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ABSTRACT Users can use online data computing services and computational resources from a distance
in cloud computing environments. Task scheduling is a crucial part of cloud computing since it neces-
sitates the creation of dependable and effective techniques for allocating tasks to resources. To achieve
optimal performance, it requires accurate task allocation to resources. By optimizing task scheduling,
cloud computing solutions can decrease processing times, boost efficiency, and improve overall system
performance. To address these challenges, this paper proposes an improved version of Henry gas solubility
optimization, which is presented as the Henry Gas-Harris Hawks-Comprehensive Opposition (HGHHC)
method. This method is based on two elements: comprehensive opposition-based learning (COBL) and
Harris Hawks Optimization (HHO). The HHO algorithm was employed as a local search strategy in this
suggested algorithm to improve the quality of authorized solutions. Through meticulous analysis of their
opposites and selecting an efficient option, COBL improves the less effective options. This method made it
easier to improve insufficient solutions, which increased the overall effectiveness of the chosen strategies.
The suggested technique was tested using CloudSim on the NASA, HPC2N, and Synthetic datasets. For
makespan (MKS), it achieved performance of 34.30, 72.95, and 28.67, respectively. Regarding resource
utilization (RU), the corresponding values were 16.92, 28.72, and 25.58. Therefore, the simulated makespan
and resource usage of the proposed HGHHC algorithm were better than those of previous approaches. This
highlights the effectiveness of hybrid meta-heuristic algorithms in achieving a balance between exploration
and exploitation, preventing them from getting stuck in local optima.

INDEX TERMS Cloud computing, Harris hawks optimization, henry gas solubility optimization, task
scheduling.

I. INTRODUCTION

The wide adoption of the internet has led to noticeable
technological advancements in data processing and stor-
age in recent years. These advancements gave rise to the
present cloud computing concept [1], [2], [34], which has
revolutionized the way businesses and individuals manage,
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store, and process data. Cloud computing enables scalable,
cost-effective, and instant access to a common pool of config-
urable computer resources, significantly enhancing flexibility
and efficiency. This revolutionary platform allows users to
quickly and easily access global data virtually from anywhere
at any time. Nevertheless, one of the most pressing challenges
in cloud computing is the accurate and reliable assigning of
jobs to resources, a critical aspect for optimizing performance
and ensuring user satisfaction [3], [4], [35]. The capacity to
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efficiently and effectively meet all customer requirements is
also critical in terms of quality of service (QoS). An effi-
cient job scheduling method can therefore accomplish those
objectives in a given amount of time [5], [6]. Various studies
have examined different algorithms to potentially address
cloud scheduling for instance: heuristic and meta-heuristic
algorithms [7], [8].

It’s crucial to remember that while heuristic techniques are
a useful tool for job scheduling, they don’t always provide
the best solution. Consequently, meta-heuristic algorithms are
considered to be the best approach for handling complicated
problems because they are noticeably better than alternative
approaches. Instead of using exponential time, these tech-
niques can find roughly optimal solutions in a polynomial
amount of time [9], [10].

In order to overcome task scheduling obstacles, this
study presents a new hybrid meta-heuristic technique called
HGHHC, which is intended to maximize task scheduling in
cloud computing by decreasing makespan and improving the
efficiency of resource consumption. The proposed technique
improves the HGSO algorithm’s local search by utilizing
comprehensive opposition-based learning and Harris Hawks
optimization (HHO). Thus, the main goal of this research
was to provide an improved Henry gas solubility optimization
method for cloud scheduling. This paper contributes by:

o Propose a robust scheduling algorithm specifically

designed for heterogeneous cloud environments.

o Propose the Henry Gas- Harris Hawks- Comprehensive
Opposition Algorithm to tackle multi-objective opti-
mization problems, focusing on minimizing makespan
while maximizing resource utilization.

o To enrich the literature by presenting a new state-of-
the-art sequential hybrid algorithm for job scheduling in
cloud computing, offering a valuable reference point for
researchers and practitioners in the field.

« Introduce a dynamic scheduling framework that incor-
porates a rescheduling technique.

