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ABSTRACT Short-Term Load Forecasting (STLF) is essential for ensuring efficient and reliable power
system operations, requiring accurate predictions of electricity demand. Deep Residual Networks (DRNs),
with their ability to mitigate gradient vanishing and model complex nonlinear relationships in load data, have
emerged as a powerful tool for STLF. This study evaluates the performance of various activation functions
within DRN models, focusing on their impact on predictive precision and generalization. Experiments were
conducted using the DRN architecture for STLF on two distinct datasets: ISO-NE andMalaysia. The findings
demonstrate that activation functions significantly influence the predictive performance of DRN-based STLF
models. Specifically, the DRN model using Swish achieved the best results on the ISO-NE dataset (Mean
Absolute Percentage Error, MAPE = 1.3806%), while the DRN model with Hyperbolic Tangent (Tanh)
excelled on the Malaysia dataset (MAPE = 4.9809%). These results underscore the importance of aligning
activation function selection with dataset characteristics to optimize the performance of DRN models in
STLF. This study provides valuable insights for advancing STLF research and guiding practical applications
in load forecasting.

INDEX TERMS STLF, DRN, activation function.

I. INTRODUCTION
In modern power systems, load forecasting (LF) is a vital tool
for ensuring efficient and reliable grid operation. By accu-
rately predicting future electricity demand, LF helps power
companies optimize grid planning, operation, and manage-
ment. This not only enhances energy utilization efficiency,
reduces operational costs, and ensures supply stability but
also contributes to sustainable energy development. Specif-
ically, improving the precision of load forecasting enables
better resource allocation, supports the integration of renew-
able energy sources, and minimizes environmental impact.
As electricity demand grows and consumption patterns
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become more diverse, the importance and complexity of load
forecasting continue to increase [1].

The four primary forms of load forecasting are Very
Short-Term Load Forecasting (VSTLF), Short-Term Load
Forecasting (STLF), Medium-Term Load Forecasting
(MTLF), and Long-Term Load Forecasting (LTLF), as seen
in Fig. 1 and categorized based on the forecasting time
range [2], [3]. VSTLF is used for real-time control and
concentrates on urgent operational demands. Up to an hour
beforehand, it can predict load. Real-time power system
scheduling and operation depend heavily on STLF, which
can last anywhere from one hour to a week. MTLF assists
with operational planning, such as scheduling maintenance
and managing the power supply to meet expected medium-
term demand. MTLF typically spans one week to one year.

78618

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0002-7520-867X
https://orcid.org/0000-0001-6910-7162
https://orcid.org/0000-0001-9379-3385
https://orcid.org/0000-0003-1880-5643
https://orcid.org/0000-0001-7263-2953
https://orcid.org/0000-0003-0874-7793


J. Liu et al.: Performance Evaluation of Activation Functions in Deep Residual Networks for STLF

FIGURE 1. Classification of load forecasting.

As it helps predict future power demands and the need for
additional generating facilities, LTLF can range from one
year to many years. This makes it an important tool for
strategic planning, policy-making, and investment choices in
power system infrastructure. In particular, STLF is essential
to the power system’s real-time operation and dispatching.
The weekly load forecasting for the upcoming seven days,
the daily load forecasting for the upcoming 24 hours, and the
forecasting many hours in advance are all included in these
projections [4].

Future power system operation and management will need
for quicker decision-making and the capacity to deal with
unpredictability. Load forecasting is essential in many appli-
cation domains, such as energy trading, unit commitment
choices, system security evaluation, economical power pro-
duction distribution, and performance monitoring. Therefore,
the calibration and verification of estimated precision become
increasingly important [5]. Grid scheduling, load flow anal-
ysis, daily operations, and performance are only a few of
the issues covered by load forecasting. Precise forecasting is
crucial to the system’s regular functioning as imprecise load
forecasting can result in unforeseen expenses [6].

In recent years, researchers have proposed many meth-
ods to address STLF problems, broadly categorized into
traditional and modern forecasting methods. Common tra-
ditional forecasting methods include linear regression [7] or
non-parametric methods (e.g., non-parametric regression [8],
exponential smoothing [9], [10]), support vector regression
(SVR) [1], [11], [12], autoregressive models [13], and fuzzy
logic methods [14], [15]. However, these methods often
exhibit limitations in practical applications, such as overly
simplistic models, difficulty in capturing complex load pat-
terns, and tendencies toward overfitting and model expansion
as input variables increase [1], [16].
To overcome these limitations, modern forecasting meth-

ods mainly leverage artificial intelligence and machine
learning technologies, particularly artificial neural networks
(ANNs), which have become the mainstream solution for

FIGURE 2. Technological Evolution of STLF.

constructing STLF systems. Compared with traditional meth-
ods, modern ANN methods use deep learning and advanced
network structures to better capture complex load pat-
terns, improve prediction precision, and reduce overfitting
risks [17], [18]. However, despite increasing the number of
input parameters, hidden nodes, or layers, another criticism
is that networks are prone to ‘‘overfitting’’ [19]. Neverthe-
less, other types and subtypes of ANNs, such as radial basis
function (RBF) neural networks [20], wavelet-based neural
networks [21], and extreme learning machines (ELM) [22],
have been proposed and applied to STLF.

As a modern forecasting method, various techniques based
on artificial neural networks (ANN), particularly deep neural
network (DNN) structures, have been widely applied to load
forecasting, especially STLF. DNNs, characterized by multi-
ple hidden layers, effectively extract and learn complex load
patterns through hierarchical feature representation. In recent
years, load forecasting research has transitioned from tradi-
tional shallow neural network structures to more complex and
specialized deep learning architectures. These architectures
integrate information from diverse sources to capture intricate
temporal and spatial dependencies in load data. This shift has
been driven by advancements in deep learning techniques and
their demonstrated efficacy in handling complex prediction
tasks [23], [24], [25]. Figure 2 summarizes the technological
evolution of STLF from traditional methods to DNNs, clearly
illustrating the methodological development trends in the
field of load forecasting.

