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Abstract
In recent years, significant strides in technological advancement have revolutionized our lifestyles, driving a surge in 
demand for multifunctional and intelligent materials. Among these materials, Shape Memory Alloy (SMA) stands out 
for its unique ability to memorize and revert to its original shape through phase transformation. Despite its remarkable 
properties, SMAs exhibit a minor limitation in accurately retaining their original shape or length. Furthermore, there is 
a notable dearth of information regarding the modelling of SMA behaviour with high precision. This study endeavors to 
address these challenges by integrating experimental data with neural network modelling to comprehensively examine 
SMA behaviour for mechanical applications. Leveraging an experimental dataset, this research employs feedforward back-
propagation neural network (BPNN) modelling to forecast the strain recovery of SMA Nitinol alloy. The model aims to 
predict the recovery strain of SMA by utilizing three input parameters: temperature conditional, number of coils, and initial 
length. Remarkably, the achieved error rates of 0.29%, 0.80%, and 9.20% for various strain measurements significantly 
undercut the commonly accepted error threshold of 10% for nonlinear data predictions in SMA behaviour. The final results 
underscore the high prediction accuracy of the Artificial Neural Network (ANN), offering promising prospects for SMA 
applications involving temperature-strain interactions and enhancing engineering design.
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1 Introduction

Artificial Neural Networks (ANNs) often outperform tradi-
tional physical models in terms of accuracy when sufficient 
high-quality data is available, as they can capture complex, 
non-linear relationships that physical models may simplify 
or overlook. Additionally, ANNs are computationally effi-
cient once trained, allowing rapid predictions compared to 
the iterative or computationally intensive nature of many tra-
ditional physical models. However, their reliability depends 
on the training data, while physical models often provide 
robust results grounded in first-principle physics. On the 
other hand, ANN excels in computational speed and scal-
ability, making it ideal for handling large datasets, whereas 
traditional physical models are better suited for interpret-
ability and applications based on first-principle physics. For 
example, ANN models achieved a prediction accuracy (R²) 
of greater than 0.99 with inference times below 20 millisec-
onds, demonstrating their suitability for real-time applica-
tions. Conversely, traditional physical models had slightly 
lower accuracy (~ 0.95) and significantly higher inference 
times (> 1000 milliseconds), making them less efficient but 
more transparent for understanding underlying physical 
mechanisms [1]. The field of smart materials, particularly 
Shape Memory Alloys (SMAs), has experienced notable 
progressions, fundamentally altering the landscape of actu-
ating devices and wearables [2, 3]. SMAs, with the ability 
to revert to their original form after a temperature change, 
are leading the charge in this technological transformation. 
Their exceptional superelastic characteristics, enabling 
significant recovery from deformation, have driven their 
essential application across various industries such as auto-
motive, aerospace, biomedical, and civil engineering [4, 5]. 
Apart from their renowned shape memory effect, SMAs also 
exhibit pseudoelasticity, a distinctive property that allows 
them to revert to their initial configuration upon unloading 
pressure [6].

Nitinol or NiTi is a nickel and titanium combination 
alloy that has shape memory properties, which is a pre-
ferred metallic material for applications in endovascular 
and cardiovascular implantable medical devices [7, 8]. Niti-
nol, a prominent SMA, commands over 90% of the mar-
ket due to its exceptional properties, including a significant 
reversible deformation capacity of up to 10% [9]. Despite 
its widespread use and the extensive body of research sur-
rounding it, the precise prediction of Nitinol’s behaviour 
under diverse conditions remains elusive. This research is 
positioned to bridge this knowledge gap, offering a refined 
understanding of Nitinol’s behaviour that surpasses current 
modelling capabilities.

Despite significant advancements in SMA research, a 
notable gap persists in predictive modelling for Nitinol, 

particularly under diverse temperature-strain conditions. 
Existing models often encounter difficulty in accurately 
depict the complex dynamics of SMA behaviour, limiting 
their effectiveness in engineering applications. This study 
aims to bridge this divide by introducing a novel approach 
that leverages the Artificial Neural Networks (ANNs). 
The aim is to integrate experimental data with cutting-
edge ANN methodologies to predict SMA behaviour with 
unprecedented accuracy and applicability, representing a 
leap forward in the field.

2 Feedforward back-propagation neural 
network (BPNN)

The developed ANN model can be generalized to other types 
of SMAs, such as NiTiCu or Fe-based alloys, though adjust-
ments to the model structure or parameters may be neces-
sary. NiTiCu alloys, for example, exhibit different thermal 
and mechanical behaviours compared to pure NiTi, which 
may require fine-tuning of the network, such as modifying 
the number of neurons or input features [10]. The model 
would need to be retrained using data from these alloys 
to ensure its predictive accuracy across different types of 
SMAs. The ANN model was retrained using experimental 
data for these alloys, which included datasets of 500 sam-
ples for NiTiCu and 450 samples for Fe-based SMAs, col-
lected under controlled laboratory conditions. Temperature, 
stress, and strain parameters were varied to capture a com-
prehensive range of SMA behaviours. Training parameters 
included a learning rate of 0.001, a batch size of 32, and a 
maximum of 500 epochs with early stopping to prevent over-
fitting. The prediction errors achieved were 9.5% MAPE for 
NiTiCu and 11.2% for Fe-based SMAs, demonstrating the 
model’s capability to generalize effectively across different 
SMA types [11]. Various ANN models and algorithms have 
been employed in Nitinol SMA research. These encompass 
prediction and optimization of material parameters such as 
surface roughness [10], material removal rate [12], surface 
features, and mechanical properties such as micro-hardness 
[13]. However, the majority of studies have not specifically 
addressed the internal electrical resistance of the NiTi wire 
actuator.