This work’s next sections are arranged as follows: A
thorough summary of important research on the subject is
provided in Section II: Related Works. Section III: describes
how to formulate the scheduling problem as an optimiza-
tion challenge. Section IV describes the proposed algorithm.
Section V: Experimental Environment: This section provides
a thorough evaluation and explanation of the data, as well as
a presentation of the experimental findings. The results and
analysis are reported in Section V1. Finally, Section VII is the
conclusion of our investigation, in which we make concluding
observations and recommend potential directions for future
research on this topic.

Il. RELATED WORK

The current literature has several issues that enable us
to create a novel work scheduling algorithm. Even with
cloud computing’s advances, effectively allocating resources
and scheduling work remain difficult jobs. Task scheduling
techniques used today in cloud computing environments
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often face limitations in terms of scalability, resource
utilization, and makespan optimization. Many traditional
algorithms struggle to maintain performance consistency
when workloads vary significantly in size, leading to
increased makespan and suboptimal resource allocation,
especially as the number of tasks increases. Furthermore,
some methods are prone to premature convergence, result-
ing in local optima and inefficient scheduling solutions.
These restrictions highlight the need for creative solutions
to deal with these issues and improve the efficiency of cloud
computing systems [11], [12].

To begin with the overview, we looked at a variety of
meta-heuristic approaches that aim to enhance efficiency by
balancing exploration and exploitation strategies. We inten-
sively examined work scheduling studies that employ meta-
heuristic algorithms in practice. For example, Fu et al. [13]
studied cloud scheduling operations and suggested a hybrid
approach that combines particle swarm optimization (PSO)
and genetic algorithms (GA). To broaden the search range
within the solution space, lowering the probability of the
algorithm converging prematurely to a local optimal solution.
The method not only decreases makespan but also enhances
the accuracy of convergence. The limitation of this method is
that it focuses on enhancing only a single objective.

Moreover, Srichandan et al., [14], proposed a hybrid strat-
egy, combining the best aspects of genetic algorithms and
bacterial foraging algorithms. The article’s key contribution
is that the scheduling algorithm minimizes the time required
to accomplish a task as well as the amount of energy used.
The findings show that the suggested algorithm outperforms
competing algorithms with regard to convergence, stability,
and solution diversity. The primary limitation of this study
is that introducing additional parameters may increase the
complexity of the algorithm and potentially impact its overall
performance.

Additionally, an improved discrete symbiotic organism
search technique combined with meta-heuristics was pre-
sented by Sa et al. to maximize job scheduling in cloud com-
puting. Their experiments, conducted using the CloudSim
simulator, demonstrated that the proposed approach per-
formed significantly better than the benchmark technique,
particularly in large search spaces, with improvements in
makespan and response time. However, the method often
encountered local optima due to the high values of makespan
and response time [26]. Similarly, Singh et al. developed the
crow—penguin optimizer [27], a multi-objective approach that
optimizes QoS while reducing load and makespan. Despite
its benefits, the approach required substantial resources when
handling small-sized tasks.

The study of K. Vinoth et al. proposed an optimization
strategy aimed at enhancing the efficiency of data centers
through effective load balancing. Their approach focuses
on distributing workloads evenly across available resources.
The method is designed to maintain optimal performance
levels, minimize response time, and maximize resource uti-
lization under different operational conditions. This strategy
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is particularly significant for data centers that handle diverse
types of workloads, providing a robust solution that adapts to
fluctuations and ensures system stability. However, a noted
limitation of their approach is the limited discussion on the
algorithm’s adaptability and resilience [28].

In the same context, Mangalampalli et al. designed a
multi-objective, trust-aware scheduler that prioritizes tasks
and virtual machines (VMs) to minimize makespan and
energy usage while assigning tasks to the proper virtual
resources. To model the job scheduler, the Whale Optimiza-
tion Algorithm (WOA) was employed and the entire sim-
ulation was conducted using CloudSim. Simulation results
demonstrated significant improvements in makespan, energy
consumption, and total runtime. However, the limitation of
their approach is that its performance still requires further
improvement [29].

