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Excess melanin production in skin cells promotes dermatological diseases such as 

hyperpigmentation, ageing, and other skin-related diseases. Tyrosinase enzyme 

catalyses the oxidation of L-tyrosine substrate to melanin, via formation of L-3,4-

dihydroxyphenylalanine (L-DOPA). Thus, tyrosinase inhibitors can lower melanin 

production to achieve whitening effect on the skin. Whitening products such as 

hydroquinone and kojic acid that are commonly used nowadays, might be harmful to 

human skin. This research aimed to produce 20 non-toxic halogenated tyrosinase 

inhibitors synthetically using Grover-Shah and Shah (GSS) method and determine 

their tyrosinase inhibitory activity using tyrosinase mushroom Agaricus bisporus assay 

with kojic acid as positive control. Six compounds were found to inhibit the enzyme 

with inhibition percentage of more than 50%. Among these six active compounds, 

three compounds (15, 16 and 17) showed high potency. Their half-maximal inhibitory 

concentration (IC50), enzyme kinetic analysis and antioxidant properties were 

determined. The IC50 values for compounds 15 (7.8 µg/ml, 75 µg/ml), 16 (9 µg/ml, 
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118 µg/ml) and 17 (10 µg/ml, 100 µg/ml) in L-tyrosine and L-DOPA substrates 

respectively, demonstrate their strong action in comparison to kojic acid as control 

(IC50 4 µg/ml, 7.8 µg/ml). Enzyme kinetic analysis demonstrated that compounds 15 

and 17 as uncompetitive inhibitor and compound 16 as mixed type inhibitor 

respectively. In antioxidant assays, only compound 16 exhibited a high antioxidant 

activity (IC50 18 µg/ml) in DPPH assay and 2.93 mM/g in FRAP assay with ascorbic 

acid and quercetin as positive controls. Additionally, compound 16 revealed an IC50 

value of 43.33 µM against the in vitro HaCaT skin cell line, indicating a weak toxicity 

on human skin cells. Compound 16 also revealed a non-toxic property for screening of 

toxicity test when tested against the in vitro brine shrimp toxicity assay at a dose of 

1000 µg/ml. From the in vivo zebrafish embryo toxicity assay, results have shown that 

compound 16 was having a non-toxic property based on the parameters such as 

hatching rate, survival rate, heartbeat rate and obtained a LC50 value of 197.2 µg/mL. 

Furthermore, the molecular docking analysis showed their binding interactions 

between mushroom tyrosinase protein structure (PDB ID: 2Y9X) for compound 16 

with a binding affinity of (-7.7 kcal/mol) and the compounds as the ligands through in 

silico approach. These data suggest that potent halogenated xanthone derivatives have 

the potential to be developed as new candidates for skin whitening agents with 

antioxidant and non-toxic properties in cosmetic industries and for pigmentation-

related diseases. 

 

Keywords: Antioxidant, anti-tyrosinase, synthesis, toxicity, xanthone 

SDG: GOAL 3: Good Health and Well-being, GOAL 4: Quality Education, GOAL 9: 
Industry, Innovation, and Infrastructure  
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Oleh 

 

FATIN FARHANA BINTI BAHARUDDIN 

Disember 2023 

 
Pengerusi : Nadiah Mad Nasir, PhD 
Fakulti : Sains 
 

Pengeluaran melanin yang berlebihan dalam sel kulit menggalakkan penyakit 

dermatologi seperti hiperpigmentasi, penuaan dan penyakit kulit lain yang berkaitan. 

Enzim tirosinase memangkinkan substrat L-tirosin melalui pengoksidaan, lalu 

membentuk L-3,4-dihydroksilfenilalanin (L-DOPA) dan bertukar kepada melanin. 