In recent years, load forecasting research has gradually
shifted away from predefined shallow network structures,
instead integrating diverse information from various applica-
tions into neural network topologies. Convolutional Neural
Networks (CNN) [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36] have shown excellent performance in image
processing and local feature extraction, effectively captur-
ing local temporal features in load data. However, CNNs
are inherently limited to local feature extraction, making
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it challenging to model long-term dependencies. Further-
more, as the network depth increases, CNNs often encounter
gradient vanishing problems, which make training deeper
architectures difficult and limit their practicality in complex
tasks like load forecasting.

Recurrent Neural Networks (RNN) [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], particularly variants like Long Short-Term Mem-
ory (LSTM) networks and Gated Recurrent Units (GRU),
are widely used in load forecasting due to their ability to
model temporal dependencies. LSTM and GRU introduce
memory cells and gating mechanisms to alleviate gradient
vanishing issues, enabling them to capture both short-term
and long-term dependencies in sequential data. However,
these models process sequences step-by-step, which not only
increases computational complexity but also makes them less
efficient for very long time series. For deeper networks, both
LSTMandGRU remain susceptible to vanishing or exploding
gradients, which can limit their scalability. Similarly, while
advanced RNN variants such as Bidirectional LSTM (BiL-
STM) and Bidirectional GRU (BiGRU) improve sequence
modeling by considering both past and future information,
their dual-directional processing further increases computa-
tional cost and complexity.

Transformer models [54], [55], [56], [57], [58], [59], [60],
[61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],
leveraging self-attention mechanisms, have recently emerged
as a powerful tool for time series forecasting. Transform-
ers excel in capturing long-range dependencies and can
efficiently handle sequences of varying lengths. However,
their computational complexity grows quadratically with
sequence length, making them resource-intensive for ultra-
long sequences. Additionally, as with CNNs and RNNs,
training stability decreases as the model depth increases,
often necessitating additional architectural adjustments to
address these challenges.

As model depth increases, the training difficulties asso-
ciated with CNNs, RNNs, and Transformers often restrict
the number of hidden layers, limiting their ability to effec-
tively learn complex patterns. In this context, Chen et al.
[72] proposed a DRN for STLF. Unlike other network struc-
tures, DRN alleviates the gradient vanishing problem in deep
networks by incorporating residual connections, making the
model stable even with deep architectures. DRN can directly
use historical load, temperature, and time data as input,
minimizing the need for extensive feature engineering while
automatically extracting complex features from the data.
Compared to CNNs, which are effective at capturing local
patterns but struggle with long-term dependencies, and RNN-
based models, which can model temporal sequences but
suffer from vanishing gradients and high computational cost,
DRNs offer a more robust and scalable solution for STLF.
Moreover, although Transformers can capture long-range
dependencies efficiently, their high resource consumption
and unstable performance in deeper architectures present

challenges in real-time forecasting scenarios. DRNs strike a
practical balance between depth, training stability, and rep-
resentational power, making them particularly suitable for
STLF tasks that require both precision and efficiency.

Although the DRN structure demonstrates significant
advantages in STLF, its performance is still highly dependent
on the choice of activation function. In existing DRN stud-
ies, the Scaled Exponential Linear Unit (SELU) activation
function, which has self-normalizing properties, has been
widely adopted (Chen et al. [72]; Xu et al. [73]; Tian et
al. [74]; Kondaiah et al. [75]; Chen et al. [76]; Kondaiah
et al. [77]; Sheng et al. [78]). These studies indicate that
SELU can significantly enhance prediction precision in var-
ious complex short-term load scenarios. Its self-normalizing
properties effectively alleviate the vanishing gradient prob-
lem and improve the training stability of deep networks. Apart
from SELU, some studies have also explored the potential of
other activation functions. For instance, Ding et al. [79] and Li
et al. [80] utilized the Rectified Linear Unit (ReLU) activation
function in their DRN model to take advantage of its com-
putational efficiency and simplicity, which are particularly
beneficial for training deep networks on large-scale datasets.
By employing ReLU, their model demonstrated competitive
prediction precision while maintaining robustness in address-
ing specific STLF scenarios. On the other hand, Sheng et
al. [81] conducted a simple comparison of Sigmoid, ReLU,
and Leaky Rectified Linear Unit (Leaky ReLU) activation
functions in their study. By analyzing the Mean Absolute
Percentage Error (MAPE) of the model under different acti-
vation functions, they ultimately selected Leaky ReLU as the
activation function for their improved convolutional resid-
ual network, significantly enhancing the prediction precision
for STLF. This result further demonstrates that different
activation functions have unique advantages in addressing
nonlinear load patterns and complex data characteristics.

Although previous studies have explored the role of acti-
vation functions in Deep Residual Networks (DRN) for
Short-Term Load Forecasting (STLF), no comprehensive
evaluation has been conducted comparing multiple activation
functions within the DRN framework specifically for STLF.
The selection of an appropriate activation function remains
a critical but understudied factor in optimizing DRN-based
load forecasting models. This study addresses this gap by
systematically analyzing and comparing the predictive per-
formance of eight commonly used activation functions in
DRN for STLF. A thorough review of the literature from the
Web of Science database [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53],
[54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64],
[65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75],
[76], [77], [78], [79], [80], [81] identified key advancements
in CNN, RNN, Transformer, and DRN models applied to
STLF, as well as the activation functionsmost frequently used
in these models. Figure 3 provides an overview of activation
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FIGURE 3. Activation Function Usage in STLF Models (CNN, RNN,
Transformer, DRN) from 2016 to 2024 in web of science [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70],
[71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81].

function trends across different architectures, underscoring
the need for a structured evaluation of their effectiveness
in DRN models. To bridge this knowledge gap, a rigor-
ous evaluation was conducted on the impact of different
activation functions on DRN performance using two dis-
tinct datasets—ISO-NE (temperate climate with significant
seasonal variations) and Malaysia (tropical climate with rela-
tively stable load patterns). The experimental results highlight
the influence of activation function selection on predictive
precision and propose a structured approach for aligning
activation function choices with dataset characteristics. The
findings offer valuable theoretical insights for enhancing
DRN-based STLF models and provide practical idea for
improving load forecasting precision in real-world applica-
tions.