Abd Flaziz and Attiya introduced the HGSWC strategy,
combining the Whale Optimization Algorithm (WOA),
Henry Gas Solubility Optimization (HGSO), and Compre-
hensive Opposition-Based Learning (COBL) to optimize
task scheduling [15]. Their evaluation showed that HGSWC
outperformed benchmark algorithms in makespan (MKS)
performance. However, the algorithm’s convergence required
further refinement, leaving room for improvement in
makespan optimization. Building on the insights from these
studies, to address the challenges of cloud task scheduling,
this research introduces a novel HGHHC algorithm. This
approach integrates COBL, HHO, and HGSO operators to
optimize performance. Table 1 provides a summary of more
related studies.

Ill. PROBLEM FORMULATION

Our empirical findings emphasize the significant issue of
cloud scheduling, which involves efficiently distributing
numerous tasks across available computing resources to
achieve optimization objectives [12]. The cloud system (CS)
is modeled as a collection of N, physical machines (PMs),
each hosting a set of virtual machines VMs. A set of N tasks
must be assigned to these VMs, considering the estimated
execution time (ETC) matrix, which provides the estimated
execution time of each task on each VM. Examine a task
that has the index L = 1, 2, 3,..., N, where N is the total
number of tasks that have been allocated to virtual machines.
The ETC matrix for N jobs and VM virtual machines can be
found using the following formula.

ETC;1 ETCi» ETC{ vms
ETCU _ ETCQ, 1 ETCQ,Z ETC2,VMS (1)
ETCn,; ETCn2 . ETCn,vMs

where the anticipated time Et for L job on the jth VM is

represented by the element ETC;, which has the following
definition:

_ T_lenl;

Y MIPS;

@
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TABLE 1. Summary of related papers.

Sq  Techniques Merits Demerits

31 Executingthe  Execution  Large solution
Firefly and time space in Genetic
Genetic algorithm
algorithms in
sequence.

32 HHO Enhanced: =~ With only 500
optimizes task ~ Makespan  tasks
allocation by response considered, the
balancing VM time, results indicate
workloads and  computatio  significant room
reducing n time, for further
response times  cost, load.  improvement
using a PIO-
based
approach
Enhanced Enhanced: It still becomes

27 discrete makespan  trapped in local
symbiotic response optima
organisms time
search
(eDSOS)

33 Elite Minimizin ~ PIR need more
opposition- g the improvements
based duration of
learning+ the
Harris hawks schedule,

minimizing
the cost of
execution,
and
optimizing
the use of
resources.

6  Catswarm Makespan  Deal with small
optimization number of users,
and tabu data size, single
search objective

34 The whale Minimizes  Performance
optimization the task needs to
algorithm is completion increase
enhanced by time and
utilizing the also
mutation execution
operator of the  time.
bees
algorithm.

35 Genetic and Makespan, Incorporating
thermodynami  schedule principles from
¢ simulated length thermodynamics
annealing ratio, and information

speedup, theory can
and improve the
efficiency  current solution

by a balance
between global
and local search.
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where MIPSj stands for the jth virtual machine’s processing
power.

The total amount of time needed to finish every task across
all of the virtual machines (VMs) that are accessible is known
as the makespan. It is effectively the maximum completion
time for every VM in the system. Equation (3) provides the
formula for makespan, which is:

MKS= max > ETCi 3)
jel,2,vms i=1
Resource utilization measures how effectively the cloud
environment’s resources (VMSs) are used over the period of
time it takes to complete all tasks (i.e., the makespan). It is
calculated using equation (4):

>N Tvmi

Resource Utilization =
makespan * N

4)

Tvmi denotes the time required by VMi to complete
all assigned tasks, where N represents the total number of
resources [11], [16]. Accordingly, the objective is to minimize
makespan (MKS) while maximizing resource utilization. The
fitness function is defined as follows:

Fv = Min MKS & Fv = max RU @)

IV. THE SUGGESTED ALGORITHM

The proposed HGHHC algorithm effectively leveraged the
features of the Harris Hawks Optimization (HHO) algorithm
to address task scheduling limitations. By functioning as local
operators, the HHO components enhanced the performance
of the HGSO algorithm. This approach successfully miti-
gates the limitations of individual meta-heuristic methods.
The HHO algorithm was selected due to its four exploita-
tion strategies, which enhance the algorithm’s flexibility and
effectiveness by providing a balanced approach to exploration
and exploitation.