Oleh itu, mendorong perencat tirosinase boleh mengurangkan pengeluaran melanin 

untuk mendapat sifat pemutihan pada kulit. Pada masa kini, beberapa produk 

pemutihan seperti hidrokuinon dan asid kojik mungkin berbahaya kepada kulit 

manusia. Penyelidikan ini bertujuan untuk menghasilkan 20 perencat tirosinase 

berhalogen tidak toksik secara sintetik dengan menggunakan kaedah Grover-Shah dan 

Shah (GSS) dan aktiviti perencatan tirosinasenya menggunakan ujian cendawan 

Agaricus bisporus tirosinase dengan asid kojik sebagai kawalan positif. Enam sebatian 

didapati merencat enzim tyrosinase dengan peratusan perencatan lebih daripada 50%. 

Di antara enam sebatian aktif ini, tiga sebatian (15, 16 dan 17) menunjukkan potensi 
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yang lebih tinggi. Kepekatan perencatan separuh maksimum (IC50), analisis kinetik 

enzim dan sifat antioksidan telah ditentukan. Nilai IC50 untuk sebatian 15 (7.8 µg/ml, 

75 µg/ml), 16 (9 µg/ml, 118 µg/ml) dan 17 (10 µg/ml, 100 µg/ml) dalam substrat L-

tirosin dan L-DOPA secara masing-masing menunjukkan tindakan penghalangan 

kuatnya dengan asid kojik sebagai kawalan (IC50 4 µg/ml, 7.8 µg/ml). Analisis kinetik 

enzim menunjukkan bahawa sebatian 15 dan 17 sebagai perencat bukan kompetitif dan 

sebatian 16 sebagai perencat jenis campuran masing-masing. Dalam ujian antioksidan, 

hanya sebatian 16 yang menunjukkan aktiviti antioksidan yang tinggi (IC50 18 µg/ml) 

dalam ujian DPPH dan 2.93 mM/g dalam ujian FRAP dengan asid askorbik dan 

kuersetin sebagai kawalan positif. Selain itu, sebatian 16 mendedahkan nilai IC50 

sebanyak 43.33 µM terhadap ujian in vitro MTT sel kulit HaCaT yang menunjukkan 

ketoksikan yang lemah pada sel kulit manusia. Sebatian 16 juga mendedahkan sifat 

tidak toksik untuk saringan ujian ketoksikan in vitro apabila diuji terhadap ujian 

ketoksikan udang air garam pada dos 1000 µg/ml. Daripada ujian ketoksikan embrio 

ikan zebra in vivo pula, keputusan telah menunjukkan bahawa sebatian 16 mempunyai 

sifat tidak toksik berdasarkan parameter-parameter seperti kadar penetasan, kadar 

kelangsungan hidup, kadar degupan jantung dan memperoleh nilai LC50 iaitu 197.2 

µg/mL. Tambahan pula, analisis dok molekul menunjukkan interaksi pengikatannya 

antara struktur protein cendawan tirosinase (ID PDB: 2Y9X) untuk sebatian 16 dengan 

nilai pengikatan (-7.7 kcal/mol) dan sebatian ini sebagai ligan melalui pendekatan 

kaedah secara dalam siliko. Data-data ini menunjukkan bahawa derivatif xanton 

berhalogen yang kuat berpotensi untuk dibangunkan sebagai calon baharu untuk agen 

pemutihan kulit dengan sifat antioksidan dan tidak toksik dalam industri kosmetik dan 

untuk penyakit berkaitan pigmentasi pada waktu akan datang. 
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xanton 

SDG: GOAL 3: Good Health and Well-being, GOAL 4: Quality Education, GOAL 9: 
Industry, Innovation, and Infrastructure  
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Xanthones are secondary metabolites found in a variety of plant families, fungi, and 

lichens (Vieira & Kijjoa, 2005). Xanthones, with the IUPAC designation 9H-xanthene-

9-one, are usually yellowish-colored heterocyclic compounds having the molecular 

formula C13H8O2. The term “xanthone” is a combination of "xanth" is derived from 

the Greek word which means "yellow" and “one” which refers to the keto group in the 

structure. Heterocycle moieties play an important role in the design and development 

of new physiologically and pharmacologically active molecules. As illustrated in 

Figure 1.1, the xanthone scaffold has a dibenzo-γ-pyrone scaffold formed by the 

coupling of two benzene rings and a pyrone-4-one ring and plays a key role in the 

development of novel medications with potential biological activities in the 

pharmaceutical industry. 