This study aims to systematically evaluate the performance
of various activation functions within the DRN framework
to optimize its predictive capabilities in STLF tasks. The
remainder of this paper is organized as follows: Section II
reviews the application of DRN in STLF; Section III outlines
the research methodology, including data preprocessing and
experimental setup; Section IV presents the experimental
results and discusses the performance of different activation
functions on the ISO-NE and Malaysia datasets; finally,
Section V concludes the study with key findings and recom-
mendations for future research.

II. DRN FOR STLF
A. BASIC DRN STRUCTURE
The DRN is employed to unravel the intricate nonlinear
interplay between input data and the resulting output. Gen-
erally, a neural network’s learning potential escalates with
increased model depth. Yet, paradoxically, this depth might,

FIGURE 4. The basic component of the deep residual network [72].

in reality, impede the deep learning model’s efficacy. This
decline in performance could stem from either the intrinsic
complexities of the data or the sophisticated nature of the
model itself. To address this challenge, residual blocks are
incorporated into the architecture. In these blocks, the learn-
ing process isn’t about mapping directly from input to output
but rather about mapping from input to a residual function.
This approach facilitates the effective training of deeper net-
works by optimizing the learning process through residual
connections, ensuring better gradient flow and reducing the
risk of vanishing gradients [82].
As depicted in Figure 4, a residual network (ResNet) fea-

tures two sequential levels bridged by a skip connection.
A skip connection typically operates as an identical map-

ping when the dimensions of its input and output align. Under
these conditions, the corresponding ResNet’s output is as
follows Equation (1):

youtput = xInput + F
(
xInput , 2

)
(1)

However, when input and output dimensions differ, the
skip connection assumes the role of a linear projection.
In such instances, the associated ResNet yields an output
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FIGURE 5. The structure of a deep residual network [72].

that integrates this linear projection (Lp), as outlined in
Equation (2):

youtput = Lp∗
xInput + F

(
xInput , 2

)
(2)

Stacking multiple residual blocks allows for the straight-
forward construction of a deep residual network. Figure 5
depicts the structure of a deep residual network.

This skip connection indicates that the learning capac-
ity of a residual block (ResBlock) is, at minimum, on par
with that of an equivalently layered stack. When n resid-
ual blocks are sequentially arranged, the Equation (3) for
forward-propagation is as follows:

y(x) = x0 +

∑n

j=1
F

(
xj−1, 2j−1

)
(3)

where x0 is the input of the residual network, xn the output
of the residual network, and

2j =

{
θj,z

∣∣
1≤z≤Z

}
the set of weights associated with the jth residual block, Z
being the number of layers within the block.

The back propagation of the overall loss of the neural
network to x0 can then be calculated as Equation (4):

∂loss
∂x0

=
∂loss
∂xn

(
1 +

∂

∂x0

∑n

j=1
F

(
xj−1, 2j−1

))
(4)

In the given Equation, loss represents the total loss of the
neural network. The presence of ‘‘1’’ signifies that gradi-
ents from the network’s output can be directly propagated
backward to its input. This direct back-propagation reduces
the likelihood of gradient vanishing, a common issue when
gradients must traverse multiple layers before reaching the
input, thus enhancing the network’s learning efficiency.

B. DRN STRUCTURE FOR STLF
The DRN for STLF is based on the basic DRN architec-
ture detailed in [72], primarily composed of a fundamental
structure and modified ResNet (ResNetPlus). ResNetPlus,
an enhanced version of ResNet designed to improve 24-
hour load forecasting performance, retains the block structure
consistent with ResNet.

To begin with, a neural network featuring densely con-
nected layers, commonly referred to as the ‘fundamen-
tal structure,’ is utilized. This foundational architecture is
responsible for generating an initial load forecast for the
upcoming 24 hours. The visual depiction of the model
employing the fundamental structure is presented in Figure 6.

Secondly, Tmonth
h , Tweek

h and Tday
h are the temperature read-

ings concurrent with Lmonth
h , Lweek

h and Lday
h , respectively. Th

is the actual temperature forecasted for the next day. S, W,
and H are one-hot encoded variables representing the season,
weekday, and holiday status, respectively. The output from
this fundamental structure, denoted as Lh, serves as the input
for the second segment of the model.

Within this architecture, every fully connected layer (FC)
corresponding to [Lday

h ,Tday
h ], [Lweek

h ,Tweek
h ], [Lmonth

h ,Tmonth
h ]

and Lhour
h comprises 10 hidden nodes. On the other hand, the

fully-connected layers associated with [S, W] are equipped
with 5 hidden nodes. Additionally, both fully connected
layer 1, FC2, and the fully-connected layer preceding Lh
contain 10 hidden nodes. It’s worth noting that all layers,
except for the output layer, employ an activation function.

The fundamental structure of the model shown in Figure 6
is used for preliminary forecasting of the next 24 hours.
In this framework, Lmonth

h denotes the load values for the
corresponding hour from the days 1, 2, and 3 months before
the predicted day. Lweek

h signifies the load values for the same
hour from 1 to 8 weeks prior, and Lday

h corresponds to the
loads of the same hour for each day of the preceding week.
Lhour
h represents the load values for the same hour from the

previous 24 hours.
The ResNetPlusmodel represents an advanced evolution in

neural network design, deriving its foundational concept from
the classic ResNet architecture but with notable enhance-
ments. This innovative variant integrates residual blocks, each
containing two hidden layers with 20 nodes apiece, utiliz-
ing identical activation functions. By sequentially arranging
four of these blocks, each with its unique connections, and
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FIGURE 6. The structure of a deep residual network [72].

FIGURE 7. A depiction of the modified structure of the ResNetPlus [72].

repeating the process across 10 layers, ResNetPlus achieves
significant depth and complexity. The design includes a novel
shortcut connection extending from the output of the final
block directly to the network’s entry point, culminating in
the model’s output. Such a structure not only simplifies the
formation of a deep residual network but also optimizes its
efficiency. As depicted in Figure 7, while ResNetPlus pre-
serves the hyperparameters found in its ResNet predecessors
within these blocks, it augments the original framework to
exploit the full potential of the residual design.