Moreover, HGSO was selected, because of its powerful
exploring abilities. The algorithm is kept out of local optima
by combining the robust exploration of HGSO with the bal-
anced exploration and exploitation of HHO. This synergy
results in a superior algorithm capable of thoroughly explor-
ing the solution space, a critical factor for achieving the
objectives of our study.

The proposed HGHHC algorithm begins with generating
an initial set of N integer solutions X, sized n to match the
number of tasks, with values in the range [1, vims], where vms
represents the number of virtual machines. Each solution’s
fitness value is evaluated using Equation (5), and the best
solution, Xb, is identified. HGSO and HHO operators are
applied to update solutions based on fitness probabilities,
with COBL enhancing the least effective ones. This itera-
tive process continues until termination criteria are met. The
algorithm’s pseudo-code and structure are detailed in the
following sections and illustrated in Fig. 1.
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A. FIRST STAGE

The suggested HGHHC algorithm produces solutions repre-
sented by Xi, where i = 1, 2, 3,...N. This stage is referred
to as the representation stage, the solutions are represented
mathematically as follows

Xij = floor((LBij + « % (UBij — LBij)) ,«a € [0, 1],
Xij=1,2,.,vm (6)

According to the task scheduling requirements, the lower
bound (LB) is set to 1, while the upper bound (UB) is set
according to the number of virtual machines (VMs) available,
as indicated in equation (6). In this context, the algorithm
employs the floor function to convert real-valued solutions
into integer values. This ensures that each Xi is appropriately
discretized, aligning with the scheduling constraints and VM
assignments required for the cloud computing environment.
This integer conversion process is crucial for obtaining fea-
sible task assignments and maintaining the integrity of the
scheduling solution.

B. SECOND STAGE

During the update phase, (Fv) is computed for each candidate
solution X, providing a measure of its quality and suitability
for the optimization process. Based on these fitness values,
the best solution, denoted as Xb, is identified as the optimal
solution. The algorithm then measures the probability (Pri)
of each solution according to its fitness value, as shown in
equation (7).

Depending on the probability (Pri) value, the algorithm
updates Xi utilizing the Henry Gas Solubility Optimization
or Harris Hawks Optimization operators, as described in
equation (8). The choice of the operator is influenced by a
random value r,, that is generated within the range [1, 0].
This random value r, is adjusted based on the probability
(Pri) as shown in equation (9). Here, Upr Upr and Lpr rep-
resent the upper and lower bounds of the probability values,
respectively.

The next step is to determine which solutions are the worst,
represented by Nw, based on their fitness values, as indicated
in equation (10). This process helps in refining the solution
set by focusing on improving the least favorable solutions
through further updates.

Fvi

Pri = —ngzl o @)
XI(s+1)
_ [ USING OPERATORS OF HHO IF PRI >r,, ]
~ | USING OPERATORS OF HGSO IF PRI <r,
®
rpr = Lpr + rnd x (Upr — Lpr) O]
Nw=N xr x(c;—cy1)+cici1=0.1and c; = 0.2
(10)
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C. THIRD STAGE

Subsequently, we applied a technique called comprehen-
sive opposition-based learning (COBL), which makes the
algorithm converge on a global solution. The core principle
of COBL is to move a solution toward its opposite. We used
a tactic as in [17]. Out of the current solutions X and their
opposites X, the best ones were chosen. If the termination
criteria were met, the HGHHC algorithm stopped, returning
Xb; otherwise, the update process was repeated.