O

O
1

2

3
44a

5
6

7
8

9
9a

10a

8a

A B C

 

Figure 1.1: Xanthone scaffold 

Natural occurring xanthones include various types of substituents at different 

positions, resulting in a wide range of pharmacological activities. Based on Figure 1.1, 

a carbonyl group and oxygen bridge linking two aromatic rings, giving the appearance 

of fused ring system. In terms of molecular symmetry, both C-1, C-8 and C-4, C-5 are 

acidic sites due to the withdrawing effect of the electronegative oxygen atoms 

(Odrowaz-Sypbiewski et al., 2009). In contrast to that, the fused ring structure limits 
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the flexibility and thereby enhances the stability of the xanthone framework. Carbons 

1-4 in the xanthone basic skeleton are allocated to acetate-derived ring C, whereas 

carbons 5-8 are assigned to shikimate-derived ring A. For structural elucidation, the 

remaining carbon atoms are designated as 4a, 5a, 8a, 9 and 9a (Pedro et al., 2002). 

1.2 Synthetic Approaches to Xanthone 

With varied patterns of substitution, isolated xanthones have been successfully 

extracted from famous natural resources such as Calophyllum inophyllum and 

Garcinia mangostana, leading to a wide range of compounds with biological 

significance. The concentration of xanthones isolated from plants is low in yield, 

making it challenging to isolate xanthones from their natural resources. As a result of 

this, xanthone synthesis has been further studied. Synthetic techniques can be used to 

create new xanthones with varied substituent positions and types on the fundamental 

building block. Synthetic methods can be divided into two methods, via biosynthesis 

where enzymatic reaction is used to produce numerous xanthone derivatives and 

chemical synthesis where catalytic reactions are performed in the laboratory. 

1.3 Biological Activities of Xanthone 

Xanthone plays an important role in biological active heterocycles which have wide 

potential in pharmacological field in recent years. Hence, many researchers tend to 

focus in synthesizing various xanthone derivatives for the development of new lead 

drug.  

 

Xanthone derivatives are mainly shown in producing as many types of biological 

activities reported whereby their derivatives can interact with several different 
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medicinal targets such as antioxidant, anticancer and antibacterial (Li et al., 2011). 

Researchers reported that xanthones which bearing aromatic benzene rings in the 

structure can produce bioactivities due to the aromatic rings are able imitate the 

behavior of most inhibitors on the respective bioactivities. 

 

Studies have been conducted showing that the xanthone derivatives possesses 

biological activities such as antityrosinase (Rosa et al., 2021), anticancer (Pedro et al., 

2002), antioxidant (Wairata et al., 2021), antitumor (Luo et al., 2013) and anti-

melanogenesis activities (Hosseinpoor et al., 2021) and more. 

 

Alzheimer's disease is commonly referred to as an illness with multiple factors due to 

genetic, environmental, and endogenous aspects. Cholinergic neuronal transmission 

loss and oxidative stress have been recognised as important markers of this Alzheimer's 

disease. In 2017, it was stated that xanthone derivatives have the potential to be used 

as dual agents in the treatment of Alzheimer's disease, alongside acetylcholinesterase 

inhibitors and antioxidants (Cidade et al., 2017). 

 

Melanin is the most abundant natural biological polymer pigment in skin and hair (Lam 

et al., 2010). However, excessive formation of melanin can result in dermatological 

conditions such as freckles, melasma, and lentigo (Kim et al., 2008). Although the 

mechanism of melanogenesis is complex, it has been widely reported that the 

tyrosinase enzyme may regulate the biosynthetic pathway for the formation of melanin 

(Gartner et al., 2012).  
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In recent years, Rosa and her colleagues managed to discover that xanthone derivatives 

are able to inhibit tyrosinase enzyme with a potency in their discovery as a whitening 

agent (Rosa et al., 2021). They also reported that most of their synthesized xanthone 

derivatives are showing a result as tyrosinase inhibitors with the best results that beats 

approximately six times lower than the IC50 value from the positive control, kojic acid.  