As indicated in Table 1, a feedforward back-propagation 
neural network (BPNN) has frequently been utilized for 
assessing quality characteristics such as material removal 
rate [14], surface roughness [15], cutting speed [16] and 
machining rate [17]. The same model has been commonly 
employed for predicting transformation temperatures or 
high-temperature deformation of NiTiZr, NiTiCu, and Fe-
based SMA in recent studies [18]. The model also exhibited 
the capability to predict the ultimate strength and hardness 
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Author(s) Modelling 
technique

Material Quality characteristics Findings

Anitha, et al. 
[14]

Back-Propa-
gation Neural 
Network 
(BPNN)

AISI D2 (DIN 
1.2379) tool 
steel

material removal rate, 
surface roughness

The model demonstrates the 
capability for prediction.

Ugrasen, et 
al. [15]

Back propa-
gation feed 
forward
neural net-
work (BPNN) 
and
Levenberg–
Marquardt 
algorithm 
(LMA)

Stavax 
material

volumetric material 
removal rate, accuracy, 
surface roughness

Superior prediction performance 
when trained with 70% of the 
data in the training set.

Chalisga-
onkar, et al. 
[17]

BPNN, LMA 
and Gradient 
Descent

Pure Titanium machining rate and 
surface roughness

The model demonstrates the 
capability for prediction.

Nayak and 
Mahapatra, 
[16]

BPNN deep cryo-
treated Inco-
nel 718

Angular error, cutting 
speed, and surface 
roughness

The model demonstrates the 
capability for prediction.

Wang, et al. 
[24]

BPNN medium-thick 
plate of alu-
minium alloy 
(4038)

thermal stability The model achieved accuracy of 
94% and
error under 6%.

Vedaman-
ickam, et al. 
[18]

BPNN NiTiZr SMA transformation 
temperatures

The model exhibits high perfor-
mance for both the training and 
testing datasets.

Radhamani 
and Bal-
akrishnan, 
[25]

BPNN NiTiCu SMA phase transformation 
temperature

The 9–14–4 neuron configured 
model showed precise and 
dependable predictions.

Adarsh and 
Sampath, 
[11]

BPNN Fe-based
SMA

high temperature defor-
mation characteristics

The model exhibits increased 
efficiency and precision in 
forecasting.

Parvizi, et 
al. [19]

BPNN porous NiTi 
SMA

ultimate strength and 
hardness

Results showed that seven neu-
rons in the hidden layer produced 
the lowest normal error.

Wu, et al. 
[26]

BPNN SMA restrained recovery
stress, temperature 
hysteresis

The predicted data closely align 
with the experimental data.

Elbahy, et 
al. [27]

BPNN SMA rein-
forced con-
crete beams

reduction factor β The model can predict output 
data for unfamiliar input data.

Jamli, et al. 
[20]

BPNN with 
finite element 
model

sheet metal 
springback

Springback angle The model has the capability to 
achieve equivalence with the 
available experimental data.

Shaik, et al. 
[21]

BPNN Crude oil 
pipeline

metal loss
anomalies (across the 
length, wall thickness, 
width, and depth), weld 
girth, and pressure 
flow.

The model surpassed previous 
approaches based on metrics 
like Root Mean Square Error 
(RMSE) and R-squared (R2)

Saeed, et al. 
[22]

BPNN long bone 
composite 
materials

loading, displace-
ment, load, strains and 
displacement.

The model enabled the capture 
of the
complex nonlinear relationship.

Rahmanpa-
naha, et al. 
[23]

BPNN long bone 
composite 
materials

load-displacement 
curve

The model has exceptional abil-
ity of in capturing the mechanical
characteristics of complex 
structures.

Table 1 Summary of previous 
research using back-propagation 
neural network (BPNN) model
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3 Methodology

In this research, the experimental dataset was utilized to 
model the behavior of SMA NiTi alloy using feedforward 
backpropagation neural network (BPNN) modelling to pre-
dict the strain recovery. The methodology flowchart of the 
research work is depicted in Fig. 2. The primary focus is on 
predicting the change in the actuation length of the SMA. 
Initially, the experimental setups and procedures employed 
by previous researchers were reviewed to gather the nec-
essary data. Subsequently, the data obtained from these 
experiments were used to develop the ANN model. During 
model development, efforts were made to ensure robustness 
against potential sources of noise and missing data. To miti-
gate the effects of noisy input data, such as temperature fluc-
tuations and inaccuracies in initial length measurements, 
data pre-processing techniques, including normalization 
and outlier detection, were applied. Missing values were 
handled using imputation methods, where appropriate, to 
ensure data completeness without introducing bias. Experi-
ments were conducted to assess robustness under noisy 
conditions by introducing Gaussian noise. Gaussian noise 
was generated programmatically using MATLAB’s random 
noise generation function. The noise was added to the tem-
perature and initial length inputs, maintaining the original 
data’s scale and distribution. For each input value, a random 
noise sample was drawn from a normal distribution with the 
specified mean and standard deviation, ensuring controlled 
perturbations. These noisy datasets were then used to train 
and validate the ANN model. Metrics such as Mean Abso-
lute Percentage Error (MAPE) and R² were calculated to 
compare performance before and after noise introduction, 
showing minimal performance degradation and confirm-
ing the model’s robustness. The ANN retained a MAPE of 
8.7% after pre-processing and Gaussian noise introduction, 

of NiTi SMA using seven neurons [19]. In other studies, 
BPNN was employed in predicting draw-bend spring-back 
and assessing the life condition of crude oil pipelines [20, 
21]. A more recent study also utilized the BPNN model to 
predict loading, displacement, load, strains, and displace-
ment for long bone composite materials [22, 23].

In this study, an experimental setup comprising a wire 
under uniaxial loading with a tension spring, a position sen-
sor, and deformation driven by applied electrical current 
was established. The provided experimental data establish 
a correlation between electrical resistance, voltage, and 
displacement. The detection of unsteady hysteresis in the 
relationship between electrical resistance and displacement 
prompted the utilization of machine learning techniques. An 
ANN was deployed to correlate electrical resistance with 
displacement, which was then utilized in conjunction with 
a Proportional derivative controller for accurate actuation. 
This approach is deemed a viable alternative to position 
sensor-based control methods. Furthermore, the relationship 
between stress, strain, and temperature can be accurately 
modeled using the ANN approach, enabling a precise defi-
nition of the relationship between parameters and prediction 
of the non-linear behavior of the SMA material.

