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A B S T R A C T

Water level forecasting plays a vital role in environmental protection and flood management because reliable 
predictions allow for the deployment of early warning systems to alert the public to minimize the impacts of 
flooding. This study presents an enhanced approach for weekly water level and flood prediction by integrating 
data decomposition techniques with machine learning models. Specifically, Ensemble Empirical Mode Decom-
position (EEMD) was applied to disaggregate the original water level data into distinct Intrinsic Mode Functions 
(IMFs) to simplify complexity and enhance periodicity detection. A secondary decomposition was performed on 
the high-frequency IMF 1, derived from EEMD, to further refine the data features. The K-Nearest Neighbor (KNN) 
and Support Vector Machine (SVM) models, optimized using Improved Particle Swarm Optimization (PSO), were 
employed for forecasting. The effectiveness of these hybrid models was evaluated using various performance 
metrics, revealing that the DEEMD-KNN-PSO and DEEMD-SVM-PSO models significantly outperformed other 
single decomposition and standalone models. Among these, the DEEMD-KNN-PSO model demonstrated superior 
accuracy in predicting water levels, showcasing its potential for reliable flood prediction in the Klang River 
region of Sri Muda, Malaysia. This approach highlights the value of data decomposition and machine learning 
optimization for improving water level prediction accuracy.

1. Introduction

Water level forecasting plays a crucial role in environmental pro-
tection and flood management. Accurate predictions are essential during 

flood events, as they facilitate early warning systems to alert the public 
and enable real-time control of hydraulic structures, such as diversion 
channels and floodgates, to minimize flood damage. Effective flood 
management requires timely and reliable information about flood 
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progression, which can be challenging to provide, especially when only 
historical rainfall data up to the forecasting point is available, without 
any assumptions about future rainfall patterns [1–4]. This is particularly 
relevant in Malaysia, where understanding and predicting water levels is 
critical for safeguarding communities and infrastructure against 
frequent and often severe flooding events.

The modelling and prediction of water levels have seen extensive use 
of machine learning techniques over the past 20 years on a global scale. 
Nearest neighbor can also be applied with noisy samples [5]. K-Nearest 
Neighbor (KNN) has been widely applied across various fields, including 
weather forecasting, financial predictions, and flood management, for 
its effective and versatile forecasting capabilities [6–8]. The study by [9]
demonstrates that the hybrid KNN with Random Forest model effec-
tively predicts groundwater level fluctuations. The combination of these 
approaches allows the KNN-RF model to deliver reliable and interpret-
able results, making it a powerful tool for seasonal groundwater level 
forecasting in regions with data constraints. Recent researcher presented 
the integration of the KNN algorithm with the Long Short-Term Memory 
(LSTM) neural network significantly enhances the real-time forecasting 
capabilities of the model, particularly for flood prediction [10]. By using 
KNN to update LSTM model outputs based on recent observations, the 
LSTM-KNN hybrid provides more accurate and timely flood forecasts, 
making it a valuable tool for decision support systems. The study by [11]
indicates that the KNN method performs comparably to RF in predicting 
seawater levels, with both models achieving high R² values for 
short-term forecasts. The results suggest that KNN is a reliable and 
straightforward approach for seawater level prediction, offering valu-
able accuracy for future planning and coastal management.

The foundation of Support Vector Machines (SVMs) was laid by [12]. 
SVMs guarantee solutions that are both distinct and global because they 
are derived from solving an optimization problem involving a convex 
quadratic function with constraints, as noted [13]. Researcher con-
ducted a study that evaluates groundwater level predictions across six 
different sites within the Vizianagaram district of Andhra Pradesh [14]. 
The results highlight that Support Vector Machine (SVM) shows strong 
performance, especially when enhanced with hybrid approaches. A 
study by [15] demonstrates that SVM based machine learning models 
provide a viable solution for real-time water level prediction in urban 
rainwater pipe networks, addressing key issues of model accuracy and 
running speed. This approach not only enhances the predictive accuracy 
compared to traditional hydrodynamic models but also significantly 
improves computational speed, making it suitable for practical flood 
warning applications in complex urban environments. The study by [16]
highlights that the hybrid SVM-ALO model, incorporating the ant lion 
optimizer, provides a highly accurate and reliable approach for pre-
dicting groundwater level fluctuations. Compared to other hybrid 
models, SVM-ALO consistently outperformed in terms of lower root 
mean-squared error (RMSE) demonstrating its robustness and suitability 
for groundwater level forecasting.