Previous non-halogenated xanthone derivatives are lacking to be reported in having 

anti-tyrosinase properties and recently, a study done by Rosa and colleagues in 2021 

managed to discover that a halogenated xanthone possesses an antityrosinase activity 

which can be potential as a skin whitening agent in future. Also, based on our 

knowledge, prenylated xanthones are yet to be reported to possess an antityrosinase 

activity too. Therefore, the purpose of this work was to synthesize xanthone scaffolds 

with halogens, then inducing a cyclic ring into the scaffold, and subsequently with 

the evaluation of their biological activities, on tyrosinase enzyme in two pathways: 

monophenolase (L-tyrosine) and diphenolase (L-3,4-dihydroxyphenylalanine; L-

DOPA). 

 

Halogenation of compounds are a common approach in drug discovery and a 

significant number of compounds in clinical development are halogenated (Lu et al., 

2010; Hernandez et al., 2010). Halogen atoms are involved in protein-ligand 

noncovalent interactions, such as formation of hydrogen bonds and halogen bonds in 

the enzyme activity (Hernandez et al., 2010). Introducing halogen atoms may also 

contribute to steric effects, through the ability of these bulky atoms to occupy the 

binding site of molecular targets (Hernandez et al., 2010). 

 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/halogen-bond
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Most skin whitening agents in the cosmetic industry nowadays are found to be using 

toxic ingredients such as hydroquinone and mercury. Although these ingredients can 

exhibit a high whitening effects, they produce an adverse effect such as inflammation, 

irritation and blisters towards the users (Owolabi et al., 2020). Thus, in our study, we 

would like to develop a new skin whitening agent with non-toxic properties that are 

beneficial for the cosmetic industries. 

 

Furthermore, the structure-activity relationships (SARs) on selected xanthones that 

demonstrates higher activity in vitro test will be investigated. Our hypothesis is to 

create a series of xanthone derivatives by modifying the basic scaffold which are 

predicted to be a promising lead as whitening agents for pharmaceuticals purposes 

based on the reported study which shows the activity in helping skin related diseases 

(Rosa et al., 2021). Figure 1.2 and Scheme 1.1 illustrates the reaction scheme as well 

as the general structures of the targeted compounds. Meanwhile, Table 1.1 lists the 

structures of all twenty compounds, including ten new compounds. 

O

O

R1 R2

(3)
R1

R2

= F, Cl, Br, OH, H, NO2

= Cl, CH3, OH, H   

O

O

O CH3

CH3

OH

R1

(4)

R1 = F, Cl, OH, H
 

 
Figure 1.2: General structure of targeted compounds 
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O

O

O

O

HOOH

OH

O

R1 R2 R1 R2

O

OH

R1

+

(1) (2) (3)

(4)

i) Eaton's Reagent

80oC, 20 mins

ii) Ca(OH)2, Prenal

i) Methanol, 36hrs, RTR1

R2

= F, Cl, Br, OH, H, NO2

= Cl, CH3, OH, H

R1 = F, Cl, OH, H  

Scheme 1.1: General scheme for synthesis of halogenated xanthones (3) and 
prenylated xanthones (4) 

 

In this study, we chose halogenated xanthone such as fluorine, chlorine and bromine 

as different substituents and prenylated xanthone derivatives to discover their potential 

in inhibiting the tyrosinase enzyme as previous studies also have supported that 

halogenated xanthone produces this inhibitory effect. For the prenylated derivatives, 

studies are yet to be reported in this tyrosinase inhibitory, thus, we would like to initiate 

in discovering their results which can be added into the xanthonoic derivatives of 

library among the other researchers for future. 

 

Most previous studies reported that compounds that bears an aromatic ring moiety 

shows a potency in most biological inhibitory properties (Rosa et al., 2021; Zhu et al., 

2013; Haldys et al., 2020). Moreover, aromatic rings structurally mimic the tyrosinase 

substrates which are L-tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA) that 

brings an interaction with the hydrophobic tyrosinase enzyme site via van der Waals 

interactions (Zhu et al., 2013). Therefore, xanthone scaffold possesses a great potential 
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in holding as a tyrosinase inhibitor that are potential for skin whitening agent due to 

the presence of aromatic ring. 