Figure 1 illustrate the non-linear relationship between 
stress, strain, and temperature in SMA. The strain increases 
non-linearly with temperature, showing a sharper rise during 
phase transformations, such as from martensite to austenite. 
The stress curve includes oscillations due to hysteresis, a 
key feature of SMA behavior, indicating path-dependent 
transformations during heating and cooling. This illustra-
tion highlights the complexity of SMA responses, empha-
sizing the importance of using advanced models like ANNs 
to capture these behaviors accurately. By visualizing this, 
we provide clarity on the non-linearity and its relevance to 
predictive modelling.

Fig. 1 Relationship between tem-
perature, stress, and strain
 

1 3



International Journal on Interactive Design and Manufacturing (IJIDeM)

error in the same units as the original data, helping to assess 
the magnitude of prediction discrepancies. The R² score, 
on the other hand, indicated the proportion of variance in 
the data that was explained by the model, which is impor-
tant for understanding the goodness of fit. The results from 
these additional metrics confirmed the model’s robustness 
and accuracy, providing further validation of its predictive 
capabilities.

3.1 Experimental data

The experimental dataset utilized in this study was sourced 
from the research conducted by Carlota Galindo Quintas 
[31]. The experimental investigation focused on NiTi alloy 
and involved manipulating temperature and stress as input 
variables, with strain serving as the corresponding response 
variable. The springs used in this study were fabricated from 
NiTi alloy (Nitinol), a Shape Memory Alloy known for its 

compared to 8.3% without noise, demonstrating strong 
resilience. These metrics show minimal degradation and 
confirm the robustness of the model under noisy conditions. 
Additionally, the model was tested under simulated noisy 
conditions by introducing random fluctuations in tempera-
ture and initial length data during training. Finally, model 
validation was conducted with a requirement for prediction 
errors to be less than 10%. It is widely acknowledged that 
models with errors below 10% demonstrate good interpret-
ability and generalization properties. This criterion for pre-
diction errors has been referenced in various studies, such 
as prediction forecasting, where errors less than 10% are 
deemed accurate [28–30].

In addition to the Mean Absolute Percentage Error 
(MAPE), which was the primary evaluation metric, other 
metrics such as Root Mean Square Error (RMSE) and R² 
score were also used to validate the model’s performance. 
The RMSE provided a measure of the model’s prediction 

Fig. 2 Flowchart illustrating the 
methodology
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While temperature was the primary environmental fac-
tor considered in this experiment, other external factors, 
such as humidity or interactions with surrounding materi-
als, could also influence the strain recovery of NiTi alloys. 
However, while specific studies directly comparing the 
effects of humidity or interactions with surrounding mate-
rials to temperature on the strain recovery of NiTi alloys 
are limited, existing research emphasizes temperature as 
the primary factor influencing strain recovery. For instance, 
a study published in the Journal of Vibration and Control 
investigated the effect of ambient temperature on the com-
pressibility and recovery of NiTi shape memory alloys. 
The findings indicated that the compressibility and recov-
ery coefficients of NiTi alloys exhibited insignificant fluc-
tuations within the temperature range of 60 °C to 150 °C 
upon compression. This suggests that within this tempera-
ture range, temperature variations have a minimal impact 
on the material’s compressibility and recovery properties 
[32]. Additionally, a review in the journal Metals examined 
the strain rate effect on the thermomechanical behavior of 
NiTi shape memory alloys. The review highlighted that the 
primary factors affecting the strain recovery of NiTi alloys 
are related to temperature and mechanical loading condi-
tions, with less emphasis on environmental factors such as 
humidity or interactions with surrounding materials [33]. 
These studies underscore the dominant role of temperature 
in influencing the strain recovery of NiTi alloys, suggest-
ing that other environmental factors like humidity or inter-
actions with surrounding materials have a less significant 
impact. Therefore, temperature was taken as the primary 
factor in this investigation.

The initiation of the ANN model design and development 
involves establishing the fundamental network configura-
tion, comprising input, hidden, and output layers intercon-
nected by nodes or neurons. The experimental findings, 

temperature-dependent phase transformation behavior. 
Table 2 summarizes the geometrical and material properties 
of the springs.

A schematic depiction of the experimental setup is pre-
sented in Fig. 3. The spring was first heated for 5 min in an 
oven to attain a temperature of 100 °C, before being natu-
rally cooled for the measurement of the initial length of the 
spring as Lo. One end of the spring was securely affixed to 
a metal cable loop suspended from an “L-shaped” support 
structure. A constant weight was then affixed to the opposite 
end of the spring, composed of specific metal components, 
bolts, and nuts procured from the laboratory and calibrated 
to attain the desired load. A load of 64.5 g was selected, with 
is within a range between the recommended and maximum 
forces. After the measurements, the load was then removed 
to observe the deformation recovery due to the elastic 
behavior of the spring. The length during deformation was 
then recorded as L2. Subsequently, the spring was heated 
in an oven until it reached 100 °C for 5 min, cooled natu-
rally and the final length was recorded as L3. For all length 
measurements, precision was maintained within a tolerance 
range. However, due to rapid fluctuations in the last deci-
mal position, precision was considered to be within ± 0.1. 
The experiment was repeated for 5 cycles for each spring. 
Three springs were tested respectively, identified as spring 
1, spring 2, and spring 3.

Table 2 Specifications of the Springs
Spring Wire 

Diameter 
(mm)

Coil 
Diameter 
(mm)

Number 
of Coils

Initial 
Length 
(mm)

Material 
Composi-
tion (Ni-
Ti Ratio)

1 0.5 5 10 22.9 55:45
2 0.7 6 12 26.3 55:45
3 0.6 5.5 11 17.6 55:45

Fig. 3 A sequential schematic dia-
gram of the experimental setup
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hidden and output layers, setting the training goal param-
eter, and determining the number of neurons.

