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The explosion of the IoT and the immense increase in the number of devices around the world, as well as the desire to meet the
quality of service in the best way possible, have challenged cloud computing. Fog computing has been introduced to reduce the
distance between the IoT and the cloud and to process time-sensitive tasks in an efficient and speedy manner. IoT devices can
process a portion of the workload locally and offload the rest to the fog layer. This workload is then allocated to the fog nodes.
The distribution of workload between IoT devices and fog nodes should account for the constrained energy resources of the
IoT device, while still prioritizing the primary objective of fog computing, which is to minimize delay. This study investigates
workload allocation in the IoT node and the fog nodes by optimizing delay and energy consumption. This paper proposes an
improved version of NSGA II, namely, reinforcement weighted probabilistic NSGA II, which uses weighted probabilistic
mutation. This algorithm replaces random mutation with probabilistic mutation to enhance exploration of the solution space.
This method uses domain-specific knowledge to improve convergence and solution quality, resulting in reduced delay and
better energy efficiency compared to traditional NSGA II and other evolutionary algorithms. The results demonstrate that the
proposed algorithm reduces delay by nearly 2 s while also achieving an improvement in energy efficiency, surpassing the state
of the art by nearly 3 units.
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1. Introduction

The Internet of Things (IoT) has led to a surge in the num-
ber of devices globally. Wearable devices, sensors in smart
cities, and smart vehicles have all contributed to reaching
50 billion devices in 2020 [1], with projections estimating
150 billion by 2030. Figure 1 illustrates the forecasted growth
of devices from 2020 to 2030 [2]. These devices generate
substantial computational demands, which are typically
handled by cloud servers [3, 4]. However, the cloud struggles
to meet the needs of delay-sensitive applications due to the
multiple hops a packet must traverse to and from the cloud
server [5–7].

Previous studies and challenges in workload allocation for
IoT devices have utilized various optimization techniques [8,
9]. These approaches are aimed at enhancing computational
efficiency by minimizing the number of hops and reducing
latency through fog computing [10, 11]. However, effectively
managing the substantial workload from IoT devices at the
fog layer remains a critical challenge [12, 13]. Efficient alloca-
tion of this workload to fog nodes is essential for achieving
both low delay and optimal energy consumption [14, 15].
Despite advancements, previous research has struggled to
strike a balance between these dual objectives, highlighting
the complexity and importance of optimizing workload allo-
cation strategies in fog computing environments.
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This paper bases on nondominated sorting genetic algo-
rithm II (NSGA II) and proposes an improved version,
namely, reinforcement weighted probabilistic NSGA II
(RWP-NSGA II). The decision to enhance NSGA II with
RWP-NSGA II was driven by several factors. NSGA II is
renowned for its effectiveness in multiobjective optimization
and has been tested in state-of-the-art workload allocation in
fog computing [14, 16, 17]. This established track record
provided a solid foundation for improvement. By introduc-
ing probabilistic mutation in RWP-NSGA II, we aim to
refine the algorithm’s ability to balance objectives like mini-
mizing delay and reducing energy consumption.

The proposed RWP-NSGA II algorithm introduces a
probabilistic mutation mechanism, replacing the traditional
random mutation used in NSGA II. This shift is grounded
in the philosophy that probabilistic mutation can more
effectively explore the solution space by incorporating
domain-specific knowledge and statistical patterns. By
leveraging probabilistic methods, RWP-NSGA II is aimed
at balancing exploration and exploitation more efficiently,
thereby improving convergence rates and solution quality.
This tailored approach enhances the algorithm’s ability to
navigate complex optimization landscapes, ultimately lead-
ing to better performance in terms of reduced delay and
improved energy efficiency. The contributions of this work
are stated as follows:

• Introduced RWP-NSGA II, an enhanced version of the
traditional NSGA II algorithm

• Developed a probabilistic mutation approach that
ranks gene importance and determines mutation
probabilities

• Prioritized gene mutations based on importance to
balance exploration and exploitation effectively

