

INTERNATIONAL CONFERENCE ON HYBRID IMAGING

IPET 2024

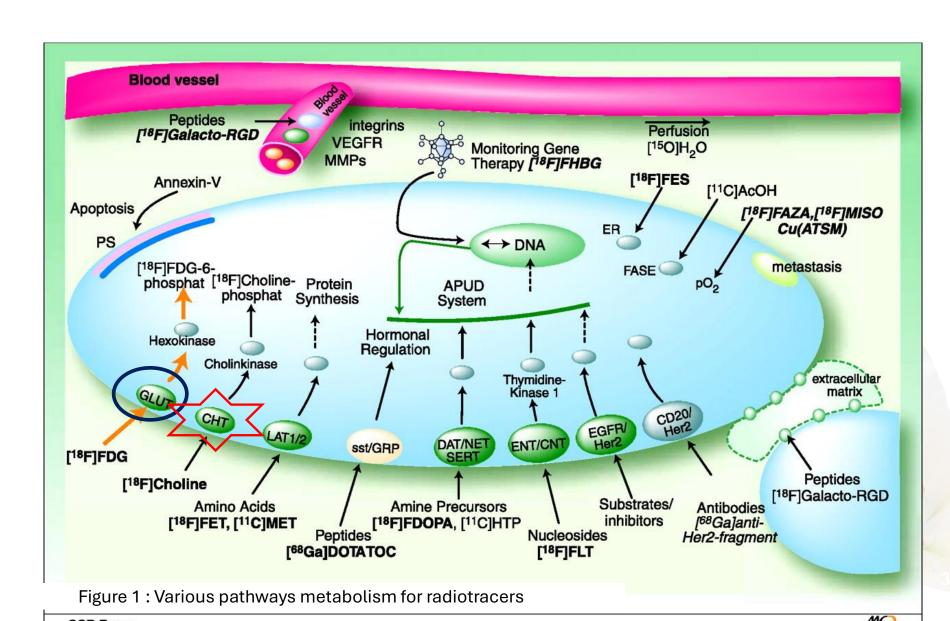
MOHD HAZEMAN ZAKARIA – PRESENTER

FATHINUL FIKRI AHMAD SAAD

SHAHRUN NIZA ABDULLAH SUHAIMI

FACULTY OF MEDICINE & HEALTH SCIENCES, UNIVERSITI PUTRA MALAYSIA, MALAYSIA

FACULTY OF MEDICINE, UNIVERSITI KEBANGSAAN MALAYSIA, MALAYSIA

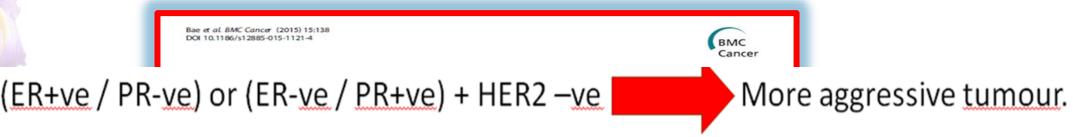

INTRODUCTION

- Breast cancer cases are increasing throughout the year.
- There are many radiotracers that available that used in PET / CT to ascertain the tumour landscapes of breast cancer.
- The use of FDG PET-CT marker becoming commonly used molecular imaging technique leads to poor diagnostic issues. The use of ¹⁸F-FDG PET-CT is insensitive to detect malignant breast cancer types such as lobular carcinoma and detect the small volume lesion which low uptake of ¹⁸F-FDG on PET/CT image.
- There were few studies which have looked into the role of 18FCH and breast cancer.
- The study of expression of choline tracer strategy is for staging and therapeutic response in breast cancer will give potential role in oncological imaging.

Literature Review

Signalling process that change the cellular landscape..

WHY WE USE 18-FCHOLINE???


- Small volume sampling of FDG-negative malignancy.
- Lack of glutathione gene transporter in Global cell carcinoma (breast).
- Better noise-background ratio compared to FDG.

Tumour	FCH role	SUVmax	Published study		
Breast cancer	Predictor for tumour aggressiveness	1.07-1.97	Damita et al. (2011)		
Hepatocellular carcinoma	Predictor for recurrent tumour	0.94-2.1	Kwee S et al. (2007)		
Prostate cancer	Predictor for malignancy	1.7-6.2	Tindall D et al. (2014)		

Table 1: FCH SUV max uptake variation in different cancers types which relatively low

POTENTIAL NEW TRACER 18 F-Flurocholine PET-CT

triple-negative breast cancer

Soo Youn Bae, Sangmin Kim, Jun Ho Lee, Hyun-chul Lee, Se Kyung Lee, Won Ho Kil, Seok Won Kim, Jeong Eon Lee and Seok Jin Nam*

The Journal of Nuclear Medicine is p SNMMI | Society of Nuclear Medicine and Molecular Imaging 1850 Samuel Morse Drive, Reston, VA 20190. (Print ISSN: 0161-5505, Online ISSN: 2159-662X)

© Copyright 2001 SNMMI; all rights reserved.