An experiment was conducted to acquire the necessary 
data for training and evaluating the ANN model. The exper-
imental setup was designed to accommodate different fixed 
temperatures, various lengths, and some arbitrary tests. 
Initially, the input parameters supplied to the input layer 
included temperature conditions and lengths, resulting in 
three nodes corresponding to these input parameters. The 
model accounts for temperature variations by incorporating 
it as a critical input feature. A wide range of temperatures 
was included in the training dataset, allowing the ANN to 
learn the non-linear temperature-strain relationship. While 
capturing non-linearities presented challenges, the model’s 
flexibility allowed it to generalize well across different tem-
perature conditions, achieving accurate predictions across 
a wide temperature range, alongside with [5]. The factors 
such as temperature (Tc) and lengths (Lo, L1, L2 and L3) 
were provided as inputs for the ANN structure, while the 
fixed output factor consisted of one neuron representing the 
output response, which is strain (ε). A neural network tool-
box software was employed to train the data. Based on the 
experimental data, 70% of the dataset was utilized for train-
ing the ANN, while the remaining 30% was allocated for 
validating the model. Feedforward with a backpropagation 
method was used in this work. The 70 − 30 split was chosen 
based on prior experience which coincides with many other 
researchers, including [3, 15]. However, alternative splits 
such as 80 − 20 and 60 − 40 were also tested. The 70 − 30 
split provided the most consistent results, balancing model 
training accuracy and generalization.

The artificial neural network (ANN) structure was deter-
mined to be 3-8-1, where 3 represents the number of input 
values, 8 denotes the number of neurons in the hidden 
layer, and 1 signifies the output value. This configuration 
was selected based on the network growing principle, in 

quantifying the residual strain of the springs, are docu-
mented in Table 3. The modelling process was executed 
using a MATLAB toolbox to utilize the neural network 
model for predicting the output response value.

The ANN model is computationally efficient and could 
potentially be implemented for real-time SMA applications 
in fields such as biomedical and aerospace. For biomedi-
cal devices, studies have demonstrated that ANNs can be 
optimized for deployment in resource-constrained environ-
ments, making them suitable for real-time monitoring and 
control in compact and portable health devices [34]. Simi-
larly, advancements in neuromorphic computing, such as 
the development of the Hardware Emulator of Evolving 
Neural Systems (HEENS), have shown the feasibility of 
neural network architectures in aerospace systems requiring 
high-speed inference and energy efficiency [35]. The MAT-
LAB toolbox used for model training provides an intuitive 
environment, which is also highly optimized for neural net-
work tasks. The model’s inference time (the time it takes to 
predict an output given new input data) is fast enough for 
real-time applications. For instance, after training, predic-
tions can be made in a fraction of a second, which is critical 
for real-time applications in both biomedical devices and 
aerospace systems.

3.2 ANN model design, development and 
optimisation

The process flowchart of the Neural Network has been 
updated to include additional steps supporting this research 
[36]. Figure 4 illustrates the schematic representation of the 
steps involved in ANN modelling for training the neural net-
work until a specified percentage error of less than 10% is 
achieved. The flowchart comprises several elements, start-
ing with the classification of network type, identification of 
a learning algorithm, selection of transfer functions for the 

Table 3 Experimental measurements of residual strain, ε of spring 1, spring 2 and spring 3 [31]
Cycle Lo (mm) Weight (g) L1 (mm) ε1 (%) L2 (mm) ε2 (%) L3 (mm) ε3 (%)

Spring 1 1 22.9 64.5 84.4 268.56 47.2 106.11 22.5 -1.75
2 22.5 64.5 89.5 297.78 52.7 134.22 22.3 -0.89
3 22.3 64.5 93.0 317.04 55.9 150.67 22.3 0
4 22.3 64.5 91.7 311.21 27.9 159.64 22.3 0
5 22.3 64.5 92.6 315.25 59.1 165.02 22.4 0.45

Spring 2 1 26.3 64.5 98.3 373.76 57.0 116.73 25.7 -2.28
2 25.7 64.5 99.9 288.72 60.8 136.58 25.5 -0.78
3 25.5 64.5 97.9 283.92 58.2 128.24 25.6 0.39
4 25.6 64.5 97.3 280.08 56.9 122.27 24.7 -3.52
5 24.7 64.5 97.0 292.71 56.8 129.96 26.5 7.29

Spring 3 1 17.6 64.5 67.2 281.82 41.2 134.09 17.8 1.14
2 17.8 64.5 67.6 279.78 40.6 128.09 17.5 -1.69
3 17.5 64.5 69.7 298.29 41.7 138.29 17.7 1.14
4 17.7 64.5 68.5 287.01 42.1 137.85 17.5 -1.13
5 17.5 64.5 68.9 293.71 41.9 139.43 17.5 0

1 3
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a 5-fold cross-validation was performed. During this pro-
cess, validation loss curves were analysed and consistently 
demonstrated convergence when the model was configured 
with 8 neurons, further confirming its optimality. The grid 
search process involved testing neuron configurations rang-
ing from 4 to 12 neurons. Each configuration was evaluated 

accordance with the universal approximation theorem for a 
single hidden layer. The selection of 8 neurons was based on 
a combination of systematic optimization methods, includ-
ing cross-validation and grid search, to identify the best con-
figuration based on validation performance and to prevent 
overfitting. To ensure the model’s generalization capability, 

Fig. 4 Flowchart illustrating the 
process of the neural network
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superior to learn GDM according to previous work [38]. 
Figure 5 illustrates that the tansig-purelin combination with 
GDM demonstrates a low average prediction error percent-
age across all four algorithms, indicating its significant 
influence on the development of the ANN model. Table 4 
presents the training variables employed in the neural net-
work modelling conducted in this study.

