang rendah dalam *B. decumbens*. Petanda seperti fotopekaan, jaundis, oedema submandibel dan lesi nekrosis hepatosit dan kerosakan ginjal dilihat pada bebiri yang memakan *B. decumbens* secara bersahaja ataupun digabung dengan Cu atau/dan Zn. Pada semua bebiri yang memakan *B. decumbens*, terdapat gangguan sistem pertahanan antipengoksid dan penglibatan pengoksidaan lipid. Kepekatan Cu, Fe dan Zn *per se* dalam rumput tidak terlibat dalam ketoksikan ini. Bagaimanapun, lebihan Cu dan Zn boleh memanjurkan kesan ketoksikan. Dengan itu, Zn didapati sebagai tidak berkesan dalam mencegah pembentukan ketoksikan *B. decumbens*. Penambahan bahan sampingan kaya-Cu pada mana-mana peringkat pemakanan *B. decumbens*

Kajian mengenai pengasingan dan pencirian sebatian toksik menemukan diosgenin. Ujian ketoksikan diosgenin pada mencit memberikan LD₅₀ sebanyak 410.5 mg/kg.

Berdasarkan keputusan kajian yang di jalankan, patogenesis ketoksikan ini dipostulatkan seperti berikut: selepas diambil oleh hepatosit, sapogenin dan metabolitnya mengalami biopenjelmaan, yang mana dikatalis oleh sistem oksidase fungsi tercampur, menghasilkan radikal bebas; hepatosit menyebabkan kerosakan di peringkat sel dan subsel kerana pengoksidaan selaput lipid mengakibatkan gangguan dalam pengangkutan dan perkumuhan yang seterusnya menyebabkan jaundis dan fotopekaan.

ACKNOWLEDGEMENTS

At the time of completing this thesis, I would like to express my profound appreciation and gratitude to everyone who has provided guidance and assistance, without which the completion of this thesis would have been impossible.

I am deeply indebted to my supervisors Dr. Noordin Mohamed Mustapha, Prof. Dato' Sheikh-Omar Abdul Rahman, and Associate Prof. Dr. Md Jelas Haron for their constant encouragement, unfailing help and tolerant supervision to my endeavours. Their suggestions, criticisms and provoking discussions have been most valuable.

I wish to express my gratitude to Dr. Mohamed Azmi Lila for his kindness in allowing me to pursue pertinent works in his laboratory. I am grateful for the enthusiatic and technical assistance of Dr. Gwendoline Ee Cheng Lian and Mr. Sugeng Riyanto. I am also indebted to Mr. R. Kumar for managing animals. My sincere thanks go to Mr. Noraziman Sulaiman and staffs of the post mortem laboratory, Mr. Ho Oi Kuan & Miss Azilah Abd Jalil from the EM unit of the Institute of Bioscience for their technical assistance and convenience. My gratitude is also extended to Dr. Md Aspollah Sukari for granting permission to use his laboratory facilities, and Mr. Kamal Margova of Department of chemistry, Mr. Pauzi Zakaria of Department of biochemistry for provision of facilities and the appropriate techniques.

I wish to thank all my colleagues especially the post-graduate students Dr. M. H. Al-Haddawi, H. Hazilawati and K. Y. Lai for their understanding and cooperation.

The study was undertaken while I was in receipt of the Graduate Assistant Scholarship of Universiti Putra Malaysia and study leave from Institute of Animal Science & Veterinary Pharmaceutics, CAAS, China. The project was supported under the IRPA 51183 grant by the Ministry of Science, Technology and Environment, Malaysia.

Finally, I would like to express my deepest gratitude and appreciation to my parents, my wife Fenglan Hao and my daughter Yiying Zhang for their unfailing support and encouragement, and for accepting my long time absence from the family that my commitment to this thesis necessitated.