S N M SOCIETY NUCLEA AND M

Synthesis and Evaluation of ¹⁸F-Labeled Choling Analogs as Oncologic PET Tracers

Timothy R. DeGrado, Steven W. Baldwin, Shuyan Wang, Matthew D. Orr, Ray P. Liao, Henry S. Friedman, Robert Reiman, David T. Price, and R. Edward Coleman

The preliminary imaging studies show excellent imaging feasibility of FCH in brain tumor, prostate cancer, and breast cancer Clearly, further clinical studies on a larger Breast Cancer I: Horizons in Breast Cancer Imaging

(Supplement 1):249

cal Diagnosis: Breast Cancer

Pilot study of 18F-fluorocholine uptake in normal and malignant breast tissue

Damita Thomas¹, Marc Coel¹, John Lim¹ and Sandi Kwee¹

¹ Hamamatsu/Queen's PET Imaging Center, The Queen's Medical Center, Honolulu, HI

Conclusions: Although biopsy-confirmed breast cancers demonstrated a significant range of FCH uptake, detection was feasible due to relatively to low uptake in the surrounding breast tissue of both pre- and post- menopausal patients. To adequately evaluate relationships between FCH uptake and prognostic markers further investigation using a larger patient sample is needed

New and novel radiotracer in PET / CT for breast cancer

Tracer	Target mechanism	Applications	References
18F-fluorothymidine	Thymidine analog	Tumor proliferation imaging	(101, 102)
18F-FMISO	Hypoxic cells	Tumor hypoxia imaging	(6)
68Ga-NOTA-RM26	Targeting GRPR	ER+ tumor detection of proliferation phase patient	(103)
68Ga-BBN-RGD	Targeting GRPR and integrin ανβ3	Primary tumor and metastases detection, especially ER+ tumor	(104)
68Ga-NOTA-RGD	Targeting integrin ανβ3	Angiogenesis imaging, recurrence prediction and prognosis prediction	(105)
18F-Fluciclovine	Leucine analog	Primary tumor and metastases detection, NAC response prediction	(106-109)
68Ga-PSMA	Targeting tumor-specific antigen	TNBC and ASRC detection	(110-112)
18F-Fluorocholine	Cell membrane component	Primary tumor and metastases detection	(113, 114)
58Ga-NOZAP-BP	Macrocyclic chelator	Skeletal metastases detection	(115)
89Zr-trastuzumab	Targeting HER2	HER2+ tumor detection	(116)
64Cu-DOTA-trastuzumab	Targeting HER2	HER2+ primary tumor and metastases detection	(117, 118)
89Zr-Pertuzumab	Targeting HER2	HER2+ primary tumor and metastases detection	(119)
68Ga-ABY-025	Targeting HER2	HER2+ tumor detection	(120)
18F-FES	Targeting ER	ER+ tumor, endocrine therapy monitoring and prognosis prediction	(121-123)
68Ga-DOTATATE	Targeting somatostatin receptor	Exclusion of fibroadenoma	(124)

Table 2 : New and novel radiotracer in PET / CT for breast cancer Source: Progress and Future Trends in PET/CT and PET/MRI Molecular Imaging Approaches for Breast Cancer by Yue Miming et al in 2020.

METHODOLOGY

Recruit 21 patients with new breast lump / MMG BIRADS 4 or 5 and metastasis cancer recurrence along with histology marker of Estorogen, Progestrerone, HER2 and biopsy result from endocrinology clinic PPUKM

Pusat Pengimejan Diagnostik Nuklear, PPDN

18F-Flurocholine PET CT

1 week later

18F-FDGPET CT

Collect data and review PET images

Standard Uptake Value - Tumor, LN, Metastasis

- lesion with higher inherent metabolic activity than the mediastinal pool on PET CT determined as positive finding

Follow up at 6 months using QOL

Follow up at 24 months using QOL

Quality Of Life Data

- The patients will follow up at 6 months and 24 months.
- It later incorporated into for QOL domains Global Health Status (GHS), Physical function (PF), Role Function (RF) and Social function (SF) according to the EORTC quality of life questionnaire (QLQ) which is is an integrated system for assessing the healthrelated quality of life (QoL) of cancer.