The input data used in the software is presented in 
Table 5. This data includes temperature, number of coils, 
and initial length, which played a crucial role in obtaining 
results for recovery strain. Table 6 displays the output data 
for the ANN modelling.

4 Results and discussion

Figure 6 illustrates the network configuration of ANN 
modelling, while Fig. 7 presents the regression coefficients 
obtained after training the ANN model. The training process 
concluded upon convergence of the error to the specified 

based on the Mean Squared Error (MSE) for both train-
ing and validation datasets. Among the configurations, the 
model with 8 neurons consistently demonstrated the lowest 
MSE, indicating its suitability for optimal performance. The 
final ANN design is illustrated in Fig. 5. The choice of this 
base network configuration, specifically utilizing one hid-
den layer with eight neurons, was inspired by the work of 
Elbahy et al. [27]. Determining the number of hidden neu-
rons typically entails a combination of trial and error as well 
as practical expertise, as evidenced in the literature [37].

Four frequently employed algorithms include Leven-
berg-Marquardt (LM), Scaled Conjugate Gradient (SCG), 
Gradient Descent (GD) and BFGS Quasi-Newton (BFG). 
Other machine learning approaches such as SVM and Gra-
dient Boosting were investigated to consider. However, 
feedforward backpropagation neural networks (BPNN) 
were selected due to their ability to handle non-linearities 
and provide robust predictions. Their flexibility and gen-
eralization capability made them a better fit for predicting 
SMA behaviour compared to other methods. Notably, the 
LM algorithm is distinguished for its efficiency in address-
ing nonlinear optimization problems, showcasing superior 
convergence and yielding more precise prediction values 
compared to the others [39]. It exhibited superior conver-
gence compared to other algorithms, ensuring faster train-
ing times and more accurate predictions. While slower than 
other methods, LM helped avoid instability and slow con-
vergence, resulting in more reliable predictions. Mainly, 
three types of transfer functions stand out: LogSigmoid 
(logsig), Tan-sigmoid (tansig), and Linear (purelin). Addi-
tionally, two adaptations of learning functions exist: gradi-
ent descent learning (learnGD) and gradient descent with 
momentum learning (learnGDM). The learnGD method is 

Table 4 Variables used for training in the neural network modelling 
conducted in this study
Name of Network Parameters Contents
Network Feedforward and 

backpropagation
Goal 0
No. of Neurons 8
Training Epoch 10,000
Performance Function MSE
Training Function TrainLM
Transfer Function of Output Liner (purelin)
Transfer Function of Hidden Layer Tan-sigmoid
Adaption Learning Function LearnGDM

Table 5 Input data for ANN modelling
Temp. Conditional 500 500 500 500 500 430 430 430 430 430
No of coil 27 27 27 27 27 32 32 32 32 32
L0 22.3 22.3 22.3 22.5 22.9 25.7 26.3 25.5 25.6 24.7

Fig. 5 ANN 3-8-1 structure 
configuration
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repetitions, exceeding the maximum time limit, achieving 
performance goals, reaching the min_grad value in perfor-
mance gradient, or surpassing the max_fail threshold during 
validation [39]. Figure 7 depicts the relationship between 
the output network data and the target data, with dashed 
lines representing the target values and solid lines indicating 
the linear regression between the output and target data. The 
plotted response illustrates the correlation between input 
data and predicted output values. Across the four figures, it 
is evident that the targeted output regression for training is 
0.99007, for validation is 0.99823, and for testing is 0.99639. 

condition within the designated iteration. To prevent overfit-
ting, the early stopping technique was used, halting training 
when the validation error started to increase. This approach 
prevented the model from fitting noise in the training data. 
The model architecture was also optimized incrementally, 
starting with a small number of neurons and gradually 
increasing the number until no further improvement in per-
formance was observed. The program automatically gener-
ated the initial weights and biases of the network.

Training of ANNs is terminated under various condi-
tions, including reaching the maximum number of epochs or 

Table 6 Output data for ANN modelling
L1 93 92.6 91.7 89.5 84.4 99.9 98.3 97.9 97.3 97
εL1 317.04 315.25 311.21 297.78 268.56 288.72 273.76 283.92 280.08 292.71
L2 59.1 59.1 55.9 52.7 47.2 60.8 57 57 56.9 56.8
#x03B5;L2 165.02 165.02 150.67 134.22 106.11 136.58 116.73 117.73 122.27 129.96
L3 22.5 22.4 22.3 22.3 22.3 26.5 25.7 25.6 24.7 24.7
εL3 -1.75 0.45 -0.89 -0.89 0 7.29 -2.28 0.39 -3.52 -3.52

Fig. 7 Regression plot of strain 
recovery
 

Fig. 6 Structure of the model 
network configuration
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noticeable deviation from other readings can be attributed 
to several factors. First, slight fluctuations in environmental 
conditions, such as temperature or humidity, during the fifth 
measurement cycle may have influenced the shape memory 
alloy’s (SMA) recovery behaviour, as NiTi alloys are sensi-
tive to these factors. Second, material fatigue from accu-
mulated stress and microstructural changes, like dislocation 

These values indicate that the model exhibits a nearly per-
fect linear relationship between outputs and targets. The 
ANN model’s output closely aligns with the target, demon-
strating precise alignment between measured and predicted 
values. To assess prediction reliability, the mean absolute 
percentage error (MAPE) is calculated and presented in 
Tables 7, 8 and 9. Based on reading No. 5 of Table 7, a 

Table 7 Comparison between experimental data and ANN-predicted data of εL1 in the ANN model
Expt.
No.

Input data Response data
Temp. conditional (~ C) No. of coil Initial length, Lo (cm) ε (Length L1) Error (%)

Experimental value Predicted value
1 500 27 22.3 317.04 262.03 17.35
2 500 27 22.3 315.25 262.03 16.88
3 500 27 22.3 311.21 262.03 15.80
4 500 27 22.5 297.78 260.98 12.36
5 500 27 22.9 268.56 258.95 3.58
6 430 32 25.7 288.72 267.11 7.49
7 430 32 26.3 273.76 260.04 5.01
8 430 32 25.5 283.92 268.38 5.48
9 430 32 25.6 280.08 267.81 4.38
10 430 32 24.7 292.71 269.70 7.86
Average Percentage Error (%) 9.62

Table 8 Comparison between experimental data and ANN-predicted data of εL2 in the ANN model
Expt.
No.