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	ix
DECLARATION FORM	xi
LIST OF TABLES	xix
LIST OF FIGURES	xviii
LIST OF PLATES	xix
LIST OF ABBREVIATIONS	xxiii

CHAPTER

1	GEN	ERAL INTRODUCTION	1
2	LITE	RATURE REVIEW	5
	2.1	General Introduction	5
	2.2	Aetiologies	7
	2.3	Clinical Signs	14
	2.4	Clinical Biochemistry	15
	2.5	Gross Pathology	15
		2.5.1 Body Condition	15
		2.5.2 Liver	15
		2.5.3 Kidney	16
		2.5.4 Other Tissues	16
	2.6	Histopathology	16
		2.6.1 Liver	16
		2.6.2 Kidney	18
		2.6.3 Other Tissues	19
	2.7	Electron Microscopy	19
	2.8	Pathogenesis	20
		2.8.1 Photosensitisation	20
		2.8.2 Hepatic damage	23
	2.9	General Profile of Brachiaria	25
	2.10	Progress on <i>B. decumbens</i> Intoxication Research	27
	2.11	Copper	29
	2.12	Zinc	32
	2.13	General Summary	35
3	GENE	ERAL MATERIALS AND METHODS	37
	3.1	Animals and Management	37
		3.1.1 Sheep	37
		3.1.2 Mice	38

	3.2	Sampling and General Sample Processing	38
	3.3	Measurement of Related Enzymes	39
		3.3.1 AST, ALT and GGT activity	39
		3.3.2 Superoxide Dismutase (SOD) avtivity	41
		3.3.3 Glutathione Peroxidase (GSH-Px) activity	42
	3.4	Measurement of Malodialdehyde (MDA) Concentration	43
		3.4.1 MDA Concentration in Serum	43
		3.4.2 MDA Concentration in liver homogenate	
		and Subcellular Fractions	44
	3.5	Concentration of Glutathione (GSH)	45
	3.6	Mineral Analysis	45
	3.7	Pathology	47
		3.7.1 Histopathology	47
		3.7.2 Ultrastructural Study	48
	3.8	Statistic Analysis	48
4	EXP	ERIMENT 1, THE CONCENTRATION OF SELECTED	
	MIN	EKALS AND PHYTATE IN BRACHIARIA DECUMBENS	10
	IN M	ALAYSIA	49
	4.1	Introduction	49
	4.2	Materials and Methods	50
		4.2.1 Grass	50
		4.2.2 Mineral Analysis	51
		4.2.3 Phytate Analysis	51
	4.3	Results	52
	4.4	Discussion	22
5	EXPI	ERIMENT 2, DELETERIOUS EFFECTS OF FEEDING	
	BRAC	CHIARIA DECUCMBENS AND PATHOGENESIS OF	
	BRAC	CHIARIA DECUMBENS INTOXICATION IN SHEEP	59
	5.1	Introduction	59
	5.2	Materials and Methods	60
		5.2.1 Experimental Design	60
	5.3	Results	61
		5.3.1 Clinical Signs	61
		5.3.2 Liver Function Enzymes	63
		5.3.3 Antioxidants and Lipid Peroxidation Status	64
		5.3.4 Selected Minerals Status	69
		5.3.5 Pathology	72
	5.4	Discussion	87
6	EXPE	RIMENT 3, EFFECTS OF COPPER IN THE	
	DEVI	ELOPMENT OF BRACHIARIA DECUMBENS	
	INTC	XICATION IN SHEEP	100
	6.1	Introduction	100
	6.2	Materials and Methods	101
		6.2.1 Experimental Design	101

	6.3	Results	102
		6.3.1 Clinical Signs	102
		6.3.2 Liver Function Enzymes	104
		6.3.3 Antioxidants and Lipid Peroxidation Status	107
		6.3.4 Selected Minerals Status	121
		6.3.5 Pathology	130
	6.4	Discussion	145
7	EXP	ERIMENT 4, THE EFFECTIVENESS OF ZINC AND	
	ITS I	ROLE IN THE PREVENTION AND DEVELOPMENT	
	IN SI	HEEP	156
	7.1	Introduction	156
	7.2	Materials and Methods	157
		7.2.1 Animal and Experimental Design	157
	7.3	Results	158
		7.3.1 Clinical Signs	158
		7.3.2 Liver Function Enzymes	160
		7.3.3 Antioxidants and Lipid Peroxidation Status	160
		7.3.4 Selected Minerals Status	169
		7.3.5 Pathology	174
	7.4	Discussion	181
8	EXPI	ERIMENT 5, THE TOXIC CONSTITUENTS IN	
	BRA	CHIARIA DECUMBENS AND THEIR TOXICITY	
	IN M	ICE	194
	8.1	Introduction	194
	8.2	Materials and Methods	195
		8.2.1 Isolation and Purification of Toxic Compounds	195
		8.2.2 Identification of the toxic priciples	197
		8.2.3 Assays of Toxicity	199
	8.3	Results	200
		8.3.1 Characterisation of Isolated Compounds	200
		8.3.2 Acute Toxicity Test	203
	0.4	8.3.3 Subacute l'oxicity l'est	205
	8.4	Discussion	210
9	GENI	ERAL DISCUSSIONS AND CONCLUSIONS	218
10	REFE	ERENCES	229
11	BIOD	DATA OF THE AUTHOR	256