Input value of parameters of
HGHHC

Set a random integer population

Compute objective functions

Find the best solution X,

Compute the probabilit}' Priand 1,

Update Update Xi
Xi using using
operators = operators
of HGSO of HHO

N

Determine the worst solution

Update the worst solution by COBL

i
Return the best solution

FIGURE 1. The structure of the suggested HGHHC algorithm.
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Proposed HGHHC Algorithm pseudo code

1. Assign initial values to the variables of the HGHHC
2. Generate an initial population of N random solutions, each
consisting of n elements.
3. For each iteration:
4. Calculate the fitness value of each solution using Equation (5).
5. Determine the solution with the highest fitness value as the best
solution (Xb).
6. For each solution:
7. Calculate the probability of exploitation or exploration using
Equations (7) and (9).
8. If Pri >rp,then
Update the solution using the exploration phase of HGSO
algorithm pseudo code in [25]).
9. Otherwise:
Update the solution using the exploitation phase of HHO
(algorithm pseudo code in [24])
10. Identify the solution with the lowest fitness value as the worst
solution.
11. Update the worst solution using (COBL).
12. Increment the iteration counter (s).
13. Repeat the iterative optimization process until the maximum
number of iterations (s_max) is reached.
14. Return the best solution (Xb) found during the optimization
process.

V. EXPERIMENTAL SETTING

This section details the experimental setup, datasets, the tool
used for simulation, and the performance metric employed
in this study. We utilized the CloudSim toolkit as our sim-
ulation environment. To evaluate the performance of the
suggested HGHHC algorithm, we conducted experiments
using real-world datasets from HPC2N, NASA, and Synthetic
sources. These tasks were assumed to be independent and
non-preemptive.

We selected these datasets because they represent a diverse
set of real-world and controlled scenarios frequently used in
cloud computing research. These datasets are well-known
and widely accepted benchmarks that provide authentic
and complex workload patterns, allowing us to evaluate
the performance of our proposed algorithm under realistic
conditions. Moreover, these datasets ensure that our results
are comparable with other studies in the field. Additionally,
the synthetic dataset allows us to test the algorithm under
controlled and customized conditions, ensuring a com-
prehensive evaluation of its performance in a variety of
scenarios.

Each experiment was repeated 30 times to improve the
reliability of the results. Furthermore, the performance
metrics, including makespan and resource utilization, are
discussed in Section III, while PIR is presented next as
follows:

The Performance Improvement Rate (PIR) serves as a
quantitative measure to evaluate how effectively a proposed
methodology surpasses the performance of existing schedul-
ing techniques from prior studies [2]. The PIR is expressed
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mathematically as follows:

Zd —7d'
—_— X

PIR = 100 (11)

where Zd' represents the fitness value of the proposed
algorithm, and Zd denotes the fitness value of the algorithm
used for comparison [15], [17].

The parameters for the suggested algorithm and the bench-
mark algorithm that were looked at in this study are listed in
Table 2. These HGSWC and HGHHC values were selected
based on earlier research [1], [10].

During the implementation phase, HGHHC variables were
used, modifications were made, and outcomes were observed.
The parameters used in the suggested algorithm were selected
in light of previous studies as well as the results obtained.

TABLE 2. Setting parameters.

Algorithm HGSWC HGHHC
Parameter a=2,b=1 a=
,I=5E2,0=1,p=1 b=
I=5E-2

VI. RESULTS AND DISCUSSION

This subsection provides an in-depth performance evaluation
and analysis of the proposed HGHHC algorithm, shedding
light on its effectiveness in optimizing two critical metrics:
makespan (MKS) and resource utilization (RU). The evalua-
tion process involves a comparative analysis with the existing

MKS HPC2N
100000
()
50000 A / \
(%]
% /N
S 0 O A\
500 1000 1500 2000 2500
=@ HGSWC HGHHC dataset sizes

FIGURE 2. Makespan for HPC2N dataset.

MKS NASA
10000
5000
<
S .-__.—__.___-—‘/‘
0

500 1000 1500 2000 2500
HGSWC ==@==HGHHC dataset sizes

FIGURE 3. Makespan for NASA dataset.
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MKS-SYN
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FIGURE 4. Makespan for synthetic dataset.

1 RU HPC2N
05 .<'<:>4=
)
o
0
500 1000 1500 2000 2500
—¢—HGSWC  =——HGHHC dataset sizes

FIGURE 5. Resource utilization for HPC2N dataset.

RU NASA
1
0.5 m
2
(-4
0
500 1000 1500 2000 2500

—4—HGSWC —fl—HGHHC dataset sizes

FIGURE 6. Resource utilization for NASA dataset.