The Ensemble Empirical Mode Decomposition (EEMD) represents a 
significant advancement over the conventional Empirical Mode 
Decomposition (EMD), primarily addressing the challenge of mode 
mixing [17]. EEMD, introduced by Wu et al. (2009), has emerged as a 
highly effective approach for processing intricate time series data. 
Additionally, EEMD facilitates the decomposition of data into Intrinsic 
Mode Functions (IMFs), effectively reducing stochastic volatility and 
elevating prediction quality. Hybrid models of EEMD have demon-
strated their effectiveness in predicting a wide range of nonlinear phe-
nomena, including runoff [18], wind speed [19] wave height [20] and 
streamflow [21]. For instance, [18] introduced an EEMD-ARIMA model 
for the prediction of annual runoff time series. The study established the 
superiority of EEMD-ARIMA over ARIMA for annual runoff forecasting. 
More recently, a study by [22] proposed a model that incorporates 
Ensemble Empirical Mode Decomposition (EEMD) for forecasting tidal 
river water levels. This water level forecasting model exhibited 
remarkable accuracy and reliability in predicting water levels at the case 

study.
SVM relies on two key hyperparameters, and their proper configu-

ration is critical to the model’s performance. However, there is potential 
to improve the effectiveness of SVM in predicting time series data. 
Additionally, KNN is a straightforward and computationally efficient 
algorithm for forcasting. However, its performance can be hindered by 
the initial selection of the parameter K. Building on previous research, 
optimizing SVM and KNN parameters through swarm intelligence 
optimization techniques has proven beneficial for enhancing model 
performance in complex problems [23–25]. Particle Swarm Optimiza-
tion (PSO) is proposed by [26]. PSO is a population-based intelligent 
optimization algorithm known for its strong global search capability, 
high efficiency, and rapid convergence. Applying such advanced opti-
mization techniques to water level forecasting could significantly 
enhance prediction accuracy and reliability, aiding in effective flood 
management and environmental protection. The application of PSO to 
fine-tune Long Short-Term Memory (LSTM) networks significantly en-
hances their ability to forecast water levels by optimizing hyper-
parameters and capturing complex data sequences [27]. In recent study, 
PSO with Extreme Learning Machine (ELM) models significantly en-
hances the accuracy of flood forecasting by optimizing the number of 
units in the ELM to improve prediction performance [28]. This approach 
highlights the effectiveness of PSO in fine-tuning model parameters, 
leading to more reliable and precise flood predictions, which can greatly 
aid in timely flood response and mitigation efforts. Recent study reveals 
that PSO significantly enhances the performance of SVM models for 
short-term rainfall forecasting, particularly for 5-min forecasts [29]. 
This approach demonstrates PSO’s effectiveness in refining forecasting 
models and underscores its role in achieving superior rainfall prediction 
accuracy compared to other methods. Despite its effectiveness in 
numerous applications, PSO has not been applied to decomposed com-
ponents specifically related to water level forecasting.

The main objectives of the proposed work are given below. 

i. To develop an improved Particle Swarm Optimization (PSO) 
framework for automatically tuning the parameters of the KNN 
algorithm and SVM algorithm to enhance its accuracy in fore-
casting water levels. The proposed approach aims to minimize the 
forecasting error by efficiently searching the parameter space, 
leveraging the global search capabilities of improved PSO.

ii. To investigate the effectiveness of an improved PSO with hybrid 
KNN model in addressing the nonlinearity and variability in 
water level data. By incorporating improved PSO for parameter 
optimization, the KNN model can dynamically adjust to the 
complex patterns in the data, leading to more accurate and reli-
able water level forecasts.

iii. To implement two-stage decomposition approach for improving 
the accuracy of hydrological time series forecasting. Specifically, 
the study aims to implement a two-step Ensemble Empirical 
Mode Decomposition (EEMD) process, where the first Intrinsic 
Mode Function (IMF 1), representing high-frequency compo-
nents, undergoes an additional decomposition using EEMD that 
also known as Double EEMD (DEEMD). This approach seeks to 
capture and isolate high-frequency variations more effectively, 
thereby enhancing the predictive capabilities of forecasting 
models for complex hydrological phenomena.

iv. To conduct a comprehensive comparative analysis of the models 
with traditional water level forecasting models. This study aims 
to evaluate the accuracy, robustness, and computational effi-
ciency of the DEEMD-KNN-PSO model, providing insights into its 
practical applicability and advantages over conventional 
methods.

2. Methodology

This section outlines the methodology used for developing the 
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proposed models in this paper. It details the step-by-step processes 
implemented to predict the water levels of the Klang River. The meth-
odology includes the application of specific decomposition methods like 
EEMD and DEEMD, the use of machine learning models such as Support 
Vector Machines (SVM) and K-Nearest Neighbor. Additionally, this 
section presents the parameter settings.

2.1. Double ensemble empirical mode decomposition

Empirical Mode Decomposition (EMD) is a robust method often 
utilized to examine complex, nonlinear data [30]. This approach works 
by breaking down the initial dataset into a series of distinct components, 
which generates multiple Intrinsic Mode Functions (IMFs). Unlike using 
pre-set kernels, these IMFs are derived directly from the data itself, 
acting as adaptive basis functions. For a function to be considered an 
IMF, it must meet two specific conditions [31]. First, the count of local 
maxima and minima should be the same or differ by just one. Second, 
the average of the upper and lower envelope values should be zero at 
any location in the data. These IMFs represent a range of frequency 
components, from the highest to the lowest. Consider s(t)(t = 1,2,…, l)
as an example of a time series from the dataset. The EMD method pro-
ceeds through the following steps [32]: 

a. Identify all the local extrema of the time series, which includes both 
the local maxima and minima.