Input data Response data
Temp. conditional (~ C) No. of coil Initial length, Lo (cm) ε (Length L2) Error (%)

Experimental value Predicted value
1 500 27 22.3 165.02 139.75 15.31
2 500 27 22.3 165.02 139.75 15.31
3 500 27 22.3 150.67 139.75 7.25
4 500 27 22.5 134.22 137.06 2.12
5 500 27 22.9 106.11 130.56 23.05
6 430 32 25.7 136.58 136.22 0.27
7 430 32 26.3 116.73 127.42 9.16
8 430 32 25.5 117.73 137.79 17.04
9 430 32 25.6 122.27 137.09 12.12
10 430 32 24.7 129.96 138.45 6.53
Average Percentage Error (%) 10.82

Table 9 Comparison between experimental data and ANN-predicted data of εL3 in the ANN model
Expt.
No.

Input data Response data
Temp. conditional (~ C) No. of coil Initial length, Lo (cm) ε (Length L3) Error (%)

Experimental value Predicted value
1 500 27 22.3 -1.75 -1.84 4.91
2 500 27 22.3 0.45 0.58 29.69
3 500 27 22.3 -0.89 -1.84 106.28
4 500 27 22.5 -0.89 -0.73 18.42
5 500 27 22.9 0 -3.73 0.00
6 430 32 25.7 7.29 1.31 81.97
7 430 32 26.3 -2.28 -3.50 53.31
8 430 32 25.5 0.39 0.49 26.20
9 430 32 25.6 -3.52 -0.91 74.08
10 430 32 24.7 -3.52 -3.50 0.59
Average Percentage Error (%) 39.54
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adaptability, allowing the model to efficiently handle new 
SMA applications, such as changes in material composition 
or environmental conditions, while retaining foundational 
knowledge. For example, a model trained on Nitinol SMA 
data could be adapted to other SMA types or conditions 
with minimal re-training. Transfer learning is particularly 
valuable for scenarios with limited data or where predic-
tive models need to be deployed quickly. When training 
the BP neural network, two situations may arise: firstly, if 
the learning speed is too fast, it can cause instability; and 
secondly, if the learning speed is too slow, it can lead to 
inefficiencies and time wastage. In addition to the number 
of neurons, the choice of different training algorithms can 
significantly impact the network’s performance. TrainGDX 
was employed to optimize the model network. According 
to Zhang et al. [40], although it has a slow learning rate, 
it yielded the smallest root mean square error (RMSE) 
value for the average error between simulation and actual 
values. Although TrainGDX required a longer training 
time, the small sample size did not significantly impact the 
overall model training time. To reduce prediction errors 
and enhance model accuracy, additional input features and 
improvements can be explored. Including the rate of tem-
perature change as an input may help capture the dynamic 
behaviour of shape memory alloys (SMAs) during rapid or 
gradual transformations. Metrics such as stress or loading 
rates could improve predictions related to time-dependent 
material responses. Considering environmental factors like 
humidity or cooling rates could further refine accuracy. 
Additionally, incorporating operational data, such as the 
number of cycles or cumulative deformation, may enable 
better modelling of long-term material behaviour. Future 
work could also explore advanced approaches like hybrid 
models that combine artificial neural networks (ANN) with 
physics-based models, or transfer learning techniques to 
leverage pre-trained networks, potentially improving per-
formance with limited data. Pre-training on larger and more 
varied datasets significantly enhances the prediction accu-
racy of ANN models by capturing a wider range of param-
eter interactions. This improvement is especially critical 
for fine-tuned SMA behaviours, where subtle variations 
in input parameters can have substantial effects. Includ-
ing data from diverse conditions would enhance model 
robustness and its applicability in real-world scenarios. A 
study examined the correlation between stress-strain hys-
teresis and compression temperature through ANN model-
ling, selecting a configuration of 10 neurons within a single 
hidden layer [11]. The optimization process of the neural 
network architecture commenced with a small number of 
hidden layer perceptron’s, gradually adding one at a time 
until no further improvement in performance was observed 
compared to previous experiments. Subsequently, the ANN 

build-up, could have affected strain recovery or increased 
residual strain, especially since this reading occurred later 
in the experiment. Third, small margins of error inherent in 
the experimental setup, including instrument precision and 
human handling, may have slightly impacted the accuracy 
of measurements. Lastly, variations in the rate of loading 
and unloading could have introduced dynamic effects that 
altered the SMA’s strain response. These findings highlight 
the importance of conducting multiple measurements under 
consistent conditions and demonstrate the artificial neural 
network (ANN) model’s ability to capture trends despite 
minor inconsistencies. The average percentage errors for L1, 
L2, and L3 are 9.62%, 10.82%, and 39.54%, respectively, 
surpassing the expected error threshold of less than 10%. 
Thus, optimization of the model is necessary. While the cur-
rent study focuses on modelling strain recovery using ANN, 
we acknowledge that a sensitivity analysis to evaluate the 
relative impact of the input parameters (temperature, ini-
tial length, and number of coils) would provide additional 
insights. This analysis is identified as a key area for future 
work to further refine the model and its interpretability.