• Conducted a comprehensive performance evaluation,
comparing RWP-NSGA II against original NSGA II

and benchmarking it against RNSGA II, NSGA III,
RNSGA III, and CTAEA

• Demonstrated significant improvements in minimiz-
ing delay and reducing energy consumption in work-
load allocation tasks

• Showed that the proposed algorithm maintains a lower
delay and energy consumption with increasing
amounts of workload compared to other evolutionary
algorithms

2. Related Work

The workload allocation optimization scheme has been cov-
ered in previous studies using a variety of algorithms [18, 19]
that can be categorized into four categories: heuristic algo-
rithms, game theory–based algorithms, machine learning
(ML)–based algorithms, and queuing theory–based algo-
rithms. The taxonomy is shown in Figure 2. Table 1 presents
a summary of the state of the art covered.

Heuristic algorithms are problem-solving methods that
use practical, efficient, and intuitive approaches to find good
solutions to complex problems. These algorithms provide a
practical solution rather than an optimal one. In the context
of workload allocation for fog computing, heuristic algo-
rithms can be used to find a trade-off between several opti-
mization metrics. Examples of these algorithms include the
genetic algorithm (GA), ant colony optimization (ACO),
and particle swarm optimization (PSO). Some of the previ-
ous work has used traditional algorithms to optimize the
workload, while others have combined more than one algo-
rithm [29]. In the work proposed in [16], the authors used
NSGA II to allocate the workload that comes from IoT
devices to the fog nodes. The authors in [8] used the PSO
algorithm to allocate tasks in the fog nodes. The study in
[22] combined GA and ACO. Although these algorithms
provide an acceptable solution, they are sensitive to the
parameter set. Optimizing these parameters in a dynamic
way is yet to be investigated.
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Figure 1: Forecast in the growth of the number of devices between 2020 and 2030. Adapted from CISO MAG: Cyber Security Magazine:
Infosec News 2022.
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Game theory is a mathematical framework for analyzing
decision-making processes in which multiple parties interact
with each other, and it is particularly useful for modeling sit-
uations in which the decisions made by one party affect the
decisions made by other parties. In the fog environment,

game theory algorithms model the interactions among fog
nodes as a noncooperative game, where each fog node acts
selfishly to maximize its own payoff. The goal of the algo-
rithm is to achieve a fair and efficient allocation of workload
among the fog nodes. The research conducted in [23] has
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Figure 2: Taxonomy of the algorithms used in workload allocation in fog computing.

Table 1: Summary of the state of the art on workload allocation in fog environment.

Ref # Year Algorithm
Optimization

metric
Adv/Dis

Heuristic

This
work

2024 RWP-NSGA II
Energy consumption

Delay

+Outperforms the work proposed
in [16, 20] that uses similar approaches
and the same optimization metrics

[20] 2023
NSGA II
NSGA III
CTAEA

Energy consumption
Delay

+Compared several evolutionary
algorithms

[16] 2021 NSGA II
Energy consumption

Delay
+Took both energy consumption and

delay into consideration

[21] 2023 AI based meta heuristic
Load balancing
Cost delay

+Integrated AI and blockchain

[22] 2020 ACO Execution time
−Performance might be subject to the

parameter set

Game theory

[23] 2022
Proposed game theory

approach
Response time

−Optimization has been done considering
a single optimization metric

[10] 2021 Game theory
Response time

Energy consumption

−Assumptions that all fog nodes have
the same processing capability and that
the workload arrival rate is known in

advance

ML

[24] 2024 Deep reinforcement learning
Load balance
Response time

+Significantly optimizes IoT application
scheduling

−Implementing DRLIS may be challenging
due to the limited computational resources

[25] 2021
Proposed reinforcement
learning–based algorithm

Energy consumption
Response time

−Requires a large dataset for training

[26] 2021
Linear regression, decision tree,
neural network, and a proposed

model

Energy consumption
Response time

−The model is tested according to the
dataset instances only, so generalization

might be an issue

Queuing
theory

[27] 2022 Queuing theory Response time
−Optimization has been done considering

a single optimization metric

[28] 2021 Queuing theory Resource utilization +Considers the resource utilization
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proposed a framework based on the game theory approach
to optimize the resource utilization of fog nodes and the
communication cost. The authors in [10] used a game the-
ory algorithm to model the vehicle IoT. The proposed game
theory algorithms are computationally intensive and require
significant processing power, making them unsuitable for
low-power fog nodes with limited resources.