b. Use a cubic spline interpolation to connect the identified local 
maxima and minima, creating an upper envelope (eup(t)) from the 
maxima and a lower envelope (elow(t)) from the minima.

c. Calculate the mean envelope by averaging the upper and lower en-
velopes using the following Eq. (1). 

m(t) =
[eup(t) + elow(t)

2

]
(1) 

d. Calculate the difference between the original time series and the 
mean envelope obtained in Step 3, using Eq. (2) provided below. 

h(t) = s(t) − m(t) (2) 

e. Test if h(t) meets the criteria for being an IMF. If it does, designate 
s(t) as the first IMF and replace s(t) with the residuals r(t) =

s(t) − h(t). If it does not, replace s(t) with h(t) and continue the 
process.

f. Repeat Steps 1–5 continuously. Stop the iteration only when the 
termination condition is satisfied. This implies that the EMD process 
will end when the residual becomes a monotonic function, at which 
point no further IMF extraction is possible.

Additionally, the shifting process of EMD will be stopped when re-
sidual became a monotonic function where IMFs extraction is no longer 
available. The final product of decomposition by EMD are a set of IMFs 
and residual from the original data as in Eq. (3). 

s(t) =
∑n

i=1
ci(t)+ rn(t) (3) 

where n is the number of IMFs, rn(t) are the final residuals representing a 
trend and acts as central tendency of the signal s(t)(t = 1,2,…, l) and 
c(t)(t = 1,2,…, l) represents the Intrinsic Mode Functions (IMFs), which 
exhibit periodicity and are nearly orthogonal to each other. Each IMF 
independently characterizes the local properties of the original signal 
when describing them. The frequency of each IMFs varies high to low.

The versatility of the EMD has been demonstrated across various 
applications for signal extraction from noisy and non-linear data [17]. 
However, a significant limitation of the EMD is the frequent occurrence 

of mode mixing that occurs when a single IMF contains signals of greatly 
different scales or when a signal of same scale appears in other IMFs 
[26]. To address this issue, [33] introduced the Ensemble Empirical 
Mode Decomposition (EEMD). EEMD mitigates mode mixing by incor-
porating a finite amount of Gaussian white noise into the data series 
before computing the overall average, effectively reducing mode mixing 
[33]. In summary, EEMD, an extension of the EMD method, aims to 
eliminate mode mixing by introducing white noise into the data prior to 
analysis [34]. The process of EEMD is briefly explained below. 

a. Initialize the ensemble number, M, and the noise amplitude and let 
m= 1.

b. Introduce a white noise series nm(t) into the original dataset s(t) and 
produce the below equation sm(t) = s(t) + nm(t).

c. Perform the data decomposition on sm(t) and produce Intrinsic Mode 
Functions (IMFs) while considering the added white noise using 
EMD.

d. Repeat these two steps iteratively until the residual r(t) either turns 
into a monotonic function or has no more than one local extremum, 
signaling that no additional IMFs can be derived. Importantly, for 
each iteration, utilize m = m+1 white noise series if m < M is 
satisfied. M is the maximum iteration. If not, proceed directly to Step 
5.

e. Compute the ensemble mean, yn of the corresponding IMFs from all 
decompositions to obtain the final IMFs and residual.

yn =
1
M

∑M

m=1
IMFn,m (4) 

Double Ensemble Empirical Mode Decomposition (DEEMD) is a new 
method that is applied specifically to the first Intrinsic Mode Function 
(IMF) obtained from the initial decomposition process. This approach 
focuses on the first IMF because it typically contains the highest fre-
quency components of the original signal. By targeting the first IMF, 
DEEMD aims to effectively capture and analyze these high-frequency 
features which are often crucial for understanding the underlying 
characteristics of the signal, such as noise and rapid fluctuations.

2.2. Support vector machine (SVM)

Vapnik originally proposed Support Vector Machines (SVM) in 1995 
as a method for addressing both regression and classification tasks [12]. 
This increased interest in SVM can be attributed to its robust mathe-
matical foundation, rooted in the principles of Structural Risk Minimi-
zation (SRM) and Empirical Risk Minimization (ERM). In this SVM 
model, let the training sets to be S =

{(
xi, yi

)
|i = 1,2,3, .,N

}
, xi = Rn,

yi = R. The optimal decision function will then be located within the 
high-dimensional feature space. The decision function utilized in this 
study is represented by Eq. (5). 

f(x) = 〈ω,φ(x)〉+ b (5) 

Where φ(x) signifies the high-dimensional feature space that derived a 
nonlinear mapping from input space, ω is weight, b is bias. The pa-
rameters ω and b in the Eq. (5) is derived from solving the constrained 
minimization problem originally introduced by Vapnik (1995) shown in 
Eq. (6) and Eq. (7). 

minimize
1
2
‖ω‖

2
+C

∑N

i=1

(
ξ−i + ξ+i

)
(6) 

⎧
⎪⎪⎨

⎪⎪⎩

yi − 〈ω,φ(x)〉 − b ≤ ε + ξ−i
〈ω,φ(x)〉 + b − yi ≤ ε + ξ−i

ξ−i , ξ+i ≥ 0,
(7) 