To effectively train the models, the model’s loss, denoted
as Loss, is defined as the cumulative result of two distinct

components Equation (5):

Loss =LossE + LossR (5)

where LossE quantifies the discrepancy in predictions, and
LossR serves as a penalty term for out-of-range values,
designed to expedite the training phase. Particularly, LossE
is articulated as Equation (6):

LossE =
1

NumH

∑N

j=1

∑H

h=1

∣∣ŷ(j,h) − y(j,h)
∣∣

y(j,h)
(6)

where ŷ(j,h) represents the model’s output and y(j,h) denotes
the actual normalized load for the hth hour of the jth day.
Here, Num symbolizes the number of data samples, while H
indicates the number of hourly loads within a day (notably, H
= 24 in this scenario). This metric, commonly recognized as
the MAPE, is employed both as a measure of error and as a
criterion for assessing the forecast results of the models. The
second term, LossR, is computed as Equation (7):

LossR =
1

2Num

∑Num

j=1
max

(
0,maxhŷ(j,h) − maxhy(j,h)

)
+ max

(
0,minhy(j,h) − minhŷ(j,h)

)
(7)

This term imposes a penalty on the model if the predicted
daily load curves deviate beyond the actual load ranges,
thereby hastening the initial phase of the training process.
As the model begins to generate forecasts with greater pre-
cision, this term increasingly underscores the expense of
overestimating the peaks and underestimating the troughs of
the load curves.

III. RESEARCH METHODOLOGY
A. RESEARCH DATA
1) DATA PRE-PROCESSING
The datasets collected often present multiple irregularities,
including missing values, incomplete information, noise, and
raw formats [83]. Unrefined data can harbor flaws and
inconsistencies, potentially leading to misunderstandings and
undermining the integrity of data analysis. Consequently,
the pre-processing stage, an integral part of the data refine-
ment process, is especially critical for real-world datasets.
It ensures the system’s performance and reliability in extract-
ing meaningful information from actual data scenarios.

Typically, the data pre-processing stage encompasses
several essential steps or phases, applied to raw data to
enhance its quality before it’s considered refined. These steps
include: (1) Data Cleaning, (2) Data Transformation, (3) Data
Reduction, and (4) Data Discretization. These stages are
systematically implemented during the pre-processing phase
to polish and assess the data. This approach enables more
efficient and accurate predictions. Consequently, depending
on the nature of the data, the strategy employed, and the
specific input requirements for the proposed methodology,
various sub-phases can be effectively utilized to optimize the
data for further analysis.
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FIGURE 8. Load data in ISO-NE and Malaysia datasets.

2) DESCRIPTION OF THE DATA
This study employs two publicly available datasets: the New
England’s Independent System Operator (ISO-NE) dataset
and the Malaysia dataset, which provide diverse perspec-
tives for analyzing load forecasting under different climatic
and consumption conditions (data sources are provided in
Appendix -A). The ISO-NE dataset includes hourly load and
weather data (temperature) recorded from March 2003 to
December 2014, reflecting typical consumption patterns in a
temperate climate with significant seasonal and annual varia-
tions. In contrast, theMalaysia dataset covers hourly load data
for the Petaling Jaya area from January 2020 to December
2022, as well as providing information on daily tempera-
tures (mean temperature, minimum temperature, maximum
temperature). Representing a tropical climate, the Malaysia
dataset shows relatively steady demand patterns with mod-
erate fluctuations, while the ISO-NE dataset exhibits pro-
nounced periodic trends driven by seasonal effects, with load
ranging from 7,500 megawatt (MW) to 27,500 MW com-
pared to 10,000 MW to 18,000 MW in the Malaysia dataset.
Figure 8 visualizes the load data from both datasets, high-
lighting their contrasting characteristics and making them
suitable for evaluating the performance of load forecasting
models across diverse scenarios.

3) DATA FEATURE PROCESSING
In this study, the ISO-NE and Malaysia datasets differ signif-
icantly in terms of temporal granularity, requiring different
feature processing strategies. For the ISO-NE dataset, hourly
load Lhour

h and temperature data Tmonth
h ,Tweek

h ,Tday
h are

directly fed into the model. The original fundamental struc-
ture extracts load features Lmonth

h ,Lweek
h ,Lday

h based on
different temporal ranges, combined with seasonal S, W, and
H information to generate model inputs. S is divided into
four seasons: spring, summer, autumn andwinter. S is divided

FIGURE 9. Adjusted one-hour input infrastructure.

into four seasons: spring, summer, autumn and winter, and H
includes the United States Independence Day, Christmas, etc.

In contrast, the Malaysia dataset provides only daily
temperature data, including Tmean,Tmax,Tmin, which dif-
fers from the hourly temperature data in the ISO-NE
dataset. To address this difference, the fundamental struc-
ture was adjusted to directly accept daily temperature data
as input, and the modified fundamental structure is shown
in Figure 9. In the adjusted model, daily temperature data
Tmean ,Tmax,Tmin are concatenated as a single feature input,
without temporal segmentation. Meanwhile, the processing
of load features Lmonth

h ,Lweek
h ,Lday

h remains unchanged,
continuing to extract information from the past 24 hours,
8 weeks, and 3 months. Date-related features, such as S, W,
and H, are combined with load and temperature features to
form the final input to the model. S is divided into two sea-
sons: rainy season and dry season, and H includes Malaysia
Independence Day, Eid al-Fitr, etc.

This adjustment enables the Malaysia dataset’s daily tem-
perature features to be utilized directly, avoiding redundancy
from expanding daily data into hourly data, while simplifying
the preprocessing steps. The adjusted model processes load
features and date information consistently for both datasets,
with the main difference being in the handling of tempera-
ture features based on temporal granularity. This ensures the
model’s adaptability and generalization across datasets with
varying temporal resolutions.

B. EXPERIMENTAL DESIGN
To ensure a controlled and consistent experimental envi-
ronment, this study adopts a fixed DRN architecture. The
primary objective is to evaluate the performance of differ-
ent activation functions while controlling for architectural
variability. By keeping the model structure consistent, the
comparative analysis focuses solely on the impact of acti-
vation functions, enhancing the clarity and validity of the
findings. This study adopts a systematic experimental design
to evaluate the performance of eight activation functions
in a DRN, specifically in the DRN model. The activation
functions selected for this study—Linear [84], Sigmoid [85],
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Tanh [86], ReLU [87], Leaky ReLU [88], SELU [89],
GELU [90], and Swish [91]—were chosen based on their
widespread usage in recent STLF literature, as previously
shown in Figure 3. By selecting both classical and mod-
ern activation functions, this study ensures a balanced and
representative evaluation. The mathematical definitions and
formulas for each function are provided in Appendix -B.