LIST OF TABLES

4.1. The location of farms, number of samples and the stage of growth of <i>B</i> . <i>decumbens</i>	51
4.2. The concentration (ppm DM) and molar ratio of selected minerals in <i>Brachiaria decumbens</i> in different regions of Peninsular Malaysia	53
4.3. The concentration of phytate and molar ratio of phytate to Zinc in <i>B. decumbens</i> in different farms ($\mu g/g DW$)	55
4.4. The concentration of phytate in <i>B. decumbens</i> and a number of grasses and PKC	55
5.1. The body weight, number of days of exposure and duration of latency period, major clinical signs of individual sheep	62
5.2. The activity of erythrocyte GSH-Px (Unit/g.Hb) of sheep during the experimental period	65
5.3. The activity of erythrocyte SOD (Unit/mg.Hb) of sheep during the experimental period	66
5.4. The activity of H-SOD, concentration of MDA, GSH in liver homogenate and cytosols of sheep at necropsy	67
5.5. The coefficient (R value) of correlation analysis of selected indices	68
5.6. The concentration of MDA (nmol/mg.Pr) in hepatocyte subcellular fractions	69
5.7. The plasma copper concentration (μg/ml) of sheep during the experimental period	70
5.8. The concentration of Cu, Zn, Fe and Mo ($\mu g/g$ DW) in the liver of sheep at necropsy	71
5.9. The concentration of Cu, Zn, Fe and Mo (μg/g Pr) in the hepatocyte cytosol of sheep at necropsy	71
5.10. The microscopic scores of various parameters in the liver of sheep at necropsy	81

-.

6.1. The outline of experimental design	102
6.2. The body weight, duration of exposure and latency period, amounts of CuSO ₄ consumed, and outcome of clinical signs in individual sheep	103
6.3. The activity of AST (Unit/L) in the serum of sheep during the experimental period	105
6.4. The GGT activities (Unit/L) in the serum of sheep during the experimental period	108
6.5. The erythrocyte GSH-Px activity (Unit/g.Hb) of sheep sheep during the experimental period	110
6.6. The erythrocyte SOD activity (Unit/mg.Hb) of sheep sheep during the experimental period	113
6.7. The activity of H-SOD, concentration of MDA, GSH in liver homogenate and cytosol of sheep at necropsy	117
6.8. The concentration of MDA (nmol/ml) in the serum of sheep during the experimental period	119
6.9. The concentration of MDA (nmol/mg.Pr) in hepatocyte subcellular fractions of sheep at necropsy	122
6.10. The concentration of plasma copper (μg/ml) of sheep during the experimental period	123
6.11. The concentration of Cu, Zn, Fe and Mo (μ g/g DW) in the liver of sheep at necropsy	125
6.12. The concentration of Cu, Zn, Fe and Mo (μg/g Pr) in the hepatocyte cytosol of sheep at necropsy	128
6.13. Histological scores of various parameters in the liver of sheep at necropsy	135
7.1. The body weight, duration of exposure, amounts of CuSO ₄ , ZnO consumed, duration of latency period and clinical outcome of individual sheep	159
7.2. The activity of AST (Unit/L) in the serum of sheep during the experimental period	161
7.3. The activity of GGT (Unit/L) in the serum of sheep during the	