In the above expressions, the constant C > 0serves as a parameter 
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regulating the penalty level for instances surpassing the error threshold 
and ε represents the error tolerance. Furthermore, ξ+i and ξ−i are positive 
variables, where ξ+i denotes the upper excess deviation and ξ−i signifies 
the lower excess deviation. Incorporating Lagrange multipliers, the 
problem expressed in Eq. (6) is subsequently converted into a dual space 
in Eq. (8) and Eq. (9) below: 

W
(
αi − α∗

i
)
= −

1
2
∑n

i=1

∑n

i=1

[(
αi − α∗

i
)(

αj − α∗
j

)〈
φ(xi),φ

(
xj
)〉]

− ε
∑n

i=1

(
αi

− α∗
i
)
+

∑n

i=1

(
αi − α∗

i
)

(8) 

such that 

ε
∑n

i=1

(
αi − α∗

i
)
= 0; αi − α∗

i ∈ [0,C] (9) 

Where αi and α∗
i are Lagrange multipliers. Lagrange multipliers, subject 

to the imposed constraints, must adhere to the conditions. The resultant 
solution is presented in Eq. (10): 

f(x) =
∑n

i=1

(
αi − α∗

i

)〈
φ(xi),φ

(
xj
)〉

+ b (10) 

The inner product 
〈
φ(xi),φ

(
xj
)〉

can be defined through is the kernel 
function Ksvm

(
xi,xj

)
. Therefore, the equation can be define as in Eq. (11). 

f(x) =
∑n

i=1

(
αi − α∗

i
)
K
(
xi, xj

)
+ b (11) 

Eq. (12) presented the kernel function chosen in this paper for SVM 
model which is the radial basis function (RBF). 

Ksvm
(
xi, xj

)
= exp

[
− ||xi − xj||

2

2σ2
svm

]

(12) 

where σsvm is the width of the kernel function [35,36]. Hence, the cost 
parameter Cand kernel parameter σsvm of SVM need to be optimized.

2.3. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm is a straightforward but 
powerful technique applied to both classification and regression prob-
lems that introduced by [37]. KNN operates on the principle that data 
points that are close to each other in a feature space tend to share similar 
properties. It predicts the output for an unknown data point by 
considering the majority class among its k-nearest neighbors from the 
training set, determined using a specific distance metric such as 
Euclidean, Minkowski, Chebyshev, or Manhattan. As a nonparametric 
method, KNN does not assume any specific distribution for the data, 
which enhances its robustness in dealing with noisy or incomplete ob-
servations. KNN is particularly effective for machine learning-based 
forecasting as it can identify influential patterns within noisy datasets. 
For continuous data, KNN matches data points based on calculated 
distances to determine similarity, which directly influences its accuracy 
and performance. The algorithm involves two main steps: first, it cal-
culates the distance between the target data point and all points in the 
training set to find the closest neighbors. The Minkowski distance serves 
as the most comprehensive form of distance measurement; second, it 
classifies the target data point based on the majority label of these 
neighbors or predicts a value based on their averaged output in the case 
of regression [38]. 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2)
2
− (y1 − y2)

2
√

(13) 

In this metric, the distance d between two points (x1, y1) and (x2, y2)

is defined in Euclidean space. The number of nearest samples used for 
classification or estimation is represented by K, a positive integer. 
Determining the optimal number of neighbors is essential, as it signifi-
cantly impacts the accuracy of the estimation and the model’s perfor-
mance. In this study, Particle Swarm Optimization is utilized to optimize 
the value of K.

2.4. Improved particle swarm optimization

The Particle Swarm Optimization (PSO) algorithm, initially 
enhanced by [26]. PSO is inspired by the coordinated movement 
observed in natural phenomena like bird flocking, bee swarming, and 
fish schooling. Renowned for its simplicity in coding, cost-effectiveness, 
and consistent performance, PSO has established itself as a powerful 
algorithm for tackling variable optimization problems [39]. In PSO, 
individuals within the population are referred to as particles, collec-
tively forming a swarm. These particles commence their optimization 
journey with random initial positions and velocities. Throughout the 
optimization process, particles adapt their positions and velocities as 
they navigate the search space. Additionally, each particle retains 
memory of the best position it has encountered in the search space. The 
parameters of SVM namely C and σsvm and KNN namely k parameter will 
be optimized by using PSO algorithm. Initially, upper and lower bounds 
are defined for the SVM parameters and KNN parameters. Subsequently, 
random values within these bounds are generated for each particle, 
which are then employed as inputs for the SVM and KNN model. 
Following this, the fitness function is applied, with this study utilizing 
the (MAPE) as the fitness criterion to determine suitable SVM and KNN 
model parameters. The MAPE value for each particle is calculated using 
the fitness function in Eq. (14). This MAPE equation serves as the fitness 
function to evaluate the accuracy of each particle’s prediction perfor-
mance. By using MAPE as the fitness metric, the Improved PSO algo-
rithm selects the optimal parameters for both the SVM and KNN models 
corresponding to each input variable. 