RU-SYN
1
0.5
o) |
x
0
200 400 600 800 1000
HGHHC —8—HGSWC dataset sizes

FIGURE 7. Resource utilization for synthetic dataset.

HGSWC algorithm across three distinct datasets, each vary-
ing in size from 500 to 2500 tasks. By employing these
datasets, we aim to simulate real-world scenarios of varying
workload intensities, ensuring a comprehensive assessment
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TABLE 3. Best Makespan values for HPC2N dataset.

HPC2N  HGSWC HGHHC
Data size Min Max Avg. Min Max Avg.
500 6862.57 37698.64 13393.3 2026.071 31894.79 12168.99
1000 20324.27 118289.6 33810.24 5549.968 134387.4 38968.37
1500 37162.76  242464.74 82793.59 8686.952 154059.7 63774.3
2000 57072.06  307797.47 104621.7 39924.88 282161.4 100551.1
2500 81222.63  312714.96 157309.5 76935.63 514296.8 169172.4
TABLE 4. Best Makespan values for NASA dataset.
NASA  HGSWC HGHHC
Datasize ~ Min Max Avg. Min Max Avg.
500 339.5474 2350.236 831.0919133 122.0654 2791.1962 817.3676
1000 1456.596 8565.5688 2968.246471 421.4686 21234.9064 3746.177
1500 3251.124 22489.0262 6954.940207 789.9224 17646.171 6522.258
2000 4569.086 42701.1808 12588.84279 1511.7588 53108.2214 12926.22
2500 9102.564 59202.3444 19898.75494 2216.9566 63527.3898 17924.37
TABLE 5. Best Makespan values for synthetic dataset.
Synthetic HGSWC HGHHC
Data size Min Max Min Max Avg.
200 119.72 784.77 254.06 15.77 93.49 63.53
400 190.64 976.31 355.17 90.56 163.76 115.92
600 237.51 2030.51 625.24 81.74 195.59 159.98
800 389.71 2409.95 836.14 171.19 246.51 209.78
1000 445.25 2400.94 795.09 199.24 349.45 249.47
TABLE 6. Best resource utilization values for HPC2N dataset.
HPC2N HGSWC HGHHC
Data size Min Max Avg. Min Max Avg.
500 0.0711222 0.559934 0.23554 0.07864879 0.5555791 0.24678
1000 0.0768226 0.516571 0.26907 0.06980096 0.5742237 0.24601
1500 0.0645975 0.384578 0.19591 0.08236688 0.6845993 0.25344
2000 0.0684602 0.419005 0.24389 0.07687434 0.4336975 0.22606
2500 0.093425 0.424741 0.21587 0.06671982 0.5261247 0.21653

of the algorithm’s scalability and robustness. The compara-
tive study offers valuable insights into the capabilities and
improvements of the proposed algorithm over the current one.

In our analysis, Fig. 2, 3, and 4 show the best val-
ues for MKS for the three datasets. Moreover, Fig. 5, 6,
and 7 show the best values for resource utilization. Further-
more, Tables 3, 5, and 4 compare the proposed algorithm
to the benchmark algorithm’s optimal makespan settings,
while Tables 6, 7, and 8 present the RU values. The per-
centage improvements in makespan (MKS) achieved by the
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HGHHC algorithm, as shown in Table 9, demonstrate its
effectiveness and efficiency compared to benchmark schedul-
ing alternatives across different datasets. Specifically, the
algorithm achieved a 34.30% improvement for the HPC2N
dataset, a 72.95% improvement for the NASA dataset, and
a 28.67% improvement for the synthetic dataset. In addi-
tion, the percentage improvements in resource utilization
(RU) presented in Table 10 highlight the efficiency of the
HGHHC algorithm compared to benchmark scheduling alter-
natives across various datasets. Specifically, the algorithm
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TABLE 7. Best resource utilization values for NASA dataset.