experimental period	162
7.4. The erythrocyte GSH-Px activity (Unit/g.Hb) of sheep during the experimental period	163
7.5. The erythrocyte SOD activity (Unit/mg.Hb) of sheep during the experimental period	166
7.6. The activity of H-SOD, concentration of MDA, GSH in the liver homogenates and cytosol of sheep at necropsy	167
7.7. The concentration of MDA (nmol/ml) in the serum of sheep during the experimental period	168
7.8. The concentration of MDA (nmol/mg.Pr) in the hepatocyte subcellular fractions of sheep at necropsy	170
7.9. The concentration of plasma copper (μg/ml) of sheep during the experimental period	171
7.10. The concentration of plasma zinc (μg/ml) of sheep during the experimental period	172
7.11. The concentration of Cu, Zn, Fe and Mo (μ g/g DW) in the liver of sheep at necropsy	173
7.12. The concentration of Cu, Zn, Fe and Mo (μ g/g Pr) in the hepatocyte cytosol of sheep at necropsy	175
7.13. Histological scores of various parameters in the liver of sheep at necropsy	177
8.1. ¹³ C and ¹ H NMR chemical shifts of EF-18 and authentic diosgenin in CD ₃ OD	202
8.2. The survival time and mortality of mice administered with EF-18	204
8.3. The activity of serum ALT (Unit/L) of mice in the subacute toxicity test	209
8.4. The activity of serum GGT (Unit/L) of mice in the subacute toxicity test	209

LIST OF FIGURES

3.1. Schematic diagram depicting blood sample processing and analyses	39
3.2. Schematic diagram depicting liver sample processing and analyses	40
5.1. The serum AST activity of sheep during the experimental period	64
5.2. The serum GGT activity of sheep during the experimental period	64
5.3. The serum MDA concentration (nmol/ml) of sheep during the experimental period	68
8.1. Proposed pathway of metabolic transformation of diosgenin during <i>Brachiaria decumbens</i> intoxication in sheep	214
9.1. The molecular structure of diosgenin and anabolic steroids	221
9.2. The pathogenesis of <i>Brachiaria decumbens</i> in sheep with particular emphasis on the liver	226

LIST OF PLATES

	14
 5.1. Photomicrograph of altered cells in the liver. (A), Sheep 769 (Bd-2), Vacuolated cells forming meshwork appearance; (B), Sheep 775 (Cu1+Bd2), Vacuolated cell interspersed with necrotic Kupffer's cells. [H&E, x200]; (C), Sheep 773 (Cu1+Bd2), Vacuolated and enlarged hepatocytes. (D), Sheep 795 (Bd+CuB), translucent appearance of cytoplasm of altered cells 	74
5.2. Photomicrograph, liver of sheep 769 (Bd-2) taken at necropsy. Periacinar degeneration is seen in affected lobules and classified as Type-I	76
5.3. Photomicrograph, liver of sheep 797 (Bd-2) taken at necropsy. Centroacinar fatty degeneration and scattered coagulative necrosis are present in affected lobules and classified as Type-II	76
5.4. Photomicrograph, liver of sheep 705 (Bd-1) taken at necropsy. Centroacinarly distributed necrosis and is classified as Type-III	77
5.5. Photomicrograph, liver of sheep 704 (Bd-1) taken at necropsy. Massive necrosis of hepatocytes is observed in affected lobules and classified as Type-IV	77
5.6. Photomicrograph, liver of sheep 701(Bd-1) taken at necropsy. Biliary hyperplasia and fibroplasia are present in the centroacinar zone	79
5.7. Photomicrograph, liver of sheep 797 (Bd-2) taken at necropsy. Vacuoles varying in size (A) and peripherally distributed homogenous or flocculent mass (B) are seen in the cytoplasm of hepatocytes	79
5.8. Photomicrograph, kidney of sheep 705 (Bd-1). Patchy, zonal necrosis of epithelial cells of PCT and the presence of proteinaceous casts in the lumen of PCT	80
5.9. Photomicrograph of a kidney, sheep 769 (Bd-2). Hypocellular tubules with cystic distension in the affected PCT	80
5.10. Electromicrograph, liver of sheep 768 (control). A within normal hepatocyte with evenly distributed mitochondria,	