Table 1.1: Structure of synthesized xanthone derivatives 

Halogenated xanthones 
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12* 
O

O
Cl

CH3

CH3

HO  
20* 

O

O Cl
O2N

 

Table 1.1: Continued 
Prenylated xanthones 

21 
O

O

O

OH
Cl

 

23 
O

O

O

OH
F

 

22 
O

O

O

OHF

 
24 

O

O

O

OH

F  

*Indicates new compounds 

 

1.4 Problem Statement 

Nowadays, in the modern world, a lot of UV radiations are emitted from environments 

such as natural sunlight and man-made UV rays from the screen of technologies such 

as smartphones, television and more. The main types of UV rays that are able to affect 

the skin are UVA rays and UVB rays. People who tend to be more exposed towards 

the UV rays are at greater risk for skin cancer, melasma, freckles, and age spots which 

can accelerate skin aging by several years in difference. In addition, continuous 

exposure of UV rays may speed up the formation of melanin in the skin, DNA damage, 

gene mutation, impairment of immune system, hyperpigmentation and photoaging 

(Kim et al., 2021; cancer.org, 2023). To achieve a skin whitening effect, tyrosinase 

inhibitors are introduced in any cosmetic products. Unfortunately, due to the high 

toxicity of the most known tyrosinase inhibitor such as hydroquinone, kojic acid and 
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mercury (Burnett et al., 2010; Owolabi et al., 2020), there is a need in discovering new 

tyrosinase inhibitors which are safe and non-toxic for the users.  

Most isolated xanthones from natural products will have a low yield with a limited 

type of substituents in the structures, therefore, a synthetic approach in producing 

xanthones with various positions of substituents leads to new possibilities in 

discovering new areas of their biological activities with diverse of patterns in 

substituents.  

 

A previous study done by Rosa and her colleagues in 2021 managed to discover that 

xanthone derivatives are found to be exhibiting an antityrosinase effect based on the 

mushroom tyrosinase enzyme study. However, up to these recent years, a small 

number of studies were reported on halogenated xanthone derivatives as tyrosinase 

inhibitors. Thus, our study decided in producing varieties of halogenated xanthone 

derivatives to investigate their tyrosinase inhibitory effect which can also be beneficial 

among other researchers in tyrosinase inhibitors studies. For prenylated derivatives, 

our group managed to discover its anticancer bioactivity which were tested on a breast 

cancer cells and very lacking studies were done for prenylated derivatives on 

tyrosinase inhibition study. Therefore, our group took this new approach in discovering 

the tyrosinase inhibitory effects by prenylated derivatives.  

 

Thus, we are aiming in producing a variety of halogenated xanthones and prenylated 

xanthone derivatives with different designated functional groups on the xanthone 

scaffold were developed and synthesized to promote their bioactivity in inhibition of 

tyrosinase enzyme with their antioxidant characteristics. Later, the toxicity of the 
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potent compounds will be examined, and their SARs will be clarified in order to 

understand the mechanisms of xanthone interaction with the mushroom tyrosinase 

enzyme. (Rosa et al., 2021; Zhou et al., 2019).  

1.5 Objectives of Study 

 

• To synthesize and characterize a series of halogenated and prenylated xanthones 

via spectroscopic methods such as Nuclear Magnetic Resonance (NMR), Fourier 

Transform Infrared (FTIR) and Gas Chromatography Mass Spectrometry (GCMS). 

• To evaluate the in vitro inhibitory activity on mushroom tyrosinase enzyme and 

antioxidant activity of the synthesized compounds.  

• To determine the binding mechanisms of the potent compounds (bioactive) via 

enzyme kinetic study analysis supported by in silico molecular docking analysis.  

• To determine the cytotoxicity properties of the potent compounds on normal 

keratinocyte skin (HaCaT) cell line, brine shrimp assay and zebrafish embryo 

toxicity test. 
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