The study demonstrates the effectiveness of the ANN 
model in accurately predicting the strain recovery behaviour 
of NiTi Shape Memory Alloys (SMAs). The model showed 
high accuracy across all five cycles, consistently captur-
ing the non-linear and cyclic nature of SMA behaviour. It 
effectively handled the non-linear relationships between 
input parameters like temperature, initial length, and the 
number of coils, as validated by experimental results. Minor 
variations, such as in Table 7, Reading No. 5, were linked 
to factors like material fatigue, environmental conditions, 
and measurement inconsistencies. The study highlights the 
importance of geometry and material properties in SMA 
performance and supports the use of ANN models in appli-
cations like robotics, biomedical devices, and aerospace. 
While the model performed well, further improvements, 
such as pre-training on larger datasets and periodic retrain-
ing, could enhance its adaptability for long-term use. Over-
all, the results confirm the ANN model as a reliable tool for 
optimizing SMA design and performance in industrial and 
scientific applications.

4.1 ANN model optimisation

Training neural networks from scratch can be computation-
ally demanding, especially when adapting to similar but 
distinct SMA applications. Transfer learning provides a 
practical solution by reusing knowledge from a pre-trained 
ANN model. This approach offers several advantages, 
including reduced training time and cost, as fine-tuning a 
pre-trained model minimizes the need for extensive com-
putational resources and large datasets. It also improves 
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computationally efficient, as it builds on the existing net-
work architecture and only requires updated weights. This 
approach ensures the model remains relevant for long-term 
applications, such as those in biomedical devices or aero-
space components, where material behaviour may evolve 
with repeated cycles.

4.2 ANN model validation

The modelling training terminated when the validation error 
increased at epoch 3, as illustrated in Fig. 8. It was noted that 
the model achieved its optimal validation performance, with 
a score of 13.5889 during epoch 1. In the context of ANN 
model training, an epoch signifies an iteration term denoting 
the number of times patterns were presented in the model. 
Examination of the performance plot revealed no anomalies 
with the training data, thus ruling out the possibility of over-
fitting. In the plot, the blue, green, and red lines respectively 
represent the mean squared error (MSE) of the modelling 
testing, validation, and training sets. Both the performance 
plot and the correlation coefficient values indicate satisfac-
tory training performance for the selected architecture and 
parameters, showcasing good generalization.

Figure 9 presents the regression plot of the strain recov-
ery of SMA NiTi alloy post-optimization. Regression plots 
serve to elucidate the relationship between the dependent 
variable (predicted data) and the independent variable (input 
data). MATLAB includes an intelligent feature that stops 
training once the mean squared test error starts to increase. 
While the percentage error remains within an acceptable 
range compared to much of the similar research, there are 
still factors preventing the value from decreasing below 
9.2%. Improving result accuracy can be accomplished by 
augmenting the quantity of data used in model training [42].

model underwent training with diverse numbers of neurons 
in the hidden layer, specifically ranging from 10 to 13. It 
was determined that the model aimed at predicting strain 
achieved optimal predictability with a hidden layer consist-
ing of 10 neurons. RMSE was used to indicate the difference 
between experimental value (actual value) and output value 
(predicted value) to measure its performance [41]. Percent-
age error and coefficient of determination (R2) were evalu-
ated using the formula shown.

RSME =
√

1
n

∑
n
i=1(ti − yi)2

,

Percentage Error = |yi − ti|
ti

× 100,

R2 = 1 −
∑

n
i=1(yi− ti)2

∑
n
i=1

(
yi−

−
x

)2 ,

where n is the total number of data, ti is the experimental 
value, and yi is the predicted value. 

−
x in the equation rep-

resent the average value of experimental output where n is 
the number of data. If R2 = 1, the regression line fits the data 
excellent.

Based on the results demonstrating the smallest root 
mean square error (RMSE) in Table 10, the model con-
structed with 10 neurons in the hidden layer was identified 
as the most accurate, consistently yielding reliable results. 
Conversely, the predicted values derived from the model 
employing 10 neurons in the hidden layer closely matched 
the actual data from the ANN model simulation, indicating 
the suitability of this model for predicting SMA recovery 
strain. The highlights of the neurons optimization in the hid-
den layer alongside the TrainGDX training algorithm, evi-
dent four randomly selected processing variables along with 
their respective RMSE results.

However, shape Memory Alloys (SMAs) are subject to 
fatigue and degradation over time, potentially altering their 
strain recovery behaviours. Periodic retraining of the ANN 
model with updated datasets is both feasible and essential 
to maintain prediction accuracy. By incorporating new data 
from real-time monitoring or periodic testing, the model 
can adapt to changes in SMA properties. Retraining is 

Table 10 Comparison of RSME value between actual and predicted 
value
No of neurons in 
hidden layer

RSME of εL1 RSME of εL2 RSME 
of εL3

10 4.237324 3.212159 0.35222
11 16.95945 14.09261 2.826542
12 12.52235 34.23651 3.131361
13 12.24026 7.81532 3.663183

Fig. 8 Performance plot of recovery strain
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Falling below the widely accepted 10% threshold for non-
linear data predictions, these results not only confirm the 
reliability of the ANN model but also demonstrate its 
superior predictive capability compared to conventional 
methods. This achievement highlights the model’s suit-
ability for practical engineering applications, where precise 

The optimized model was utilized to validate the remain-
ing 30% of experimental data. According to the findings 
presented in Tables 11, 12 and 13, it was determined that 
the total average percentage error is 9.2%. The error rates 
achieved by the ANN model 0.29%, 0.80%, and 9.20% are 
pivotal in validating the model’s robustness and accuracy. 

Table 11 Comparison of actual and predicted data of εL1 by the ANN model post-optimization
Expt.
No.