sER and rER within the cytoplasm	85
5.11. Electromicrograph, liver of sheep 703 (Bd-1) taken at necropsy. A membrane-bound intranuclear inclusion (arrow) is present along mitochondrial swelling (bold arrow)	85
5.12. Electromicrograph, liver of sheep 800 (Bd-2). Swelling of mitochondria (M), disorganisation of rER (arrows) and dilated bile canaliculus (asterisk) with flocculent materials are seen in a few affected hepatocytes	86
5.13. Electromicrograph, liver of sheep 798 (Bd-2). Remarkable proliferation of sER(S) leading to centrally located organelles and irregular high dense lysosomes (arrows) are observed in a number of hepatocytes	86
5.14. Electromicrograph, liver of sheep 800 (Bd-2) taken at necropsy. The presence of flocculent material in dilated bile canaliculi (F) along with swelling of mitochondria (asterisk) and dilatation of cisternae of rER (arrows) is seen	88
5.15a. Electromicrograph, liver of sheep 703 (Bd-1). The presence of crystal-like clefts (arrows) is seen in a dilated bile canaliculus	88
5.15b. Electromicrograph, liver of sheep 704 (Bd-1). The presence of crystal-like clefts (arrow head) interspersed with flocculent materials (F) is seen in a dilated bile canaliculus	88
5.16. Electromicrograph, kidney of sheep 800 (Bd-2) taken at necropsy. Irregular vacuoles, pleomorphic mitochondria and dilatation of cisternae of rER (arrows) are present in necrotic tubular cells	89
 5. 17. Electromicrograph, kidney of sheep 797 (Bd-2) taken at necropsy. The presence of disintegration of cristae with eccentrically placed rings is seen in abnormal mitochondria (M) 	89
6.1. Photomicrography, liver, sheep 758 (control). Hepatocytic plate and lobular structure are within normal limits	132
6.2. Photomicograph, liver, sheep 714 (Cu). PAS positive, diastase resistant granules present in hepatocytes. Inset: PAS only stained hepatocytes	132
6.3. Photomicrograph, liver, sheep 794 (Bd+Cu). Basophilic intracytoplasmic inclusions are seen in PAS positive hepatocyte and Kupffer cells	133

6.4. Photomicrograph, liver, sheep 795 (Bd+Cu). Biliary hyperplasia and vacuolated hepatocytes are present in affected lobules	133
6.5. Photomicrograph, liver, sheep 794 (Bd+Cu). Basophilic irregular intracytoplasmic inclusions are observed as cluster or aggregate of granules in hepatocytes and Kupffer cells	140
6.6. Photomicrograph, liver: (A), sheep 768 (control). Hepatocytes of within normal appearence; (B), sheep 712 (Cu). The presence of dark blue granules with numerous vesicles is seen in affected hepatocytes; (C), sheep 795 (Bd+Cu). Diffusely distributed numerous fine vesicles and condensed nuclei are presented in affected cells; (D), sheep 792 (Bd+Cu). Vacuoles varying in size and dark green amorphous deposit appear in swollen hepatocytes and dilated BC	138
6.7. Electromicrograph, liver, sheep 714 (Cu). High dense irregular lysosomes (arrows) interspersed with marked swelling of mitochondria are seen in hepatocytes	140
6.8. Electromicrograph, liver of sheep 708 (Bd+CuA) taken at necropsy. Marked proliferation of sER (S), which is either displaced other organelles peripherally or interspersed with other organelles. Irregular high dense lysosomes of varying size (arrows) are seen in a number of hepatocytes	141
6.9. Electromicrograph, liver, sheep 706 (Bd+CuA). Intracytoplasmic inclusion, proliferation of sER (S) and disorganization of rER are presented in a hepatocyte. Swellig of mitochondria with a necrotic nucleus is seen in an adjacent cell	141
6.10. Electromicrograph, liver, sheep 771 (Bd+CuB). Numerous irregular lysosomes (arrows) interspersed with swelling of mitochondria are observed in hepatocytes. Inset: A high power view of a cluster of lysosomes	143
6.11. Eletromicrograph, liver, sheep 775 (Cu1+Bd2). Marked swelling of mitochondria (M), dilatation of cisternae and peripherally distributed lysosomes in hepatocytes	143
6.12. Electromicrograph, liver of sheep 773 (Cu1+Bd-2) taken at necropsy. Dilatation of cisternae and disorganisation of rER (R) are evident	144
6.13. Electromicrograph, liver, sheep 773 (Cu1+Bd2). The presence of flocculent bile plug (P) and filaments of collagens are observed in hepatocyte	144