ML algorithms can be powerful in these problems and
adapt to changing network conditions [25], especially with
deep learning and reinforcement learning algorithms that
can provide good solutions to complex problems. However,
the main limitations of these algorithms are that they require
the availability of large datasets. In addition, the experiments
are conducted on a limited dataset, and it remains to be seen
how the algorithm will perform in a real-world deploy-
ment [26].

Queuing theory is a mathematical approach used to
study systems that involve the arrival, service, and departure
of customers [30]. It is used to model the behavior of sys-
tems where customers arrive randomly and are served based
on some priority or scheduling rule. The authors in [27, 28]
have used queuing theory to model workload allocation in
the fog environment. However, these papers have used a sin-
gle optimization parameter, while the workload allocation
paradigm in fog computing is a multiobjective problem.

3. System Modeling

The system considered consists of 10 fog nodes and a single
IoT device. The system is represented in Figure 3. Table 2
presents the notations used throughout this study. Please
note that the system modeling equations follow the work
in [16, 20] in order to compare the end results.

3.1. Workload. The entire workload is referred to as l, and it
is given that lminlmax ϵl . This workload arrives first to the
terminal node. The terminal node then, if enough resources
are available, processes a part of it that is denoted by lt and
transmits the rest to the fog node to be processed there.
We denote the workload processed by the fog node as lf .
Note that l = lf + lt.

3.2. Delay. As discussed by [16, 20], there are three types of
delay: delay of processing the workload in the terminal node,
delay of processing the workload in the fog node, and delay
of the transmission of the workload between the fog and ter-
minal nodes. The equations of each type of delay are defined
as follows:

Fog delay df =
lfnf
f f

1

where lfnf are the CPU cycles required to process lf bits and
f f is the frequency of the fog node CPU.

Terminal delay dt =
ltnt
f t

2

where ltnt are the CPU cycles required to process lt bits and
f t is the frequency of the terminal node CPU.

Transmission delay dtrans =
lf

Bw Bi
3

where Bw is the bandwidth and Bi is the spectral efficiency of
the link between the terminal and fog nodes and is given by
Equation (4):

Bi = log2 1 +
Piγiki

Ii + BwN0
4

where γiki are the loss and the shadowing factor, respec-
tively. Ii denotes the power of interference, and N0 is the
noise spectral density.

Hence, the total delay is calculated by summing all three
delays as shown in Equation (5). The delay of transmitting
the result of the workload processing from the fog node to
the terminal node is not considered as in [7, 24, 31]:

dtotal = df + dt + dtrans 5

IoT layer

Fog layer

IoT node

10 fog nodes

Offloading
workload to
the fog layer

Response

Figure 3: The system model consisting of one IoT device and 10 fog devices.
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3.3. Power Consumption. Similar to the delay, there are three
types of energy: the energy consumed by the fog nodes,
the energy consumed by the terminal nodes, and the
transmission energy. The equations of these energies are
given as follows:

Fog energy Ef = lfnfθf 6

where W fnf are the CPU cycles required to process W f
bits and θf is the energy consumed in the fog node per
CPU cycle.

Terminal energy Et = ltntθt 7

where Wtnt are the CPU cycles required to process Wt
bits and θt is the energy consumed in the terminal node
per CPU cycle.

Transmission energy Etrans =
lfPi

Bw Bi
8

where Pi is the transmission power between terminal and
fog nodes and Bw is the bandwidth and Bi is the spectral
efficiency given in Equation (4).