ηMAPE =
1
ω

∑ω

i=1

|yi − ŷi|

yi
(14) 

where ω represents the number of subsets, ŷi denotes the predicted 
value, yi denoted the actual value and. D is the dimension of this func-
tion defines the length of each particle. Each member of the swarm, 
referred to as a particle, is represented as a vector Xi encompassing the 
parameters targeted for optimization within the objective function. In 
the multidimensional search space, denoted as m, the position Xi = (xi1,

xi2,xi3,…,xiD)and velocity Vi = (v1i, v2i, v3i,…, vDi) of the i − th particle are 
initialized randomly within the range of possible solutions, i = 1,2,…,m. 
To enhance the optimization process, the algorithm computes the 
objective function value for each particle, subsequently updating both 
their velocities and positions in accordance with specific equations as in 
Eq. (15) and Eq. (16)

vt+1
id = ω⋅vt+1

id + c1⋅r1⋅
(
pid − xt

id
)
+ c2⋅r2⋅

(
pgd − xt

id

)
(15) 

xt+1
id = xt

id + vt+1
id (16) 

The ideal location of the particle represents as Pi = (P1i, P2i, P3i, …,

PDi). Optimal swarm location is Pg =
(
P1g, P2g, P3g,…, PDg

)
. Under i − th 

particle condition at t − th iteration, xt
id and vt

id are d − thposition and 
constituent of speed. ωis inertial weight controlling velocity direction. 
PSO algorithms often converge to local optima due to the value of inertia 
weight. To address this issue, the inertia weight was enhanced by 
incorporating the concept of adaptive adjustment. Additionally, the 
current iteration count and the size of the population during each update 
were considered. The modified inertia weight ω is calculated using the 
following formula. 
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ω = (ωmax − ωmin) ×
(I × P − q × p)

I × P
+ ωmin (17) 

Positive coefficient c1, c2, r1and r2 where r1 and r2 are distributed 
evenly within the range of 0–1, and c1 and c2 represent constants. Iis 
maximum iteration,Pis size of population, pis the current iteration and 
qis the current population. The procedure of PSO optimizing the SVM 
and LSSVM parameters described as follows. 

a. Initialise the parameters of PSO.
b. The collective of particles begins its journey with randomly assigned 

individual velocities and positions.
c. Fitness evaluation: The different initialized parameters are input into 

the LSSVM, and the fitness of each particle is assessed using the 
fitness function of PSO, as defined by Eq. (14).

d. Calculate the inertia weight.
e. Update both the global and individual best values based on the 

outcomes of the fitness value.
f. Velocity computation: The particle moves towards a fresh position by 

determining the velocity of its positional change. The velocity for 
each particle is derived using equation (15).

g. Position Update: Each particle transitions to its subsequent position 
following the guidelines outlined in Eq. (16).

h. Termination: Continue iterating through Steps 3–7 until the speci-
fied termination criteria are met.

3. Performance metrics

In this study, six different common indices employed to assess the 
precision of SVM-PSO, KNN-PSO, EEMD-SVM-PSO, EEMD-KNN-PSO, 
DEEMD-SVM-PSO, DEEMD-KNN-PSO models. The error evaluation 
methods chosen are Root Mean Square Error (RMSE), Mean Squared 
Error (MSE), Mean Absolute Percentage Error (MAPE) and Squared 
Correlation Coefficient (R2). RMSE is a measure of the differences be-
tween values predicted by a model and the values observed. RMSE is one 
of the most widely used metrics because it gives a clear idea of how far 
off the model’s predictions are from the actual values. The key benefit of 
RMSE is that it penalizes large errors more heavily due to the squaring of 
residuals. This is particularly useful in forecasting, where large de-
viations in predictions can be more problematic than small errors. MSE 
measures the average squared difference between the estimated and 
actual values. MAPE provides a measure of prediction accuracy as a 
percentage. Lower MAPE values indicate more accurate predictions 
relative to the size of the actual values. R-squared measures the pro-
portion of variance in the actual values that is explained by the model. It 
is a key measure of how well the model fits the data and indicates the 
goodness of fit. An R² value close to 1 indicates that the model explains 
most of the variance in the data, while a value closer to 0 means the 
model does not explain much of the variability. R² is important for un-
derstanding how well the model captures the underlying patterns in the 
data. The best prediction model will have the lowest value for RMSE, 
MSE and MAPE and R2 value that almost reaches one. R2 is computed to 
evaluate the explained variance of models as presented in Eq. (21). The 
performance of the models can be measure by equation RMSE, MSE, 
MAPE and R2as followed [40]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(zi − ẑi)

2

√

, (18) 

MSE =
1
n
∑n

i=1
(zi − ẑi)

2
, (19) 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
ẑi − zi

zi

⃒
⃒
⃒
⃒× 100, (20) 

R2 = 1 −

∑n

i=1
(zi − ẑi)

2

∑n

i=1
(zi − zi

ʹ)2
, (21) 

where zi is the observed value, ẑi is the forecasted value and n is number 
of data.