These functions were chosen to represent a diverse range
of traditional and modern activation functions, enabling a
comprehensive comparison of their impact on model perfor-
mance. The experimental setup includes model architecture,
optimizer settings, training process, and data preprocessing.
Except for the activation functions and their corresponding
initialization mechanisms, all other aspects are consistent
with Reference [72]. The main focus of this study is to evalu-
ate the performance of these activation functions in improving
predictive precision.

Randomweight initialization was applied using the default
initialization methods corresponding to each activation func-
tion. Linear, Tanh, and Sigmoid activation functions use
Glorot Uniform initialization [92], [93]; ReLU and Leaky
ReLU activation functions use He Normal initialization [94];
SELU activation function uses LeCun Normal initializa-
tion [89]; and GELU and Swish activation functions use
Glorot Normal initialization [90], [91].
Snapshot ensemble is a model ensemble technique that

periodically saves model weights, referred to as snapshots,
at different learning rate phases during training [72], [95].
By averaging the predictions from these snapshots, this
method reduces training instability and mitigates the risk
of overfitting associated with relying on a single model.
In this study, each model underwent 700 training epochs,
comprising 600 initial epochs followed by two additional
rounds of 50 short-term training epochs. Model weights were
saved at the end of each short-term round, resulting in three
snapshots per training repetition. This entire training process
was repeated five times for each model configuration, pro-
ducing a total of 15 snapshots. For each individual model,
the total training time—including all repetitions and snap-
shot phases—was observed to remain within eight hours.
It is worth noting that exceeding this duration does not
adversely affect model performance, as the eight-hour bench-
mark reflects practical computational efficiency rather than a
limiting factor. This snapshot ensemble strategy effectively
enhanced prediction stability and reduced overfitting risk
across repeated experiments.

TheAdamoptimizer was selected, and its adaptive learning
rate adjustment mechanism was employed. The initial learn-
ing rate was set to 0.001, which is the default value for the
Adam optimizer and ensures effective model training [96].
This study utilized two datasets: the ISO-NE dataset and
the Malaysia dataset. The ISO-NE dataset and the Malaysia
dataset represent temperate and tropical regions, respectively,
encompassing diverse load patterns and climatic characteris-
tics, providing a variety of scenarios for model performance
evaluation. The ISO-NE dataset used the most recent three

years of data for model training, while the Malaysia dataset
used the most recent two years.

All experiments were conducted in a Python 3.8 envi-
ronment using Keras 2.10.0 and TensorFlow 2.10.0 as the
backend, on a Lenovo laptop equipped with an AMDRyzen 7
6800H processor and Radeon Graphics.

This experimental design provides a reliable basis for eval-
uating the performance of activation functions in the DRN
framework and lays the groundwork for subsequent research
and model optimization.

C. EVALUATION METRICS
When comparing the performance of various DRN models
in STLF, different studies have employed several evalu-
ation metrics to measure the predictive precision of the
models [72], [73], [74], [75], [76], [77], [78], [79], [80],
[81]. These metrics include Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Square Error (MSE), Normalized Mean
Square Error (NMSE), Correlation Coefficient (R), and Coef-
ficient of Determination (R2). The specific evaluation metrics
used vary across studies, and their corresponding Equations
are presented below, listed in the order of Equation (8) to
Equation (14):

MAPE =
1
N

∑N

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ × 100 (8)

RMSE =

√
1
N

∑N

i−1

(
yi − ŷi

)2 (9)

MAE =
1
N

∑N

i−1

∣∣yi − ŷi
∣∣ (10)

MSE =
1
N

∑N

i−1

(
yi − ŷi

)2 (11)

NMSE =

∑N
i−1

(
yi − ŷi

)2
N·σ 2

y
(12)

R =

∑N
i−1 (yi − ȳ)

(
ŷi−ŷ

)
√∑N

i−1 (yi − ȳ)2
∑N

i−1

(
ŷi−ŷ

)2 (13)

R2
= 1−

∑N
i−1

(
yi − ŷi

)2∑N
i−1 (yi − ȳ)2

(14)

The parameters used in these metrics are as follows. N
represents the total number of input values used in the cal-
culation, yi is the actual value for the i−th sample, and ŷi is
the predicted value for the i−th sample. ȳ and ŷ are the mean
values of all actual and predicted values, respectively, while
σ 2
y denotes the variance of the actual values, which is used

to normalize MSE in NMSE. These parameters ensure that
the metrics comprehensively evaluate model performance
by reflecting prediction precision, error magnitude, and the
relationship between actual and predicted values.

In general, the smaller the MAPE, RMSE, MAE, MSE,
and NMSE, the better, indicating that the model has a smaller
prediction error and stronger generalization ability; and the
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TABLE 1. Performance metrics of activation functions on ISO-NE dataset.

closer R and R2 are to 1, the better, indicating that the model
has stronger prediction precision and fitting ability.

IV. RESULTS AND DISCUSSION
A. ISO-NE DATASET
The model was trained on ISO-NE dataset spanning from
March 2003 to December 2005, and predictions were gen-
erated for the entirety of 2006, with the experimental results
summarized in Table 1 and visually presented in Figure 10,
showcasing the performance of various activation functions
across key metrics. Figure 11 illustrates the comparison
between the actual load and the predicted load using the DRN
model with Swish as the activation function.

The Swish activation function, when applied in the DRN
model for STLF, demonstrated the best performance, achiev-
ing MAPE, RMSE, MAE, and MSE values of 0.013806,
0.015444, 0.008909, and 0.000239, respectively, signifi-
cantly outperforming other activation functions within the
same framework. Furthermore, its R and R2 values reached
0.992095 and 0.984174, respectively, indicating superior pre-
diction precision and fitting capability in the context of
STLF. The GELU activation function ranked second, show-
ing excellent performance across most metrics, with a MAPE
of 0.013977, slightly higher than Swish but still consider-
ably lower than other activation functions, demonstrating its
strong predictive capability and stability within the DRN
model.