Hence, the total energy is given in Equation (9):

Etotal = Ef + Et + Etrans 9

4. Problem Formulation

The surge in IoT devices has made efficient workload alloca-
tion between IoT devices and fog nodes a key challenge. Fog
computing brings resources closer to the edge [11], but opti-
mizing this allocation to minimize delay and energy con-
sumption remains complex. Previous studies attempted to
allocate the workload using evolutionary algorithms and
identified that NSGA II is a good candidate for allocation
optimization [16, 20]. This paper builds on this knowledge
and proposes RWP-NSGA II, which enhances NSGA II with
a probabilistic mutation operator to balance minimizing
delay and optimizing energy consumption. The study has
the following objectives:

• Minimize delay: This includes the sum of fog delay,
terminal delay, and transmission delay as given in
Equations (1)–(5).

• Minimize energy consumption: This includes the
energy consumed by the fog node, the terminal node,
and the transmission energy as given in Equations
(6)–(9).

The input variables to the system are as follows:

• Workload size: This is the total number of computa-
tional tasks generated by the IoT device referenced as
the workload l.

• IoT and fog energy capacity: This is given through the
necessary parameters to calculate the energy consump-
tion as detailed in the equations.

• Network characteristics: This includes the parameters
such as bandwidth and link efficiency as detailed in
the equations of transmission.

The decision variables are as follows:

• Workload allocation ratio: This is the portion of each
task to be processed locally by the IoT device and the
portion to be offloaded to the fog nodes while mini-
mizing delay and energy consumption.

Table 2: Summary of notations and their definitions.

Notation Description

l Overall workload

lmin
Minimum size of the workload processed

by the terminal node

lmax
Maximum size of the workload processed

by the terminal node

lf Workload offloaded to be processed in the fog node

lt Workload processes at the terminal node

Bi
Spectral efficiency of the link between the terminal

and fog

Bw Bandwidth between fog and terminal nodes

γi The loss of the path

ki The wireless link shadowing factor

Ii The power of the interference

N0 Noise spectral density

prf The probability that a fog node is available

Pi Transmission power between terminal and fog

nt Cycle per bit in the CPU of the terminal node

nf Cycle per bit in the CPU of the fog node

f t The frequency of the terminal node CPU

f f The frequency of the fog node CPU

θt
Energy consumed for a cycle of CPU of the

terminal node

θf Energy consumed for a cycle of CPU of the fog node

df Delay of processing workload in the fog node

dt Delay of processing workload in the terminal node

dtrans
Delay of transmitting the workload between the fog

and the terminal

dtotal Total delay of workload processing and transmission

Ef Energy consumed in the fog node

Et Energy consumed in the terminal node

Etrans
Energy consumed in transmission between fog

and terminal

5International Journal of Distributed Sensor Networks
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The output is as follows:

• Optimized workload allocation: This is the optimal
proportion of tasks to be processed locally on the IoT
device and the portion offloaded to the fog nodes,
achieving minimum delay and energy consumption.

5. Proposed Framework

The allocation of workload to the terminal or fog nodes is a
multiobjective problem that requires adequate optimization
methods. The NSGA II algorithm has been widely and suc-
cessfully used in many optimization problems [16, 20]. This
algorithm starts with a random allocation of resources and
then performs a set of genetic operations to generate new
generations that improve the allocation model until a nearly
optimal solution is reached. Genetic operations include
crossover and mutation. The mutation operation takes place
after the crossover, which crosses the genes of two parents.
Mutation then changes random genes from 1 to 0 or from
0 to 1. This is aimed at increasing the diversity of genes from
one generation to another. This study proposes an improve-
ment on the NSGA II algorithm, which is a probabilistic
mutation. This means that instead of mutating a random
gene, we intend to follow a probabilistic rule for choosing
the gene to mutate. This approach is based on weighing
the genes to give them probability values for mutation. The
first step starts with ranking the genes to assign weight
values to them. We define a genome that takes 1 in the first
position while the rest of the positions are set to 0. Then, the
ranking of this genome is done by calculating its fitness value
and assigning a weight value to it. In the second round, the
second position is set to 1 and the rest of the positions are
set to 0. Then, the fitness is calculated, and the weight of
the second gene is assigned, and so on, until every position
possesses a weight value. Figure 4 shows the process of rank-
ing the genes and assigning weights to them.