Reference: based on European Organisation for Research and Treatment of Cancer (EORTC)

* Use of the SF-36®, SF36v2®, SF-12® and SF-12v2® Questionaires which are trademarks of Medical Outcome Trust and are used under license. The SF-25v2®Heal is copyrighted by Quality Metric Incorporated. The patient was facilitated to answer the questionaires through interview.

Scoring system:

The patients are categorised into satisfactory and unsatisfactory based by marks by the
questionnaires. The score is from 1 to 5 indicating from bad to good score. Overall, the patient will
determine where they have satisfactory which score 0 and satisfactory which score 1.

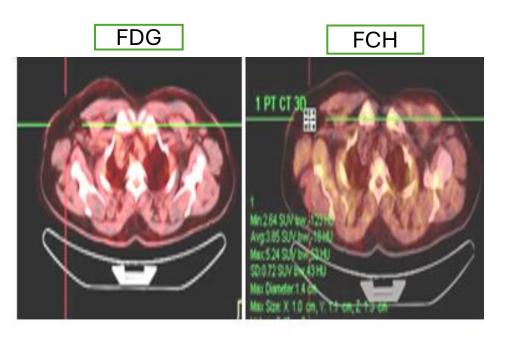
RESULTS

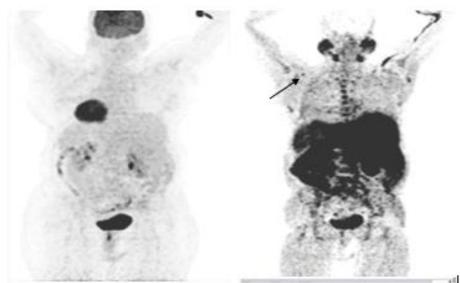
- There is a high sensitivity and specificity of 18-FCHPET/CT in both breast lesions with 40% and 68.8% compared to 18-FDGPET/CT with 33.3% and 66.7%.
- Besides that, lymph nodes and metastasis distant 18-FDGPET/CT showed high sensitivity and specificity compared to 18-FCHPET/CT.

Imaging	Primary tum	our	PPV	NPV	Lymph node		PPV	NPV Metastasis		PPV	NPV	
	Sensitivity	Specificity			Sensitivity	Specificity			Sensitivity	Specificity		
FDG	33.3%	66.7%	33.3	50.3	66.7%	83.3%	40	50	42.9%	92.9%	23.1	50
FCH	40%	68.8%	36.8	50.0	44.5%	70%	31.8	50	27.3%	90%	15.2	50

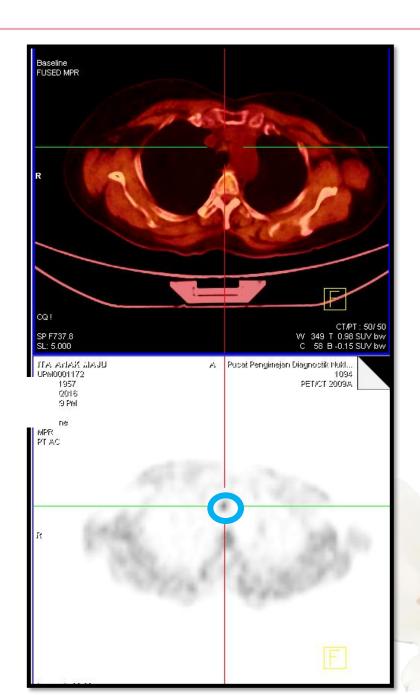
PPV: Positive Predictive Value NPV: Negative Predictive Value