The Tanh and ReLU activation functions also performed
well in the DRN model, with MAPEs of 0.014929 and
0.015142, respectively. These results suggest that they retain
certain advantages in capturing nonlinear features but fall
short of the performance exhibited by Swish and GELU.
LeakyReLU and SELUdelivered strong results as well, albeit
slightly inferior to Swish and GELU. In contrast, the DRN
model using Sigmoid and Linear activation functions per-
formed poorly, with MAPE values of 0.025298 and 0.02413,
respectively, highlighting the limited capacity of these acti-
vation functions to model complex load patterns in the STLF
task.

FIGURE 10. Performance Metrics of Activation Functions on ISO-NE
Dataset.

FIGURE 11. The comparison of DRN (Swish) prediction with the actual
load on the ISO-NE dataset.

These experimental findings underscore the substantial
impact of activation function selection on the performance
of DRNmodels in STLF. Swish and GELU enabled the DRN
model to effectively capture the nonlinear characteristics of
the data, thereby enhancing its predictive ability. Conversely,
traditional activation functions, such as Sigmoid and Linear,
were less effective due to their inherent limitations in model-
ing complex features. This study provides valuable insights
for optimizing DRN-based STLF models, suggesting that
future research should prioritize refining and exploring the
application of advanced activation functions like Swish and
GELU to further improve model performance.
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TABLE 2. Performance metrics of activation functions on Malaysia
dataset.

FIGURE 12. Performance Metrics of Activation Functions on Malaysia
Dataset.

B. MALAYSIA DATASET
The model is trained on the Malaysia dataset from 2020 to
2021 and used to predict the whole year of 2022. The exper-
imental results on the Malaysia datasetset are summarized
in Table 2 and presented visually in Figure 12, showing the
performance of various activation functions in terms of key
metrics. Figure 13 illustrates the comparison between the
actual load and the predicted load using the DRN model with
Tanh as the activation function.

FIGURE 13. The comparison of DRN (Tanh) prediction with the actual
load on the Malaysia dataset.

Among all activation functions applied in the DRN model
for STLF on the Malaysia dataset, Tanh demonstrated the
best performance, achieving a MAPE of 0.049809, RMSE
of 0.044492, and R2 of 0.930471. These results highlight
Tanh’s strong ability to model the nonlinear characteristics
of Malaysian load patterns.

The SELU activation function closely followed, with a
MAPE of 0.050429 and RMSE of 0.044696, indicating its
ability to stabilize training through its self-normalizing prop-
erty. The Swish activation function also performed well,
achieving a MAPE of 0.050570, showcasing its smooth gra-
dient behavior and flexibility.

While the GELU activation function exhibited competi-
tive performance with a MAPE of 0.051454, it fell short
compared to Tanh and SELU. The ReLU and Leaky ReLU
activation functions demonstrated moderate performance,
with MAPEs of 0.058765 and 0.059134, respectively.

In contrast, the Sigmoid and Linear activation functions
performed poorly, with MAPEs of 0.060240 and 0.061178,
respectively. These results suggest that their limited nonlinear
capacity and saturation effects hindered the model’s ability
to capture the complex load patterns present in the Malaysia
dataset.

Overall, Tanh outperformed other activation functions in
modeling the Malaysia dataset, while SELU and Swish also
showcased strong predictive capabilities.

C. SUMMARY
The experimental results for the DRN model in STLF on the
ISO-NE and Malaysia datasets highlight the significant role
of activation function selection in determining model perfor-
mance. These results emphasize the importance of aligning
activation functions with dataset characteristics, such as vari-
ability, stability, and complexity of load patterns.

On the ISO-NE dataset, where load patterns exhibit high
variability and complex nonlinear relationships, the Swish
activation function achieved the best performance with a
MAPE of 0.013806 and an R2 of 0.984174. Swish’s smooth
and self-gating property allows it to effectively model subtle
changes in the data, enabling improved gradient flow during
backpropagation and ensuring better convergence and gener-
alization. GELU, ranking second with a MAPE of 0.013977,
demonstrated excellent stability and predictive precision,
attributed to its probabilistic nature that balances gradient
flow and model complexity.
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Traditional activation functions such as Tanh and ReLU
also performed competitively on the ISO-NE dataset, achiev-
ing MAPEs of 0.014929 and 0.015142, respectively. Tanh’s
symmetric output range effectively handles nonlinear fea-
tures, while ReLU’s computational efficiency ensures robust-
ness. However, their performance was still slightly inferior to
advanced activation functions like Swish and GELU.

In contrast, the Sigmoid and Linear activation functions
performed poorly, with MAPEs of 0.025298 and 0.024130,
respectively. Sigmoid’s vanishing gradient problem limits
its performance in deeper networks, while Linear’s lack of
nonlinearity restricts its ability to capture complex load rela-
tionships.

On the Malaysia dataset, where load patterns are relatively
stable and less volatile, the Tanh activation function emerged
as the top performer, achieving a MAPE of 0.049809 and an
R2 of 0.930471. Tanh’s ability to model nonlinear transfor-
mations effectively aligns with the dataset’s characteristics,
ensuring strong predictive precision.

The SELU activation function, which ranked second with
a MAPE of 0.050429, demonstrated its strength in stabilizing
the training process through its self-normalizing property,
making it well-suited for deep networks on stable datasets.
The Swish activation function also exhibited strong perfor-
mance, with a MAPE of 0.050570, reflecting its robustness
and ability to model subtle patterns.

The GELU activation function, with a MAPE of 0.051454,
delivered competitive results but fell slightly short compared
to Tanh and SELU. ReLU and Leaky ReLU exhibited mod-
erate performance, with MAPEs of 0.058765 and 0.059134,
respectively, showing robustness but lacking the precision
offered by advanced activation functions. Once again, Sig-
moid and Linear functions recorded the poorest performance,
withMAPEs of 0.060240 and 0.061178, respectively, reflect-
ing their limitations in capturing even the relatively simpler
patterns of the Malaysia dataset.

These findings demonstrate that the performance of acti-
vation functions is highly dataset-dependent. On the ISO-NE
dataset, advanced activation functions like Swish and GELU
excelled due to their ability to handle high variability and
complex features. Conversely, on the Malaysia dataset, the
Tanh and SELU activation functions performed best, owing
to their suitability for stable, less volatile patterns.