Next, to define which genes have a high rank and which
genes have a low rank, we calculate a threshold value that is
the mean of the genes’ weights, as given in Equation (10):

Threshold =
sumof weights
number of genes

10

After calculating the threshold value, each weight is
either above the threshold or below it. Next, we iterate over
the genomes of the population and assign probability values
to each gene as follows:

• The gene weight is above the threshold: If the gene
weight is above the threshold which signifies a high
rank, meaning the gene is likely to have an impact
on the result if mutated, we increase the probability
of this gene’s mutation in the future.

• The gene weight is below the threshold: If the gene
weight is below the threshold, this means that the gene
tends to have less impact on the results. Hence, we

decrease the probability of this gene’s mutation in
the future.

Figure 5 shows the flowchart of the proposed improve-
ment on NSGA II. The left side of the figure shows the main
flow of the algorithm, while the right side presents the details
of the proposed probabilistic mutation. The mutation starts
with ranking genes and assigning weight values to them.
Then, the threshold value is calculated to define the genes
with high weight values and those with low weight values.
Next, the probabilities of mutation are either increased or
decreased according to the rank value. A high probability
means that the gene has a high likelihood of being mutated.
On the other hand, a low probability indicates that the gene
is less likely to be mutated. The initial probability of any gene
being mutated is 0 5. A high probability and a low probability
are expressed by increasing or decreasing the value of the ini-
tial probability by a value of ε. We initially set ε = 0 01; how-
ever, this value shall be tuned experimentally.

6. Implementation and Evaluation

6.1. Simulation Parameters. The simulation parameters
follow the work done in [16, 20]. The load l that is coming
to the IoT and fog devices varies from 2 to 8MB. The IoT
device takes a load lt that is executed locally. Then, the rest
of the load that is lf where lf = l − lt is transferred to the fog
nodes. The lt and lf variables are not fixed, rather they are
optimized by the RWP-NSGA II algorithm that chooses the
allocation solution that will minimize the delay and the energy
consumption. Table 3 shows the simulation parameters.

The simulation considers a scenario with a single IoT
device and 10 fog nodes. The fog nodes have different spec-
ifications in terms of CPU frequency and computational
capabilities.

6.2. RWP-NSGA II Implementation. To implement the pro-
posed RWP-NSGA II algorithm, there are three steps that

w1

1 0 0 0 0 …. 0

0 1 0 0 0 …. 0

0 0 1 0 0 …. 0

0 0 0 1 0 …. 0

0 0 0 0 1 …. 0

0 0 0 0 0 …. 1

Calculate genome fitness

Assign weight value

Calculate genome fitness

Assign weight valuew1 w2

w1

w1

w1

w1

w2

w2

w2

w2

w3

w3

w3

w3

w4

w4

w4

w5

w5 wn

Calculate genome fitness

Assign weight value

Figure 4: The process of ranking the genes and assigning weight
values to them.
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should be performed to mutate the genes in a weighted
probabilistic manner. These steps are as follows:

i. Gene ranking

ii. Calculating threshold

iii. Modifying the probability value of mutation

6.2.1. Gene Ranking. This study uses the Python Pymoo
package to implement RWP-NSGA II. This package is open
source, which allows for modifying the mutation function
without implementing NSGA II from scratch and thereby
eliminating the possibility of having different implementa-
tions of the algorithm and eventually providing a fair com-
parison. In the Pymoo coding, the genes to be mutated are
chosen using the random function. This function generates
a set of floats in the half open interval 0 1 . These generated
floats are used as reference to the genes that will be mutated.
In order to make the implemented solution clear and not
computationally expensive, we divide the interval 0 1 into
portions and rank each portion. This means that we are
seeking the portions that, when mutated, give good

Mutation function
Rank genes and

assign weight values

Calculate threshold

Gene rank above
threshold?