4. Results and discussion

4.1. Study area and data set

This paper focuses on the Klang River, which flows through Selangor 
and Kuala Lumpur in Malaysia as illustrated in Fig. 1. Hydrological data 
for the Klang River, specifically from Sri Muda, has been supplied by the 
Department of Irrigation and Drainage Malaysia (DID). Taman Sri Muda, 
a neighborhood situated in Shah Alam, Selangor, is part of this study 
area. The Klang River, or Sungai Klang, is a prominent waterway in the 
region. In urban areas like Taman Sri Muda, rivers often play a crucial 
role in drainage and may be subject to environmental considerations. 
The length of the river within this community is likely to be a relatively 
short segment of the entire Klang River, which is approximately 25 ki-
lometers long (Station 3015432).

The daily water level data available covers the period from 2011 to 
2022. Extreme weekly water levels are obtained through the utilization 
of the block maxima-minima approach. The dataset comprises a total of 
626 weeks of daily water level readings. To enhance prediction accu-
racy, the data was segmented into weekly intervals. For model devel-
opment in this study, 80 % of the data was allocated for training the 
SVM and LSSVM models, covering the period from January 1, 2011 to 
August 1, 2020. The remaining 20 % was reserved for the validation or 
testing phase of these models, spanning from August 2, 2020 to 
December 31, 2022. Consequently, the forecasting models were built 
using 500 weeks of training data, while predictions were based on the 
126 weeks in testing data. Fig. 2 displays the weekly water level data for 
Klang River, including training, testing datasets, and the linear regres-
sion line. The study area is classified into four alert levels (normal, alert, 
warning, and danger) with corresponding threshold water levels of 
2.8 m, 4.4 m, 4.7 m, and 5.0 m respectively. Flooding occurs when 
water levels surpass the normal threshold. Therefore, accurate water 
level forecasting is crucial for effective flood warning systems, as it helps 
in alerting authorities and informing the affected populations. All the 
models will run a program by using R Software.

Table 2 shows the descriptive statistics of the river water level 
dataset that reveals important insights into its distribution and vari-
ability. The minimum value recorded is 1.220 while the maximum 
reaches 10.50, resulting in a range of 9.280 which indicates significant 
fluctuations over the observation period. The mean water level is 3.090 
slightly higher than the median of 2.950 suggesting a right-skewed 
distribution likely caused by occasional high water level events. The 
first quartile (Q1) is 2.465 and the third quartile (Q3) is 3.625 with an 
interquartile range (IQR) of 1.160 indicating that most observations are 
concentrated within this central range. This study has utilized simple 
linear regression to identify trends within the time series of water levels. 
The analysis using simple linear regression reveals a distinct upward 
trend in extreme weekly water levels. The upward slope of the regres-
sion line serves as an early warning signal for potential flooding. When 
water levels consistently increase, it suggests a heightened risk of 
reaching critical flood levels. Early detection of this trend allows au-
thorities to implement precautionary measures and issue timely flood 
warnings to communities in vulnerable areas.

4.2. Data decomposition

In this research, Empirical Ensemble Mode Decomposition (EEMD) is 
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used to analyze the time series of water level data. This method was 
essential in preprocessing the weekly water level data of the Klang River 
in Sri Muda, Malaysia, from 2011 to 2022. The EEMD technique was 
specifically applied to decompose the original water level time series 

into several distinct Intrinsic Mode Functions (IMFs) and a residual 
component. In this investigation, an ensemble size of 100 was chosen, 
and each ensemble member was augmented with white noise charac-
terized by a standard deviation of 0.2. It’s important to note that these 
parameter choices align with those used by [11] in prior work, and we 
won’t reiterate these details here. Fig. 3 shows the outcome of the EEMD 
process, where the Intrinsic Mode Functions (IMFs) and residual com-
ponents are used as input variables for water level forecasting. The 

Fig. 1. Map of Klang River that flows through Taman Sri Muda, Selangor, Malaysia.

Fig. 2. Weekly series of water level data of Klang River for training, testing and linear regression line.

Table 1 
Parameter settings of the methods.

Methods Parameters Value

Particle Swarm Optimization Population Size, P 35
​ Maximum Iteration, I 100
​ Acceleration constants, (c1, c2) (1,2)
Support Vector Machine Cost, C [1100]
​ Kernel, σsvm [0.01, 1]
K-Nearest Neighbor k

[1,5]

Table 2 
Descriptive statistic of weekly water level data.

Minimum First 
Quartile

Median Mean First 
Quartile

Maximum Mode

1.220 2.465 2.950 3.090 3.625 10.500 10.500
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EEMD technique has decomposed the water level data into 8 IMF 
components and one residual component. Fig. 4 shows the outcome of 
the DEEMD process of IMF1 from EEMD.

4.3. Results and discussion

The figure displays convergence curves for SVM and KNN models 

applied to various components obtained after a double decomposition 
process. This includes the IMFs and the residual component. The 
convergence curves indicate how well each model (SVM and KNN) 
performs across different components extracted by the decomposition 
method. Across the subplots, it can be observed that both models 
generally exhibit good convergence, with performance improving as the 
iteration progresses. However, there are differences in the convergence 
speed and final accuracy between SVM and KNN for individual IMFs and 
the residual. In most subplots, the KNN model (green lines) achieves 
slightly better convergence and higher accuracy than the SVM model 
(blue lines), especially for the earlier IMFs (high-frequency compo-
nents). KNN’s faster convergence in the initial iterations suggests that it 
can quickly learn and fit patterns in the data particularly for high- 
frequency IMFs. SVM shows a slower convergence rate but tends to 
reach a high accuracy in the later iterations. This indicates that while 
SVM requires more iterations to optimize, it eventually captures more 
complex, nonlinear patterns present in the data.