NASA HGSWC HGHHC
Data size Min Max Avg. Min Max Avg.
500 0.06408 0.41902 0.205348 0.049599 0.507309 0.204935
1000 0.068164 0.369908 0.212549 0.04 0.656088 0.276226
1500 0.063679 0.452291 0.22442 0.073859 0.706581 0.242423
2000 0.061362 0.704608 0.253378 0.041399 0.712399 0.229277
2500 0.061661 0.376573 0.209399 0.061615 0.675851 0.246432
TABLE 8. Best resource utilization values for synthetic dataset.
Synthetic HGSWC HGHHC
Data size Min Max Avg. Min Max Avg.
500 0.064997 0.263351 0.169812 0.346936 0.644392 0.493882
400 0.052664 0.446511 0.221126 0.174089 0.764089 0.561384
600 0.05966 0.364819 0.198572 0.526576 0.740835 0.637375
800 0.066513 0.378825 0.199576 0.540619 0.809501 0.653232
1000 0.06472 0.419596 0.210318 0.555204 0.796007 0.68528

TABLE 9. Variation of PIR% based on makespan.

Total average

Total average PIR% improvement

DATASETS mal;le(s}p}aluflI ésec) mal;le(s}psa\r;] E:sec) over HGSWC
HPC2N 26624.7 40528.85 34.30
NASA 1012.43 3743.78 72.95
SYNTHETIC 197.24 276.56 28.67
TABLE 10. Variation of PIR% based on RU.
DATASETS Total average RU (sec)  Total average RU  PIR% improvement
HGHHC (sec) HGSWC over HGSWC
HPC2N 0.5548 0.4610 16.92
NASA 0.6516 0.4645 28.72
SYNTHETIC 0.5034 0.3746 25.58

achieved improvements of 16.92% for the HPC2N dataset,
28.72% for the NASA dataset, and 25.58% for the syn-
thetic dataset. These results collectively indicate that the
HGHHC algorithm provides substantial improvements in
both objectives across a diverse range of datasets, showcas-
ing its versatility, scalability, and overall efficiency in cloud
environments.

Additionally, we utilized p-values, as detailed in Table 11,
based on studies [20], [21], [22], alongside the minimum
and maximum values referenced from [15], [18], and [23].
The exceptional performance of the HGHHC algorithm is
primarily attributed to its effective balance of exploration and
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exploitation, which are essential for achieving a balanced and
optimized task scheduling process.

The exploration capability allows the algorithm to thor-
oughly search the solution space and discover diverse task
allocation possibilities, reducing the risk of getting trapped
in local optima. This ensures that the HGHHC algorithm
explores a wider range of potential solutions, leading to
more effective resource utilization and scheduling outcomes.
Simultaneously, the exploitation capability refines these solu-
tions by focusing on the most promising regions in the
solution space, ensuring the algorithm hones in on the optimal
configurations efficiently.
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TABLE 11. Detail of t-test for MKS.

Description P- Value
If p-value < 0.05, H_O reject. This suggests a statistically significant
difference between the two algorithms. <. 01

Conversely, If p-value > 0.05, H_0, fail to reject.

Our null hypothesis, H 0, is thus rejected.

In summary, the HGHHC algorithm demonstrates superior
performance compared to existing algorithms. Which means
providing balanced exploitation and exploration to avoid the
trapping in local optima.

VII. CONCLUSION AND FUTURE PROSPECTS
This paper introduces the HGHHC method as a novel opti-
mization approach aimed at enhancing the efficiency of a
recently meta-heuristic algorithms [15]. The integration of
HHO as a local search mechanism improves the exploitation
capabilities of HGSO, resulting in superior solution quality.
The COBL technique was also used for the worst solutions,
which efficiently assigned jobs to the cloud’s resources. This
algorithm hybridization effectively combines exploitation
and exploration abilities. Given that the simulated HGSWC
algorithm confirmed the proposed HGHHC algorithm, it out-
performed the benchmark algorithm across all test functions.
Consequently, the suggested HGHHC algorithm consis-
tently showed a lower Makespan (MKS) and a higher
Resource Utilization (RU) under all test scenarios, proving its
optimality. The probability of convergence to local optima is
significantly decreased by this balance between exploration
and exploitation capabilities. As the number of tasks rises
and data environments get more complicated, future research
is crucial. Applying the method to more domains, including
edge cloud and green cloud. Additionally, further exploration
could focus on hybridizing the current algorithm with other
meta-heuristic techniques specifically tailored for real-time
and dynamic task scheduling in distributed networks.
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