Decrease mutation
probability

Increase mutation
probability

No

Yes

Mutate according to probability value

Start

Initiate population

Evaluate fitness

Tournament selection

Crossover

Mutation

Produce generation offspring

Non-dominated sorting

Calculate crowding distance

Produce new generation

Output

Number of generations
reached?

End

No

Yes

Non-dominated sorting

Calculate crowding distance

Figure 5: The flowchart of the RWP-NSGA II.

Table 3: Simulation parameters.

Parameter Value

lmin 2
lmax 8
l lmin − lmax

nt 1000
f t 2
nf Between 200 and 2000
f f Between 1 and 15
W Between 10 and 90
ki −5
Ii 43
n0 173
θf Between 1 × 10−10 and 10 × 10−10

θt 5 × 10−10

7International Journal of Distributed Sensor Networks
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performance. We shall identify these portions and increase
their probability of being mutated.

In order to be able to slice the interval 0 1 of float
values into smaller intervals, we should first identify how
many floating values this interval has. A float is composed
of a sign bit, 23 mantissa bits, and 8 exponent bits. Since
we are interested in the interval 0 1 , the sign bit can be
ignored since it will be fixed to 0. There are 223 floating
points because the mantissa has 23 bits. However, to be able
to neatly slice the interval to smaller intervals, we can pick
an integer value between 0 and 224 and divide it by 224 to
obtain the corresponding floating point number. Hence,
the interval 0 1 can be rewritten as [0 224/224). In this
way, picking any number in this interval will give us a float
value in the interval 0 1 . Therefore, we can neatly slice this
interval into 24 slices as shown in Example 1.

Example 1. We rewrite 0, 1 as 0, 224/224
We can produce 24 slices of this interval as follows:
Portion 1: 0, 2/224
Portion 2: 2/224, 22/224
Portion 3: 22/224, 23/224
Portion 4: 23/224, 24/224

⋮
Portion 24: 223/224, 224/224

Now that we have 24 portions of the interval, we mutate
each portion individually while fixing the other portions to
obtain a rank for each portion when mutated. Since our
optimization has two functions, delay and energy consump-
tion, mutating each portion yields a result for both delay and
energy consumption. Figure 6 shows the delay, and Figure 7
shows the energy consumption when each portion is
mutated.

As can be seen in Figures 6 and 7, some portions exhibit
better performance when mutated than others. For the delay,
portions from 14 to 24 have a fixed delay. Portion 13, in par-
ticular, when mutated gives both low delay and energy con-
sumption. To obtain a single value that is considered a rank
for the portion, we take the average value of the delay and
energy consumption and rank all portions. Figure 8 shows
the rank of the portions.

6.2.2. Calculating Threshold. To distinguish between the por-
tions of the genes that should have a higher probability of
being mutated and those that should have a lower probabil-
ity of being mutated, we need to calculate the threshold of
the ranked values and then label each portion as “high rank”
if above the threshold or “low rank” if below it. In Figure 9,
the portions that are above the threshold are shown with a
patterned fill, while the portions that are below the threshold
are shown in plain color.

6.2.3. Modifying the Probability of Mutation. Based on the
ranking discussed in the previous section, the portions that
have a high rank should have a higher probability to be
mutated. The probability of mutation is increased by ε.
The value of ε should be tuned experimentally.