Table 3 
RMSE, MSE, MAPE and R2 value of proposed models for testing data.

RMSE(m) MSE(m2) MAPE(m) R2

SVM-PSO 0.99425 0.9885 0.16707 0.4125
EEMD-SVM-PSO 0.78265 0.6127 0.12466 0.5123
DEEMD-SVM-PSO 0.64948 0.4228 0.09256 0.7895
KNN-PSO 0.96235 0.9261 0.14045 0.4698
EEMD-KNN-PSO 0.74248 0.5505 0.10980 0.5698
DEEMD-KNN-PSO 0.52235 0.2725 0.08596 0.84596

Fig. 3. The outcomes derived from the application of the EEMD method for the decomposition of weekly water level data.

Fig. 4. The outcomes derived from the application of the DEEMD.
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Fig. 6 indicate that both EEMD-SVM and EEMD-KNN show 
decreasing error metrics across the IMFs, reflecting the effectiveness of 
EEMD in breaking down the time series into components that are easier 
for the models to predict. However, EEMD-KNN consistently shows 
lower RMSE, MSE, and MAPE values compared to EEMD-SVM across 

most IMFs and the residual component. This suggests that the EEMD- 
KNN combination are more robust in handling different components 
of the data, including both the detailed and residual parts. Based on the 
error metrics, EEMD-KNN seems to outperform EEMD-SVM, showing 
lower prediction errors and higher accuracy across all metrics (RMSE, 

Fig. 5. Convergence Analysis of KNN and SVM models on single models and decomposed water level components.

Fig. 6. Radar plot of RMSE, MSE, MAPE, R2 of IMFs from EEMD on water level model.
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MSE, and MAPE). KNN better suited for this particular data set, espe-
cially when accuracy and handling finer details (as indicated by the 
residuals) are crucial. In summary, while both EEMD-SVM and EEMD- 
KNN are effective in reducing error metrics progressively through the 
IMFs, EEMD-KNN consistently shows superior performance. This in-
dicates that KNN, when combined with EEMD is more capable of 
capturing the underlying patterns and nuances of the data, leading to 
more accurate and reliable predictions. Further analysis and validation 
could involve testing these models on different datasets or using other 
metrics to confirm these findings.

The error metrics (RMSE, MSE, and MAPE) consistently show that 
DEEMD-KNN outperforms DEEMD-SVM in forecasting water levels in 
Fig. 7. DEEMD-KNN demonstrates lower errors across all metrics and 
higher R2 value, especially in the later IMFs and residuals, suggesting it 
can more effectively capture both major trends and minor fluctuations in 
water levels. KNN’s performance indicates that its non-parametric na-
ture and reliance on historical patterns make it more adept at handling 
the decomposed, often non-linear features resulting from DEEMD. Based 
on the observed metrics, DEEMD-KNN is preferable for forecasting water 
levels due to its superior ability to minimize errors and accurately pre-
dict future levels. While DEEMD-SVM is also effective, it appears less 
suited for capturing the intricate details and high variability that char-
acterize water level data. The SVM’s higher error values across initial 
IMFs indicate potential limitations in handling complex relationships 
within the data, which KNN manages more effectively. The combination 
of DEEMD with KNN offers a more accurate and reliable approach for 
forecasting water levels compared to DEEMD with SVM. DEEMD-KNN 
consistently shows lower RMSE, MSE, and MAPE values and high R2 

value, demonstrating its capability to handle both broad and detailed 
aspects of water level data effectively. These findings suggest that using 
DEEMD-KNN could improve water level forecasting, which is crucial for 
applications like flood prediction.

Compared to Figs. 5 and 6, the analysis of DEEMD (Double Ensemble 
Empirical Mode Decomposition) models combined with KNN (K-Nearest 
Neighbors) and SVM (Support Vector Machine) shows that DEEMD 
models consistently outperform EEMD models in forecasting water 
levels. Across all error metrics, DEEMD models demonstrate lower error 
values and highest R2 value, indicating better accuracy and reliability in 
predictions. The enhanced performance of DEEMD models can be 
attributed to their ability to capture more complex and intricate patterns 
within the water level data, providing more refined decompositions. 
This improvement makes DEEMD models a more effective choice for 
accurate water level forecasting, which is essential for flood prediction. 
Therefore, implementing DEEMD-based approaches should be consid-
ered for more accurate forecasting in scenarios where water level pre-
dictions are critical.