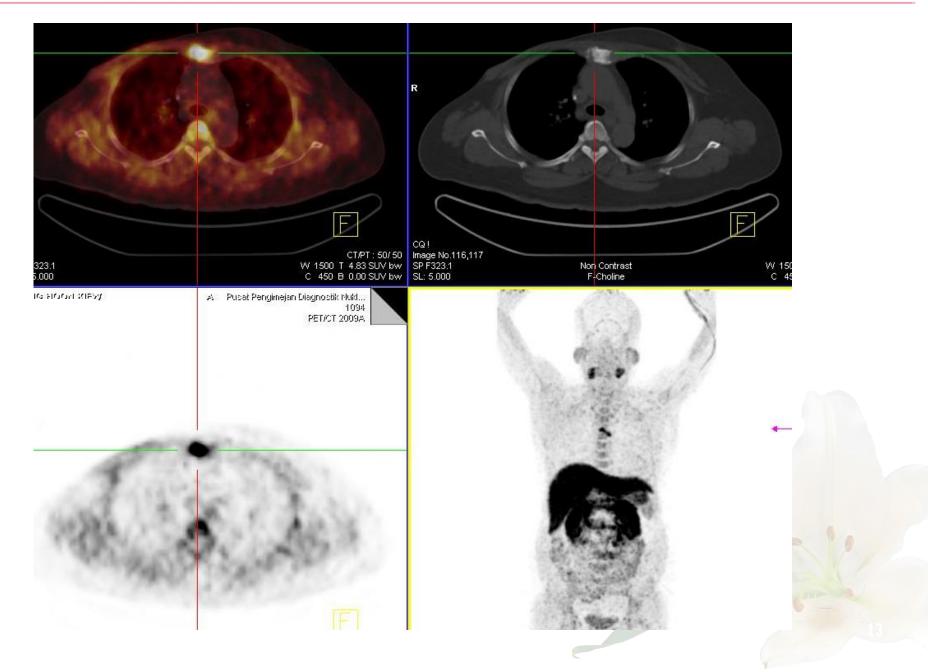
Table 3: The Sensitivity and Specificity of 18-FCH/PETCT Compared to 18F-FDG in Both Breast Lesions, Lymph Node and Metastasis Distant




PET/CT mean±SD	Local right breast	р	Local left breast	р	Lymph node	р	Metastasis	p
FDG	1.92±0.97	0.15	1.78±0.99	0.26	1.53±1.7	0.32	1.74±2.32	0.004
FCH	1.34±1.01		0.97±0.81		1.28±1.90		2.27±3.19	

• There is significant different in distant metastasis on mean of 18F-FCH - 2.27±3.19 Vs 18F-FDG 1.74±2.32, p=0.004.




Positive Node in 18-FCH in breast cancer.