The original NSGA II algorithm uses np.random.ran-
dom to generate a float number in the half open interval 0
1 . Since we want to be generating a random number in a
probabilistic weighted way, we replace the Python np.ran-
dom.random function by a new function we call weighted_
random. To assign probability values to the portions to be
mutated, first, we calculate the initial probability of each
portion. Since we have 24 portions, each portion gets an
equal probability, that is,

P portionn =
1
24

= 0 04

We have 13 portions that are above threshold and 11
portions that are below threshold. Hence, increasing the
probability of the 13 portions to be mutated by ε = 0 01 will
lead to the following:

P pa = 0 04 + ε = 0 05

P pb = 0 04 − ε = 0 03

where pa indicates a portion above threshold and pb a por-
tion below threshold. Summing the probabilities should
give 1:

13 P pa + 11P pb ≈ 1

Similarly, we tuned ε to different values and obtained
the following results. We consider values of epsilon that
are between 0.01 and 0.4. Figures 10 and 11 show the
delay and the energy consumption with different values
of ε.

From Figures 10 and 11, we analyzed that the lowest
delay was obtained with a value of ε = 0 2. For the energy
consumption, the lowest energy consumption value was
obtained with ε close to 0.2. This suggests that taking ε =
0 2 would be a good choice.

6.3. Time Complexity Analysis of RWP-NSGA II. In order to
evaluate the scalability and feasibility of the proposed
approach practically, we discuss the time complexity of the
proposed algorithm.

• Dividing M genes into 24 slices involves iterating over
the genes, which operates in O M time complexity.
For each slice, setting one gene to 1 and the rest to 0
requires iterating through the genes in the slice, result-
ing in O M operations per slice. Since there are 24
slices, this step contributes O 24 ×M =O M time
complexity.

• Computing fitness values to rank genes involves evalu-
ating the algorithm’s performance for each gene set-
ting, likely requiring O 24 ×N operations, where N
is the population size.

• Determining the threshold to sort gene importance
typically involves sorting fitness values, which takes
O M log M time complexity. Tuning the ε value

8 International Journal of Distributed Sensor Networks
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involves testing different values to find an optimal one,
which generally adds a constant overhead, O 1 , as it is
an iterative process independent of gene count.

Mutating genes based on the determined ε value and
sorted gene importance involves iterating over each gene,
resulting in O M operations.

Combining these steps, the overall time complexity of
the mutation process in RWP-NSGA II can be summarized
as O M +M + 24 ×N +M log M + 1 +M =O M log M +
N . Here,M represents the number of genes per individual, N
is the population size, and 24 accounts for the number of slices

used in the initial gene setting phase. Therefore, in the worst-
case scenario, the mutation process in RWP-NSGA II is dom-
inated by the sorting operation and the fitness evaluation across
the population.

7. Results and Comparison

As discussed in the previous sections, the RWP-NSGA II
employed a probabilistic mutation where the probabilities
of some genes to be mutated are increased by an ε value that
was experimentally set to 0.2. We compare the proposed
algorithm with the multiobjective evolutionary algorithms.
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Figures 12 and 13 show the delay and energy consumption
of each algorithm.

As can be seen in Figure 12, the delay of the algorithms
differs slightly with 2MB load. As the load increases, the dif-
ference grows. With 8MB load, NSGA II, NSGA III R, and
CTAEA show comparable results. The proposed RWP-
NSGA II, however, outperforms the other algorithms with
a slightly lower delay.

Figure 13 shows that the algorithms that had the lowest
delay in Figure 12 now have the highest energy consump-
tion. Similarly, R-NSGA II and R-NSGA III that have the
highest delay in Figure 12 have the lowest energy consump-
tion as shown in Figure 13.

This observed performance can be attributed to inherent
optimization strategies and trade-offs of the algorithms.
NSGA II, NSGA III, and CTAEA likely prioritize minimiz-
ing delay by efficiently allocating workload, leveraging their
robust performance for exploring solutions that prioritize

shorter processing times. On the other hand, R-NSGA II
and R-NSGA III, which exhibit higher delay, may do so by
conserving energy through less intensive computation or
conservative allocation strategies. This trade-off between
delay and energy consumption is a classic challenge in
multiobjective optimization, where algorithms must strike
a balance according to application-specific priorities and
constraints. The results suggest that while some algorithms
prioritize faster processing times, others opt for energy con-
servation. Following [20], we consider plotting the sum of
the two objectives (delay + energy consumption), to get to
see which algorithms really outperform the others for the
two objectives. Figure 14 shows the sum of the delay and
the energy consumption for all the algorithms.