While the findings of this study offer valuable insights
into the role of activation functions in DRN-based STLF
models, it is important to acknowledge certain experimen-
tal constraints. All training processes were conducted on a
standard laptop with limited computational capacity, and the
total training time for each individual model—including all
repetitions and snapshot phases—was observed to remain
within eight hours. These practical constraints ensured con-
sistency and reproducibility across experiments but may have
limited the exploration of deeper network architectures or
more extensive hyperparameter tuning.

In conclusion, Swish and GELU are particularly effective
for datasets with high variability, while Tanh and SELU are

better suited for stable datasets. The consistently poor per-
formance of Sigmoid and Linear activation functions across
both datasets highlights their limitations in STLF tasks.
Future research should focus on further optimizing advanced
activation functions and exploring their adaptability to vari-
ous dataset characteristics, ensuring improved precision and
robustness in DRN-based STLF models.

V. CONCLUSION
This study systematically evaluated the performance of var-
ious activation functions within DRN models specifically
designed for STLF, employing the DRN framework on two
distinct datasets: ISO-NE and Malaysia. The findings high-
light the pivotal role of activation function selection in
enhancing the performance of DRN-based STLF models and
demonstrate significant variations influenced by the charac-
teristics of each dataset.

The key insights from this study are as follows:
Dataset-Specific Performance: The effectiveness of activa-

tion functions depends significantly on dataset characteristics
when applied within DRN models. On the ISO-NE dataset,
where load patterns are highly variable and nonlinear, the
Swish activation function demonstrated the best performance,
achieving the lowest MAPE of 0.013806 and the highest
correlation metrics (R = 0.992095, R2

= 0.984174). This
result highlights Swish’s superior ability to capture com-
plex and fluctuating demand patterns due to its smooth
self-gating property and ability to maintain effective gradi-
ent flow. Conversely, on the Malaysia dataset, where load
patterns are relatively stable and less volatile, the Tanh acti-
vation function performed the best, achieving a MAPE of
0.049809. Its symmetric output range effectively modeled the
dataset’s temporal consistency. The SELU activation func-
tion, with its self-normalizing property, also exhibited strong
performance on the Malaysia dataset, achieving a MAPE of
0.050429, RMSE of 0.044696, and R2 of 0.929830, making
it particularly well-suited for maintaining stable activation
distributions.

Advantages of Modern Activation Functions: Modern acti-
vation functions such as Swish, GELU, and SELU emerged
as top performers in this study. Swish excelled on the ISO-NE
dataset due to its smooth nonlinear expressive capability,
allowing the DRN model to converge efficiently and capture
intricate load patterns. GELU, with its probabilistic nature,
provided competitive results, ranking second on the ISO-NE
dataset with a MAPE of 0.013977, RMSE of 0.015190,
and R2 of 0.984690, demonstrating its ability to balance
gradient flow and model stability. On the Malaysia dataset,
SELU’s self-normalizing properties aligned well with the
dataset’s steady demand patterns, enabling the DRN model
to stabilize activations and achieve robust performance.
Swish and GELU also delivered strong results, with MAPEs
of 0.050570 and 0.051454, respectively, showcasing their
adaptability and generalization ability across diverse data
characteristics.
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Continued Relevance of Traditional Functions: While
modern activation functions delivered superior performance
traditional activation functions like Tanh and ReLU exhibited
robust and consistent results across both datasets. On the
ISO-NE dataset, Tanh and ReLU achieved MAPEs of
0.014929 and 0.015142, respectively, demonstrating their
effectiveness in capturing nonlinear features. On theMalaysia
dataset, Tanh achieved the lowest error (MAPE = 0.049809),
reaffirming its suitability for datasets with relatively stable
demand patterns. However, traditional activation functions
fell short when compared to modern alternatives like Swish
and SELU, which offer enhanced gradient flow, stability, and
expressive power. This suggests that while classical func-
tions remain viable options, they may not fully leverage the
capabilities of modern DRN models for complex forecasting
scenarios.

Guidance for DRN Optimization: The results reinforce
the importance of aligning activation function selection with
dataset characteristics. For datasets with high variability and
complex load patterns, advanced activation functions like
Swish and GELU should be prioritized for their ability to
model intricate relationships. For datasets with stable and
consistent patterns, Tanh and SELU offer reliable and precise
solutions. These findings provide a strong foundation for
optimizing DRN-based STLF models, emphasizing the need
for a data-driven approach to activation function selection.

Future Research Directions: This study highlights the
need for further exploration of activation functions tai-
lored to DRN-based STLF and other time-series forecasting
tasks. Developing new activation functions with enhanced
self-adaptive properties and nonlinear expressive capabilities
could further optimize model performance. Expanding the
scope to include additional datasets, hybrid DRN models
(e.g., integrating BiLSTM layers), and activation function
variants will deepen the understanding of activation function
impacts and guide the design of more effective forecasting
systems. In addition, while the training processes in this study
were conducted under practical hardware conditions using a
standard laptop, and the total training time for each individual
model—including all repetitions and snapshot phases—was
observed to remain within eight hours, these constraints may
have limited the depth of network exploration and restricted
more extensive hyperparameter tuning. Future work could
benefit from the use of high-performance computing environ-
ments and extended training time to assess the scalability and
optimization potential of deeper ormore complexDRN archi-
tectures. Furthermore, although the evaluation was based on
two climatically distinct datasets—ISO-NE and Malaysia—
the seasonal bias within datasets (e.g., summer vs. winter)
was not explicitly analyzed. Future research may consider
conducting seasonal segmentation to investigate whether
certain activation functions perform better under specific
seasonal load conditions. Lastly, expanding the analysis to
include additional datasets with diverse regional, climatic,
and consumption characteristics will further validate the
applicability and robustness of the findings across broader

real-world STLF scenarios. Such extensions would not only
strengthen the generalizability of the proposed activation
function selection strategy but also improveDRNadaptability
across varied energy systems.