Bone Metastasis

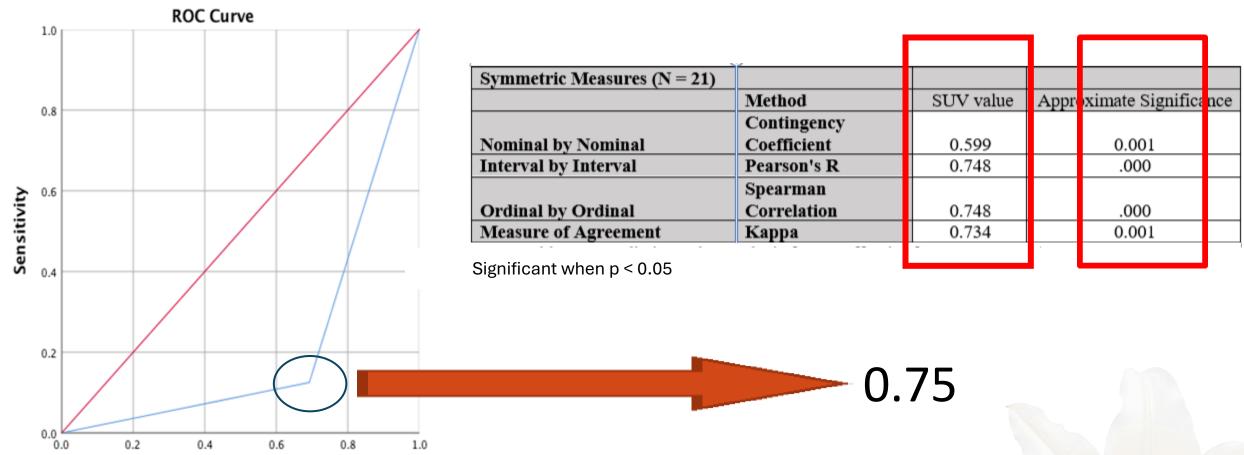
RESULT

N	Age	Age BMI	Birads	Biopsy	Histolo	gy	
					EK	PK	nek2
1	56	27.69	4.00	IDC	+	+	+
2	59	24.06	4.00	IDC	+	+	-
3	55	25.11	4.00	benign	-	-	+
4	73	24.84	4.00	IDC	+	+	-
5	46	23.91	4.00	IDC	+	+	-
6	60	23.38	4.00	IDC	+	+	+
7	48	20.25	4.00	benign	-	-	-
8	47	25.68	4.00	IDC	+	+	+
9	48	33.95	4.00	IDC	+	+	+
10	62	32.37	5.00	IDC	+	+	-
11	53	20.08	4.00	IDC	+	+	-
12	64	30.36	4.00	IDC	+	+	-
13	69	28.62	4.00	benign	-	-	-
14	40	20.28	4.00	IDC	+	+	+
15	36	29.62	4.00	IDC	+	+	-
16	41	28.23	4.00	IDC	+	+	+
17	41	31.24	4.00	IDC	+	+	-
18	57	37.78	4.00	IDC	-	-	+
19	80	30.73	4.00	IDC	-	-	+
20	69	20.43	4.00	IDC	-	-	+
21	40	23.51	4.00	IDC	-	-	-

There was a significant different between 18-FCH SUVmax of the HER2-ve and the HER2+ve (1.99±1.52g/dl vs 0.2±0.22g/dl; p<0.05).

Bae et al. BMC Cancer (2015) 15:138 DOI 10.1186/s12885-015-1121-4

RESEARCH ARTICLE


Open Access

Poor prognosis of single hormone receptorpositive breast cancer: similar outcome as triple-negative breast cancer

Soo Youn Bae, Sangmin Kim, Jun Ho Lee, Hyun-chul Lee, Se Kyung Lee, Won Ho Kil, Seok Won Kim, Jeong Eon Lee and Seok Jin Nam*

Diagonal segments are produced by ties.

1 - Specificity

0.4

0.6

0.8

1.0

The cut off value for 18-FCHPET/CT in determining the breast cancer aggressiveness when the SUV more than 0.75

0.2

RESULT

- High SUVmax 18-FCH PET/CT for the malignant histological subtype is at the cut-off value of 0.75 (p<0.05, specificity = 0.43) which indicate the more aggressive the tumour.
- The value of SUVmax 18-FCH PET/CT > 0.75 MORE AGGRESSIVE TUMOUR

Tumour	FCH role	SUVmax	Published study		
Breast cancer	Predictor for tumour aggressiveness	1.07-1.97	Damita et al. (2011)		
Hepatocellular carcinoma	Predictor for recurrent tumour	0.94-2.1	Kwee S et al. (2007)		
Prostate cancer	Predictor for malignancy	1.7-6.2	Tindall D et al. (2014)		

To determine the association of 18-FCHPET with Quality of Life (QOL) in patient with aggressive breast cancer phenotype.

A 6 months

QOL Scores	GHS	PF	RF	SF
FCH (High Vs Low)	1.667	8.067	3.267	5.4
Asymp. Sig.	0.197	0.005	0.71	0.02

Significant when p<0.05

GHS: Global Health Status,

PF : Physical Function,

RF: Role Function

SF : Social Function

The score 1-5: Poor - Good)

Based on questionnaires in Appendix C

We follow up patients 6 months, there is association significant association of categorized predict SUV (>0.75) with QOL domains (physical and social domains).

RESULT

A 24 months

QOL Scores	GHS	PF	RF	SF
FCH (High Vs Low)	0.67	1.00	0.67	1.00
Asymp. Sig.	0.796	1.00	0.796	1.00

Significant when p<0.05

GHS: Global Health Status

PF: Physical Function,

RF: Role Function SF: Social Function

The score 1-5: Poor - Good)

Based on questionnaires in Appendix C

In contrast, there no association significant of categorized predict SUV ((>0.75) with QOL scores domains at 24 months.

We conclude that the predict cut off SUV of > 0.75 is very potent predictive marker for determine breast cancer aggressiveness. This surrogate marker is very potent in determine the association with the QOL domains particularly at 6 months.

CONCLUSION

- Utility of 18-FCH PET/CT is a potential predictive marker (dual tracer-complementary to FDG) in determining breast cancer aggressiveness in view of the lipid metabolism signalling pathway (better N:B ratio, high specificity metastasis in our cohort and non-Glut-1 cancer landscape)
- •The value of SUVmax 18-FCH PET/CT is associated with more aggressive breast cancer when the value predictive 0.75.
 - Use to determine the QOL of breast cancer patient in 6 months time post imaging.
- Hence, the 18-FCH PET/CT is potential surrogate marker to determine the breast cancer aggressiveness and QOL of breast cancer patients.

TERIMA KASIH/THANK YOU

www.upm.edu.my

BERILMU BERBAKT I

INTERNATIONAL CONFERENCE ON HYBRID IMAGING

IPET 2024

Thank you!