Table 1 shows RMSE, MSE, MAPE and R2 values of proposed models 
reveals clear distinctions in their predictive performance. Single models 
like SVM with PSO and KNN with PSO show higher error values, indi-
cating less accurate forecasting abilities. Incorporating PSO into these 
models helps in optimizing the selection of hyperparameters, which 
slightly improves their performance. However, hybrid models using 
EEMD combined with KNN and SVM, and further enhanced by PSO, 
show a noticeable reduction in error values. This improvement high-
lights how EEMD effectively decomposes the water level time series into 
intrinsic mode functions (IMFs), enabling the predictive models to better 
capture complex data patterns.

Fig. 7. Radar plot of RMSE, MSE, MAPE and R2 of IMFs from DEEMD on water level model.
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The most significant improvement is observed in the double 
decomposition models, DEEMD-KNN-PSO and DEEMD-SVM-PSO, which 
exhibit the lowest RMSE, MSE, and MAPE values and highest R2 value. 
By taking the first IMF from EEMD and decomposing it again through 
DEEMD, these models are able to capture even finer details and under-
lying patterns in the data that are not evident in single or hybrid models. 
The double decomposition approach not only enhances the representa-
tion of the data but also reduces noise, resulting in higher accuracy in 
forecasting. This layered decomposition, combined with the optimiza-
tion capability of PSO, provides a robust framework for handling the 
non-linear, non-stationary nature of water level time series, making 
DEEMD models the most effective for accurate water level predictions.

Fig. 8 illustrates a comparison between observed water levels and 
water level forecasts generated by different models, each represented by 
distinct colored lines. The observed water levels serve as a baseline to 
evaluate the accuracy and efficiency of the forecasting models. The 
models include single and hybrid approaches, such as KNN (K-Nearest 
Neighbors) and SVM (Support Vector Machine) optimized with 
improved PSO (Particle Swarm Optimization), as well as more advanced 
models like EEMD-KNN-PSO, EEMD-SVM-PSO, and DEEMD-based 
models DEEMD-KNN-PSO and DEEMD-SVM-PSO.

The DEEMD-KNN-PSO model is indicated to be the most efficient 
among the models compared, as it closely follows the observed water 
level trends with minimal deviation. This enhanced performance can be 
attributed to the combination of double decomposition using DEEMD 
(Double Ensemble Empirical Mode Decomposition) and the optimiza-
tion capabilities provided by improved PSO. DEEMD improves the 
forecasting accuracy by decomposing the first intrinsic mode function 
(IMF) from EEMD, allowing the model to capture finer details and 
complex patterns in the data that are often associated with non-linear 
and non-stationary processes. This further decomposition helps in 
isolating noise and providing a more refined input for the forecasting 
model. Improved PSO plays a critical role in enhancing the model’s 
performance by optimizing the parameters of KNN, ensuring that the 
model is better suited to handle the intricacies of water level forecasting. 
By using a swarm intelligence-based approach, improved PSO efficiently 
navigates the parameter space to find optimal solutions that minimize 
error metrics such as RMSE, MSE, and MAPE and produce high R2 value. 
As a result, the DEEMD-KNN-PSO model is not only capable of accu-
rately predicting water levels but also does so with greater stability and 
less variability compared to other models. Overall, the graph demon-
strates that while all models attempt to capture the trends in water 
levels, the DEEMD-KNN-PSO model achieves the highest accuracy. This 

conclusion is drawn from the model’s ability to closely align with the 
observed data, exhibiting fewer spikes and fluctuations, indicating its 
superior capacity for precise water level forecasting.

5. Conclusion

In this study, KNN and SVM models were extensively used for weekly 
water level forecasting, but prior research often overlooked the impor-
tance of integrating data features into model construction. This research 
proposed an enhanced method for predicting weekly water levels by 
integrating data decomposition techniques. Specifically, Ensemble 
Empirical Mode Decomposition (EEMD) was utilized to decompose the 
original water level dataset into distinct Intrinsic Mode Function (IMF) 
components with lower complexity and clear periodicity. Additionally, a 
secondary decomposition was applied to the highest-frequency IMF 1 
derived from EEMD. The machine learning models employed in this 
study for water level prediction were KNN and SVM, both optimized 
using improved Particle Swarm Optimization (PSO). The efficacy of the 
EEMD and double EEMD (DEEMD) methods was evaluated using various 
performance metrics when combined with KNN and SVM models. The 
experimental results revealed that the DEEMD-KNN-PSO and DEEMD- 
SVM-PSO models outperformed other single decomposition and stand-
alone models across multiple evaluation criteria. Notably, the DEEMD- 
KNN-PSO model demonstrated superior accuracy in predicting water 
levels for the Klang River in Taman Sri Muda, Malaysia, highlighting its 
effectiveness and reliability for water level forecasting based on the 
testing data.

Future work could explore the application of this dual decomposition 
approach with KNN and SVM optimized by PSO to other hydrological 
datasets and geographical regions to validate its robustness and gener-
alizability. Additionally, incorporating other advanced decomposition 
methods or integrating deep learning techniques, such as hybrid models 
with LSTM or GRU, could further enhance prediction accuracy. Mov-
erover, the optimization process could be enhanced by replacing the 
Particle Swarm Optimization (PSO) technique with Genetic Algorithm 
(GA), which may improve convergence speed and solution quality [41, 
42].
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