In conclusion, this study provides the first systematic eval-
uation of activation functions in DRN models for STLF,
demonstrating that activation function selection plays a cru-
cial role in optimizing predictive performance. The results
reveal that Swish and GELU are particularly effective for
datasets with high variability and complex load patterns,
such as ISO-NE, whereas Tanh and SELU yield better
performance on more stable datasets like Malaysia. These
findings emphasize the necessity of tailoring activation func-
tion choices to the specific characteristics of the dataset
to maximize forecasting accuracy. By integrating advanced
activation functions that enhance gradient flow and nonlin-
earity, DRNmodels can achieve greater precision, robustness,
and adaptability across diverse load forecasting scenarios.
The findings of this study offer clear suggestion on select-
ing activation functions based on dataset characteristics. For
datasets with high variability and complex load patterns, such
as ISO-NE, activation functions like Swish and GELU are
recommended due to their ability to enhance gradient flow
and capture nonlinear dependencies effectively. Conversely,
for datasets with more stable load patterns, such as Malaysia,
Tanh and SELU are preferable as they provide improved
stability and convergence. These insights serve as a reference
for model developers aiming to optimize DRN-based STLF
models in different power system contexts.

ABBREVIATIONS
The following abbreviations are used in this manuscript:

Abbreviation Full name
ANN Artificial Neural Network.
CNN Convolutional Neural Network.
DNN Deep Neural Network.
DRN Deep Residual Network.
ELM Extreme Learning Machine.
FC Fully Connected Layer.
GELU Gaussian Error Linear Unit.
GRU Gated Recurrent Unit.
ISO-NE Independent System Operator of New

England.
LF Load Forecasting.
LSTM Long Short-Term Memory.
LTLF Long-Term Load Forecasting.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MSE Mean Square Error.
MTLF Medium-Term Load Forecasting.
MW Megawatt.
NMSE Normalized Mean Square Error.
PCA Principal Component Analysis.
R Correlation Coefficient.
R2 Coefficient of Determination.
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RBF Radial Basis Function.
ReLU Rectified Linear Unit.
ResBlock Residual Block.
ResNet Residual Network.
ResNetPlus Modified Residual Network.
RMSE Root Mean Square Error.
RNN Recurrent Neural Network.
SELU Scaled Exponential Linear Unit.
STLF Short-Term Load Forecasting.
SVR Support Vector Regression.
Tanh Hyperbolic Tangent.
VSTLF Very Short-Term Load Forecasting

A. DATASET SOURCE
1) ISO-NE DATASET
https://www.iso-ne.com/isoexpress/web/reports/load-and-
demand

2) MALAYSIA DATASET
https://www.gso.org.my/SystemData/SystemDemand.aspx

B. ACTIVATION FUNCTION FORMULA
1) LINEAR
The Linear activation function is mathematically defined in
Equation (15):

f(x) = x (15)

where x is the input value. This function outputs the input
directly, making it ideal for regression tasks where the
relationship between variables is linear. However, it lacks
nonlinearity, which limits its ability to capture complex pat-
terns in data, making it unsuitable for deep networks.

2) SIGMOID
The Sigmoid function is defined in Equation (16):

f(x) =
1

1 + e−x (16)

where x is the input value. It maps the input to the range (0, 1),
making it useful for binary classification tasks. The main
advantage of Sigmoid is its probabilistic output. However,
it suffers from gradient vanishing for large input magnitudes
and outputs that are not zerocentered, complicating optimiza-
tion.

3) TANH
The Tanh function is described by Equation (17):

f(x) =
ex − e−x

ex + e−x (17)

where x is the input value. It maps inputs to the range [−1, 1],
providing zero-centered outputs that improve convergence
during training. However, like Sigmoid, Tanh is prone to
gradient vanishing for large input magnitudes, limiting its
effectiveness in deeper networks.

4) RELU
The ReLU is defined as in Equation (18):

f(x) = max(0, x) (18)

where x is the input value. ReLU is computationally efficient
and effectively mitigates the vanishing gradient problem,
making it suitable for training deep networks. Its limitation
lies in the ‘‘dying neurons’’ problem, where negative inputs
result in zero output, rendering some neurons inactive during
training.

5) LEAKY RELU
Leaky ReLU modifies ReLU to allow small gradients for
negative inputs, as shown in Equation (19):

f(x) =

{
x if x > 0
αx if x≤0

(19)

where x is the input value and α is a small constant
(e.g., 0.01). This prevents neurons from becoming inactive.
However, it introduces an additional hyperparameter α that
requires tuning.

6) SELU
The SELU is expressed in Equation (20):

f(x) =

{
λx if x > 0
λα

(
ex−1

)
if x≤0

(20)

where x is the input value, λ≈1.05 is a scaling factor for
normalization, and α≈1.67 adjusts the output for negative
inputs. SELU ensures self-normalization, stabilizing mean
and variance across layers. However, its reliance on spe-
cific initialization and dropout configurations can complicate
implementation.

7) GELU
The GELU is defined in Equation (21):

f(x) = x·8(x) (21)

where x is the input value, and 8(x) represents the cumula-
tive distribution function of the standard normal distribution.
The cumulative distribution function is further expressed as
Equation (22):

8(x) =
1

√
2π

∫ x

−∞

e−
t2
2 dt (22)

Here, x is the input to the activation function, and 8(x)
determines the probability that a random variable with a
standard normal distribution is less than or equal to x. The
integral uses t as a dummy variable, while e and π are funda-
mental mathematical constants, representing Euler’s number
(≈2.718) and the ratio of a circle’s circumference to its
diameter (≈3.1416), respectively.

GELU smoothly combines linear and nonlinear behav-
ior by weighting the input x with the probability derived
from the standard normal distribution. This design facili-
tates smooth transitions between activated and non-activated
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states, enhancing gradient flow and convergence. Although
GELU’s computation involves the Gaussian cumulative dis-
tribution function, which is computationally more complex
than ReLU, its benefits in training stability and precision
make it a preferred choice in many deep learning tasks.

8) SWISH
The Swish function uses a self-gating mechanism, as defined
in Equation (23):

f(x) = x·σ (x), σ (x) =
1

1 + e−x (23)

where x is the input value and σ (x) is the Sigmoid func-
tion. Swish improves gradient flow and learning dynamics
but involves slightly higher computational cost due to the
Sigmoid calculation.
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