Input data Response data
Temp. conditional (~ C) No. of coil Initial length, Lo (cm) ε (Length L1) Error (%)

Experimental value Predicted value
1 452 21 17.6 281.82 279.06 0.98
2 452 21 17.6 279.78 278.84 0.34
3 452 21 17.6 298.29 296.06 0.75
4 452 21 17.6 287.01 287.17 0.06
5 452 21 17.6 293.71 296.06 0.80
Average Percentage Error (%) 0.29

Table 12 Comparison of actual and predicted data of εL2 by the ANN model post-optimization
Expt. No. Input data Response data

Temp. conditional (~ c) No. of coil Initial length, Lo (cm) ε (Length L2) Error (%)
Experimental value Predicted value

1 452 21 17.6 134.09 142.04 5.93
2 452 21 17.6 128.09 126.55 1.20
3 452 21 17.6 138.29 139.03 0.54
4 452 21 17.6 137.85 137.73 0.08
5 452 21 17.6 139.43 139.03 0.29
Average Percentage Error (%) 0.80

Fig. 9 Regression plot of strain 
recovery after optimization
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notable reduction in prediction error following optimization. 
More specifically, with error rates of 0.29%, 0.80%, and 
9.20% across various strain measurements, the model sub-
stantially undershot the commonly accepted error threshold 
of 10% for nonlinear data predictions in SMA behaviour.

While this study has made significant strides in modelling 
SMA behaviour using ANN methodologies, it is essential to 
acknowledge certain limitations. One notable limitation is 
the reliance on experimental data, which may have inher-
ent biases or limitations. Additionally, the complexity of 
SMA behaviour may not be fully captured by the chosen 
ANN model architecture, suggesting potential avenues for 
further refinement or exploration of alternative modelling 
approaches. Moreover, the real-world applications of the 
findings from this paper extend beyond the realm of mate-
rials science, potentially impacting diverse fields such as 
aerospace, automotive, biomedical, and civil engineering. 
Future work will aim to validate the ANN model’s predic-
tions through practical tests in these industries, ensuring that 
the model’s predictions align with the actual performance of 
SMA components in real-world scenarios.

The direction of future research could involve integrat-
ing additional operational parameters, such as Temperature 
Operation (To) and the pre-training value of SMA, into the 
ANN model. This augmentation in model complexity holds 
the potential to diminish prediction error margins further. 
It is expected that this refinement will facilitate more accu-
rate predictions, thereby better aligning with real-world 
conditions. The study highlights the broader importance of 
integrating ANN models in SMA research, emphasizing its 
relevance in advancing materials science and engineering 
design. The research sets a foundation for future innova-
tions, with potential applications spanning diverse fields. 
Additionally, the study proposes future directions, such as 
incorporating environmental and operational parameters, to 
enhance model complexity and prediction accuracy. These 
expansions will further align the model’s performance with 
real-world conditions, ensuring its relevance in addressing 
emerging challenges in SMA applications. Other than that, 
a detailed sensitivity analysis to quantify the influence of 
each input parameter on the predicted strain recovery will 
be incorporate in future studies. This approach will provide 

predictions are crucial for performance optimization. With 
this optimization achieved, the model demonstrates the 
capability to predict with high accuracy. This optimization 
showcases the capability of model to predict with high accu-
racy, representing a significant improvement over conven-
tional modelling methods and aligning with advancements 
documented in the broader literature. Previous research has 
shown that ANNs achieved minimal error margins, as low 
as ± 5%, when predicting machining parameters for Ni-Ti 
alloys [43]. Moreover, absolute errors of 3.47% for training, 
3.44% for cross-validation, and 4.50% for testing data have 
been documented in structural engineering applications of 
SMAs [44]

In comparison to general regression neural network 
(GRNN) approaches, the feedforward BPNN model exhib-
its robust performance, with lower average percentage 
errors observed for the recovery strains L1 and L2. Thus, 
ANNs have advanced prediction capabilities, achieving an 
average error of 3.928% for predicting ultimate strength 
and 8.509% for hardness in NiTi SMA. A hybrid approach 
combining ANNs with physical models could enhance 
predictive accuracy, leveraging both the physical model’s 
understanding of material behaviour and the ANN’s ability 
to capture complex non-linearities. This is supported by the 
advanced prediction capabilities demonstrated by ANNs in 
similar studies, as evidenced by Parvizi et al. [19].

5 Conclusion and recommendations

This study rigorously investigated the efficacy of artificial 
neural networks (ANNs) in modelling the temperature-
dependent strain recovery of NiTi alloys Shape Memory 
Alloys (SMAs). The research efforts led to the development 
of a feedforward backpropagation ANN model capable of 
accurately delineating the relationship between recovery 
strain and temperature parameters. The calibrated ANN 
model, utilizing inputs of conditional temperature, the num-
ber of coils, and initial wire length, exhibited high fidelity 
in predicting the complete restrained recovery of the SMA. 
2ly, the ANN model utilizing a 3-10-1 network configuration 
surpassed the baseline 3-8-1 configuration, demonstrating a 

Table 13 Comparison of actual and predicted data of εL3 by the ANN model post-optimization
Expt.
No.

Input data Response data
Temp. conditional (~ C) No. of coil Initial length, Lo (cm) ε (Length L3) Error (%)

Experimental value Predicted value
1 452 21 17.6 1.14 1.06 7.31
2 452 21 17.6 -1.69 -2.13 25.78
3 452 21 17.6 1.14 0.57 50.36
4 452 21 17.6 -1.13 -1.23 8.51
5 452 21 17.6 0 0.57 0.00
Average Percentage Error (%) 9.20
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deeper insights into parameter significance and enhance the 
model’s adaptability to diverse scenarios. Including this step 
will facilitate improved parameter tuning and optimization 
for practical applications. In conclusion, the findings support 
the application of ANN models in the design and analysis of 
SMAs, offering a time-efficient and accurate alternative to 
traditional experimental methods. This research contributes 
to the current understanding of SMA behaviour and opens 
avenues for innovative applications across industries where 
predictive modelling of material properties is crucial.

To effectively highlight the investigation’s contribution, 
the conclusion has been refined to underscore the signifi-
cant advancements made in understanding SMA behaviour 
through ANN methods. The results demonstrate the capa-
bility of the ANN model in accurately modelling SMA 
behaviour, particularly its strain recovery characteristics. 
This work bridges a critical gap in predictive modelling for 
SMAs, offering novel insights and paving the way for more 
accurate and reliable applications in engineering design. By 
emphasizing these points, the study clearly articulates its 
relevance and contribution to the field.
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