7.1. Electromicrograph, kidney, sheep 785 (Bd+Zn). The presence of vacuoles varying in size, condensed mitochondria (M) and high dense irregular lysosomes are present in epithelial cells of tubules	182
7.2a. Electromicrograph, kidney of sheep 787 (Bd+Cu+Zn) taken at necropsy. Swelling of mitochondria with loss of cristae or eccentric distribution of cristae in the vicinity of apical surface of epithelial cells of tubules	182
7.2b. Electromicrograph, kidney of sheep 787 (Bd+Cu+Zn) taken at necropsy. High power view of Plate 7.2a. Eccentric distribution of cristae within abnormal mitochondria	182
7.3a. Electromicrograph, kidney of sheep 788 (Bd+Cu+Zn) taken at necropsy. Loss of matrix, presence of vacuoles in cytoplam, and pleomorphic mitochondria with vary high dense granule are seen in necrotic epithelial cells of tubules	183
7.3b. Electromicrograph, kidney of sheep 788 (Bd+Cu+Zn) taken at necropsy. High power view of Plate 7.3a. High dense granules within pleomorphic mitochondria are seen	183
8.1. Photomicrograph, liver from mice dosed with EF-18 at the dosage of 950mg/kg. Focal, periacinarly distributed coagulative necrosis is seen in hepatocytes	206
8.2. Photomicrograph, liver from mice dosed with EF-18 at the dosage of 950mg/kg. Extensive centroacinar fatty degeneration is seen in affected hepatocytes	206
8.3. Photomicrograph, duodenum from mice dosed with EF-18 at the dosage of 950mg/kg. Part of the mucosal surface has been denuded due to sloughing of the villi	207
8.4. Photomicrograph, duodenum from mice dosed with EF-18 at the dosage of 570mg/kg. Blunting of mucosal villi projection with extensive coagulative necrosis of enterocytes and crypts	207
8.5. Photomicrograph, liver from mice dosed with crude saponins from group C-HD. Extensive vacuolation of hepatocytes	211
8.6. Photomicrograph, liver from mice dosed with crude saponins from group B-MD. The presence of pleomorphic hepatocytes of which some are undergoing necrosis	211

LIST OF ABBREVIATIONS

AAS	atomic absorption spectrophotometer
ALT	alanine aminotransferase
AST	aspartate aminortransferase
AP	alkaline phosphatase
Bd	group feed with Brachiaria decumbens
BSP	bromosulphopthalein
Ca	calcium
CCl ₄	carbon tetrachloride
cm	centimetre
СР	crude protein
Ср	caeruloplasmin
Ċu	copper
CuSO₄	copper sulphate
CSIRO	Commonwealth Scientific and Industrial Research
	Organisation
DAS	department of animal science
DM	dry matter
DW	dry weight
E-SOD	superovide dismutase in erythrocytes
E-SOD FLCC	flash-column chromatography
Fe	iron
a	grams
g Dr	grams of protein
g.ri	gas chromotography mass spectroscopy
CLDU	gas chromatography-mass spectroscopy
GLDH	giulamate denydrogenase
GGI	γ -glutamyl transferase
GSH	giutatnione
GSH-Px	glutathione peroxidase
H_2O_2	hydrogen peroxide
Hb	haemoglobin
HPS	hepatogenous photosensitisation syndrome
H-SOD	superoxide dismutase in liver homogenate
H&E	haematoxylin and eosin staining
ICP	Inductively coupled plasma technique
IR	infrared spectroscopy
К	potassium
kg	kilograms
1	litre
LD_{50}	median lethal dose
MDA	malondialdehyde
MFOs	mixed function oxidases system
Mg	magnesium
ml	millitre
mg	milligrams
mg.Hb	per milligram haemoglobin
mg.Pr	per milligram of protein
mmol	millimolar

Мо	molybdenum
MT	metallothionein
Na	sodium
nmol	nanomolar
NMR	nuclear magnetic resonance spectroscopy
O_2^-	superoxide anion
OH	hydroxyl radical
Р	phosphorus
PA	pyrrolizidine alkaloids
PAS	Periodic Acid-Schiff staining
PAS+D	PAS positive after diastase digestion
PB	phenobarbitone
RBC	red blood cell
РКС	palm kernel cake
rER	rough endoplasmic reticulum
S	sulphur
SD	standard deviation
SDH	sorbitol dehydrogenase
sER	smooth endoplasmic reticulum
SOD	superoxide dismutase
SPDM	sporidesmin
TBA	thiobarbituric acid
TBARS	thiobarbituric acid reactive substances
TLC	thin-layer chromatography
TM	thiomolybdate
UP	upper portion
UPM	Universiti Putra Malaysia
WP	whole grass
ww	wet weight
Zn	zinc
ZnO	zinc oxide
μ	micro
%	percentage