Figure 14 shows that the six algorithms with 2MB load
have comparable results with RWP-NSGA II having a
slightly lower delay and energy consumption. With 4MB
load, we see that R-NSGA II has slightly higher delay and
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energy consumption than the other algorithms. With 6MB
load, the gap between the performance of the algorithms
starts to grow and R-NSGA II and R-NSGA III have the
highest delay and energy. NSGA II, NSGA III, and CTAEA
have comparable results, and the proposed RWP-NSGA II
has lower delay and energy consumption. For 8MB load,
the gap grows further, and the R-NSGA II shows the highest
delay and energy consumption. NSGA II, NSGA III, and
CTAEA still have comparable results. The proposed RWP-
NSGA II outperforms the five other algorithms with the low-
est delay and energy consumption by almost 3 units.

The results indicate that NSGA II, NSGA III, and
CTAEA consistently maintain similar values of delay +
energy consumption across all workload sizes (2, 4, 6, and
8MB), suggesting their ability to balance both objectives
effectively. This balanced performance implies that these

algorithms achieve competitive solutions that optimize both
delay reduction and energy consumption simultaneously. In
contrast, R-NSGA II begins to exhibit higher delay +
energy consumption starting from the 4MB workload, indi-
cating potential inefficiencies in managing heavier computa-
tional loads. This could stem from its optimization strategy,
which may prioritize other objectives over minimizing delay
and energy consumption under increasing workloads. Simi-
larly, R-NSGA III shows higher delay + energy consumption
from the 6MB workload onwards, suggesting challenges in
maintaining efficient workload allocation as computational
demands escalate. This could be due to the algorithm’s
design or parameter settings, which may not adapt optimally
to larger workloads. The proposed RWP-NSGA II consis-
tently outperforms all other algorithms from the 2MB work-
load onwards, maintaining a better balance between the
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Figure 10: The delay for different values of epsilon.
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reduction of both delay and energy consumption. This supe-
rior performance is likely attributed to the integration of
probabilistic mutation, which enhances the algorithm’s abil-
ity to explore and exploit the solution space effectively,
adapting well to varying workload sizes. As the workload
increases, RWP-NSGA II may continue to optimize work-
load allocation strategies more efficiently than its counter-
parts, leading to progressively better results as workload
size grows.

8. Conclusion

This study addressed the workload allocation problem by
introducing RWP-NSGA II, an advanced variant of NSGA
II featuring an updated weighted probabilistic mutation.
Through comprehensive experiments involving workload
sizes ranging from 2 to 8MB, RWP-NSGA II consistently
demonstrated superior performance compared to the origi-
nal NSGA II and other state-of-the-art multiobjective evolu-
tionary algorithms. The integration of probabilistic mutation
allowed RWP-NSGA II to adaptively optimize mutation
probabilities, thereby enhancing its ability to achieve better
solutions in varying workload scenarios. These findings
underscore the effectiveness of incorporating dynamic
parameter adjustments within evolutionary algorithms for
improving optimization outcomes in complex, real-world
applications. The findings highlighted that the proposed
algorithm exhibits a delay and energy consumption that
are consistently 3 units lower compared to the majority of
other evolutionary algorithms under 2 and 4MB loads. It
maintains this superior performance even under heavier
workloads of 6 and 8MB, where many other algorithms
experience a decline in performance.

Future research could focus on advancing parameter
optimization strategies tailored specifically for RWP-
NSGA II. This includes exploring methods for learning
and adapting mutation probabilities dynamically based on
real-time performance metrics. Additionally, investigations
into extending RWP-NSGA II to handle more complex
optimization problems or integrating it with ML techniques
could further enhance its applicability and effectiveness in
practical scenarios.
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